llvm-6502/unittests/Analysis/CFGTest.cpp
Chandler Carruth 417c5c172c [PM] Remove the old 'PassManager.h' header file at the top level of
LLVM's include tree and the use of using declarations to hide the
'legacy' namespace for the old pass manager.

This undoes the primary modules-hostile change I made to keep
out-of-tree targets building. I sent an email inquiring about whether
this would be reasonable to do at this phase and people seemed fine with
it, so making it a reality. This should allow us to start bootstrapping
with modules to a certain extent along with making it easier to mix and
match headers in general.

The updates to any code for users of LLVM are very mechanical. Switch
from including "llvm/PassManager.h" to "llvm/IR/LegacyPassManager.h".
Qualify the types which now produce compile errors with "legacy::". The
most common ones are "PassManager", "PassManagerBase", and
"FunctionPassManager".

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@229094 91177308-0d34-0410-b5e6-96231b3b80d8
2015-02-13 10:01:29 +00:00

388 lines
10 KiB
C++

//===- CFGTest.cpp - CFG tests --------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/InstIterator.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Module.h"
#include "llvm/Pass.h"
#include "llvm/IR/LegacyPassManager.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/SourceMgr.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace {
// This fixture assists in running the isPotentiallyReachable utility four ways
// and ensuring it produces the correct answer each time.
class IsPotentiallyReachableTest : public testing::Test {
protected:
void ParseAssembly(const char *Assembly) {
SMDiagnostic Error;
M = parseAssemblyString(Assembly, Error, getGlobalContext());
std::string errMsg;
raw_string_ostream os(errMsg);
Error.print("", os);
// A failure here means that the test itself is buggy.
if (!M)
report_fatal_error(os.str().c_str());
Function *F = M->getFunction("test");
if (F == nullptr)
report_fatal_error("Test must have a function named @test");
A = B = nullptr;
for (inst_iterator I = inst_begin(F), E = inst_end(F); I != E; ++I) {
if (I->hasName()) {
if (I->getName() == "A")
A = &*I;
else if (I->getName() == "B")
B = &*I;
}
}
if (A == nullptr)
report_fatal_error("@test must have an instruction %A");
if (B == nullptr)
report_fatal_error("@test must have an instruction %B");
}
void ExpectPath(bool ExpectedResult) {
static char ID;
class IsPotentiallyReachableTestPass : public FunctionPass {
public:
IsPotentiallyReachableTestPass(bool ExpectedResult,
Instruction *A, Instruction *B)
: FunctionPass(ID), ExpectedResult(ExpectedResult), A(A), B(B) {}
static int initialize() {
PassInfo *PI = new PassInfo("isPotentiallyReachable testing pass",
"", &ID, nullptr, true, true);
PassRegistry::getPassRegistry()->registerPass(*PI, false);
initializeLoopInfoWrapperPassPass(*PassRegistry::getPassRegistry());
initializeDominatorTreeWrapperPassPass(
*PassRegistry::getPassRegistry());
return 0;
}
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<LoopInfoWrapperPass>();
AU.addRequired<DominatorTreeWrapperPass>();
}
bool runOnFunction(Function &F) {
if (!F.hasName() || F.getName() != "test")
return false;
LoopInfo *LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
DominatorTree *DT =
&getAnalysis<DominatorTreeWrapperPass>().getDomTree();
EXPECT_EQ(isPotentiallyReachable(A, B, nullptr, nullptr),
ExpectedResult);
EXPECT_EQ(isPotentiallyReachable(A, B, DT, nullptr), ExpectedResult);
EXPECT_EQ(isPotentiallyReachable(A, B, nullptr, LI), ExpectedResult);
EXPECT_EQ(isPotentiallyReachable(A, B, DT, LI), ExpectedResult);
return false;
}
bool ExpectedResult;
Instruction *A, *B;
};
static int initialize = IsPotentiallyReachableTestPass::initialize();
(void)initialize;
IsPotentiallyReachableTestPass *P =
new IsPotentiallyReachableTestPass(ExpectedResult, A, B);
legacy::PassManager PM;
PM.add(P);
PM.run(*M);
}
std::unique_ptr<Module> M;
Instruction *A, *B;
};
}
TEST_F(IsPotentiallyReachableTest, SameBlockNoPath) {
ParseAssembly(
"define void @test() {\n"
"entry:\n"
