llvm-6502/lib/Target/X86/Disassembler/X86Disassembler.h
Rafael Espindola 6a222ec893 Pass an ArrayRef to MCDisassembler::getInstruction.
With this patch MCDisassembler::getInstruction takes an ArrayRef<uint8_t>
instead of a MemoryObject.

Even on X86 there is a maximum size an instruction can have. Given
that, it seems way simpler and more efficient to just pass an ArrayRef
to the disassembler instead of a MemoryObject and have it do a virtual
call every time it wants some extra bytes.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@221751 91177308-0d34-0410-b5e6-96231b3b80d8
2014-11-12 02:04:27 +00:00

113 lines
5.0 KiB
C++

//===-- X86Disassembler.h - Disassembler for x86 and x86_64 -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// The X86 disassembler is a table-driven disassembler for the 16-, 32-, and
// 64-bit X86 instruction sets. The main decode sequence for an assembly
// instruction in this disassembler is:
//
// 1. Read the prefix bytes and determine the attributes of the instruction.
// These attributes, recorded in enum attributeBits
// (X86DisassemblerDecoderCommon.h), form a bitmask. The table CONTEXTS_SYM
// provides a mapping from bitmasks to contexts, which are represented by
// enum InstructionContext (ibid.).
//
// 2. Read the opcode, and determine what kind of opcode it is. The
// disassembler distinguishes four kinds of opcodes, which are enumerated in
// OpcodeType (X86DisassemblerDecoderCommon.h): one-byte (0xnn), two-byte
// (0x0f 0xnn), three-byte-38 (0x0f 0x38 0xnn), or three-byte-3a
// (0x0f 0x3a 0xnn). Mandatory prefixes are treated as part of the context.
//
// 3. Depending on the opcode type, look in one of four ClassDecision structures
// (X86DisassemblerDecoderCommon.h). Use the opcode class to determine which
// OpcodeDecision (ibid.) to look the opcode in. Look up the opcode, to get
// a ModRMDecision (ibid.).
//
// 4. Some instructions, such as escape opcodes or extended opcodes, or even
// instructions that have ModRM*Reg / ModRM*Mem forms in LLVM, need the
// ModR/M byte to complete decode. The ModRMDecision's type is an entry from
// ModRMDecisionType (X86DisassemblerDecoderCommon.h) that indicates if the
// ModR/M byte is required and how to interpret it.
//
// 5. After resolving the ModRMDecision, the disassembler has a unique ID
// of type InstrUID (X86DisassemblerDecoderCommon.h). Looking this ID up in
// INSTRUCTIONS_SYM yields the name of the instruction and the encodings and
// meanings of its operands.
//
// 6. For each operand, its encoding is an entry from OperandEncoding
// (X86DisassemblerDecoderCommon.h) and its type is an entry from
// OperandType (ibid.). The encoding indicates how to read it from the
// instruction; the type indicates how to interpret the value once it has
// been read. For example, a register operand could be stored in the R/M
// field of the ModR/M byte, the REG field of the ModR/M byte, or added to
// the main opcode. This is orthogonal from its meaning (an GPR or an XMM
// register, for instance). Given this information, the operands can be
// extracted and interpreted.
//
// 7. As the last step, the disassembler translates the instruction information
// and operands into a format understandable by the client - in this case, an
// MCInst for use by the MC infrastructure.
//
// The disassembler is broken broadly into two parts: the table emitter that
// emits the instruction decode tables discussed above during compilation, and
// the disassembler itself. The table emitter is documented in more detail in
// utils/TableGen/X86DisassemblerEmitter.h.
//
// X86Disassembler.h contains the public interface for the disassembler,
// adhering to the MCDisassembler interface.
// X86Disassembler.cpp contains the code responsible for step 7, and for
// invoking the decoder to execute steps 1-6.
// X86DisassemblerDecoderCommon.h contains the definitions needed by both the
// table emitter and the disassembler.
// X86DisassemblerDecoder.h contains the public interface of the decoder,
// factored out into C for possible use by other projects.
// X86DisassemblerDecoder.c contains the source code of the decoder, which is
// responsible for steps 1-6.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_LIB_TARGET_X86_DISASSEMBLER_X86DISASSEMBLER_H
#define LLVM_LIB_TARGET_X86_DISASSEMBLER_X86DISASSEMBLER_H
#include "X86DisassemblerDecoderCommon.h"
#include "llvm/MC/MCDisassembler.h"
namespace llvm {
class MCInst;
class MCInstrInfo;
class MCSubtargetInfo;
class MemoryObject;
class raw_ostream;
namespace X86Disassembler {
/// Generic disassembler for all X86 platforms. All each platform class should
/// have to do is subclass the constructor, and provide a different
/// disassemblerMode value.
class X86GenericDisassembler : public MCDisassembler {
std::unique_ptr<const MCInstrInfo> MII;
public:
X86GenericDisassembler(const MCSubtargetInfo &STI, MCContext &Ctx,
std::unique_ptr<const MCInstrInfo> MII);
public:
DecodeStatus getInstruction(MCInst &instr, uint64_t &size,
ArrayRef<uint8_t> Bytes, uint64_t Address,
raw_ostream &vStream,
raw_ostream &cStream) const override;
private:
DisassemblerMode fMode;
};
} // namespace X86Disassembler
} // namespace llvm
#endif