llvm-6502/lib/Transforms/Scalar/JumpThreading.cpp
2008-04-20 21:18:09 +00:00

165 lines
5.7 KiB
C++

//===- JumpThreading.cpp - Thread control through conditional blocks ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Jump Threading pass.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "jump-threading"
#include "llvm/Transforms/Scalar.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Pass.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
//STATISTIC(NumThreads, "Number of jumps threaded");
static cl::opt<unsigned>
Threshold("jump-threading-threshold",
cl::desc("Max block size to duplicate for jump threading"),
cl::init(6), cl::Hidden);
namespace {
/// This pass performs 'jump threading', which looks at blocks that have
/// multiple predecessors and multiple successors. If one or more of the
/// predecessors of the block can be proven to always jump to one of the
/// successors, we forward the edge from the predecessor to the successor by
/// duplicating the contents of this block.
///
/// An example of when this can occur is code like this:
///
/// if () { ...
/// X = 4;
/// }
/// if (X < 3) {
///
/// In this case, the unconditional branch at the end of the first if can be
/// revectored to the false side of the second if.
///
class VISIBILITY_HIDDEN JumpThreading : public FunctionPass {
public:
static char ID; // Pass identification
JumpThreading() : FunctionPass((intptr_t)&ID) {}
bool runOnFunction(Function &F);
bool ThreadBlock(BasicBlock &BB);
};
char JumpThreading::ID = 0;
RegisterPass<JumpThreading> X("jump-threading", "Jump Threading");
}
// Public interface to the Jump Threading pass
FunctionPass *llvm::createJumpThreadingPass() { return new JumpThreading(); }
/// runOnFunction - Top level algorithm.
///
bool JumpThreading::runOnFunction(Function &F) {
DOUT << "Jump threading on function '" << F.getNameStart() << "'\n";
bool Changed = false;
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I)
Changed |= ThreadBlock(*I);
return Changed;
}
/// getJumpThreadDuplicationCost - Return the cost of duplicating this block to
/// thread across it.
static unsigned getJumpThreadDuplicationCost(const BasicBlock &BB) {
BasicBlock::const_iterator I = BB.begin();
/// Ignore PHI nodes, these will be flattened when duplication happens.
while (isa<PHINode>(*I)) ++I;
// Sum up the cost of each instruction until we get to the terminator. Don't
// include the terminator because the copy won't include it.
unsigned Size = 0;
for (; !isa<TerminatorInst>(I); ++I) {
// Debugger intrinsics don't incur code size.
if (isa<DbgInfoIntrinsic>(I)) continue;
// If this is a pointer->pointer bitcast, it is free.
if (isa<BitCastInst>(I) && isa<PointerType>(I->getType()))
continue;
// All other instructions count for at least one unit.
++Size;
// Calls are more expensive. If they are non-intrinsic calls, we model them
// as having cost of 4. If they are a non-vector intrinsic, we model them
// as having cost of 2 total, and if they are a vector intrinsic, we model
// them as having cost 1.
if (const CallInst *CI = dyn_cast<CallInst>(I)) {
if (!isa<IntrinsicInst>(CI))
Size += 3;
else if (isa<VectorType>(CI->getType()))
Size += 1;
}
}
// Threading through a switch statement is particularly profitable. If this
// block ends in a switch, decrease its cost to make it more likely to happen.
if (isa<SwitchInst>(I))
Size = Size > 6 ? Size-6 : 0;
return Size;
}
/// ThreadBlock - If there are any predecessors whose control can be threaded
/// through to a successor, transform them now.
bool JumpThreading::ThreadBlock(BasicBlock &BB) {
// If there is only one predecessor or successor, then there is nothing to do.
if (BB.getTerminator()->getNumSuccessors() == 1 || BB.getSinglePredecessor())
return false;
// See if this block ends with a branch of switch. If so, see if the
// condition is a phi node. If so, and if an entry of the phi node is a
// constant, we can thread the block.
Value *Condition;
if (BranchInst *BI = dyn_cast<BranchInst>(BB.getTerminator()))
Condition = BI->getCondition();
else if (SwitchInst *SI = dyn_cast<SwitchInst>(BB.getTerminator()))
Condition = SI->getCondition();
else
return false; // Must be an invoke.
// See if this is a phi node in the current block.
PHINode *PN = dyn_cast<PHINode>(Condition);
if (!PN || PN->getParent() != &BB) return false;
// See if the phi node has any constant values. If so, we can determine where
// the corresponding predecessor will branch.
unsigned PredNo = ~0U;
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i) {
if (isa<ConstantInt>(PN->getIncomingValue(i))) {
PredNo = i;
break;
}
}
// If no incoming value has a constant, we don't know the destination of any
// predecessors.
if (PredNo == ~0U)
return false;
// See if the cost of duplicating this block is low enough.
unsigned JumpThreadCost = getJumpThreadDuplicationCost(BB);
if (JumpThreadCost > Threshold) {
DOUT << " Not threading BB '" << BB.getNameStart()
<< "' - Cost is too high: " << JumpThreadCost << "\n";
return false;
}
DOUT << " Threading BB '" << BB.getNameStart() << "'. Cost is: "
<< JumpThreadCost << "\n";
return false;
}