" bitcast i8 undef to i8\n"
" %B = bitcast i8 undef to i8\n"
" bitcast i8 undef to i8\n"
" bitcast i8 undef to i8\n"
" %A = bitcast i8 undef to i8\n"
" ret void\n"
"}\n");
ExpectPath(false);
}
TEST_F(IsPotentiallyReachableTest, SameBlockPath) {
ParseAssembly(
"define void @test() {\n"
"entry:\n"
" %A = bitcast i8 undef to i8\n"
" bitcast i8 undef to i8\n"
" bitcast i8 undef to i8\n"
" %B = bitcast i8 undef to i8\n"
" ret void\n"
"}\n");
ExpectPath(true);
}
TEST_F(IsPotentiallyReachableTest, SameBlockNoLoop) {
ParseAssembly(
"define void @test() {\n"
"entry:\n"
" br label %middle\n"
"middle:\n"
" %B = bitcast i8 undef to i8\n"
" bitcast i8 undef to i8\n"
" bitcast i8 undef to i8\n"
" %A = bitcast i8 undef to i8\n"
" br label %nextblock\n"
"nextblock:\n"
" ret void\n"
"}\n");
ExpectPath(false);
}
TEST_F(IsPotentiallyReachableTest, StraightNoPath) {
ParseAssembly(
"define void @test() {\n"
"entry:\n"
" %B = bitcast i8 undef to i8\n"
" br label %exit\n"
"exit:\n"
" %A = bitcast i8 undef to i8\n"
" ret void\n"
"}");
ExpectPath(false);
}
TEST_F(IsPotentiallyReachableTest, StraightPath) {
ParseAssembly(
"define void @test() {\n"
"entry:\n"
" %A = bitcast i8 undef to i8\n"
" br label %exit\n"
"exit:\n"
" %B = bitcast i8 undef to i8\n"
" ret void\n"
"}");
ExpectPath(true);
}
TEST_F(IsPotentiallyReachableTest, DestUnreachable) {
ParseAssembly(
"define void @test() {\n"
"entry:\n"
" br label %midblock\n"
"midblock:\n"
" %A = bitcast i8 undef to i8\n"
" ret void\n"
"unreachable:\n"
" %B = bitcast i8 undef to i8\n"
" br label %midblock\n"
"}");
ExpectPath(false);
}
TEST_F(IsPotentiallyReachableTest, BranchToReturn) {
ParseAssembly(
"define void @test(i1 %x) {\n"
"entry:\n"
" %A = bitcast i8 undef to i8\n"
" br i1 %x, label %block1, label %block2\n"
"block1:\n"
" ret void\n"
"block2:\n"
" %B = bitcast i8 undef to i8\n"
" ret void\n"
"}");
ExpectPath(true);
}
TEST_F(IsPotentiallyReachableTest, SimpleLoop1) {
ParseAssembly(
"declare i1 @switch()\n"
"\n"
"define void @test() {\n"
"entry:\n"
" br label %loop\n"
"loop:\n"
" %B = bitcast i8 undef to i8\n"
" %A = bitcast i8 undef to i8\n"
" %x = call i1 @switch()\n"
" br i1 %x, label %loop, label %exit\n"
"exit:\n"
" ret void\n"
"}");
ExpectPath(true);
}
TEST_F(IsPotentiallyReachableTest, SimpleLoop2) {
ParseAssembly(
"declare i1 @switch()\n"
"\n"
"define void @test() {\n"
"entry:\n"
" %B = bitcast i8 undef to i8\n"
" br label %loop\n"
"loop:\n"
" %A = bitcast i8 undef to i8\n"
" %x = call i1 @switch()\n"
" br i1 %x, label %loop, label %exit\n"
"exit:\n"
" ret void\n"
"}");
ExpectPath(false);
}
TEST_F(IsPotentiallyReachableTest, SimpleLoop3) {
ParseAssembly(
"declare i1 @switch()\n"
"\n"
"define void @test() {\n"
"entry:\n"
" br label %loop\n"
"loop:\n"
" %B = bitcast i8 undef to i8\n"
" %x = call i1 @switch()\n"
" br i1 %x, label %loop, label %exit\n"
"exit:\n"
" %A = bitcast i8 undef to i8\n"
" ret void\n"
"}");
ExpectPath(false);
}
TEST_F(IsPotentiallyReachableTest, OneLoopAfterTheOther1) {
ParseAssembly(
"declare i1 @switch()\n"
"\n"
"define void @test() {\n"
"entry:\n"
" br label %loop1\n"
"loop1:\n"
" %A = bitcast i8 undef to i8\n"
" %x = call i1 @switch()\n"
" br i1 %x, label %loop1, label %loop1exit\n"
"loop1exit:\n"
" br label %loop2\n"
"loop2:\n"
" %B = bitcast i8 undef to i8\n"
" %y = call i1 @switch()\n"
" br i1 %x, label %loop2, label %loop2exit\n"
"loop2exit:"
" ret void\n"
"}");
ExpectPath(true);
}
TEST_F(IsPotentiallyReachableTest, OneLoopAfterTheOther2) {
ParseAssembly(
"declare i1 @switch()\n"
"\n"
"define void @test() {\n"
"entry:\n"
" br label %loop1\n"
"loop1:\n"
" %B = bitcast i8 undef to i8\n"
" %x = call i1 @switch()\n"
" br i1 %x, label %loop1, label %loop1exit\n"
"loop1exit:\n"
" br label %loop2\n"
"loop2:\n"
" %A = bitcast i8 undef to i8\n"
" %y = call i1 @switch()\n"
" br i1 %x, label %loop2, label %loop2exit\n"
"loop2exit:"
" ret void\n"
"}");
ExpectPath(false);
}
TEST_F(IsPotentiallyReachableTest, OneLoopAfterTheOtherInsideAThirdLoop) {
ParseAssembly(
"declare i1 @switch()\n"
"\n"
"define void @test() {\n"
"entry:\n"
" br label %outerloop3\n"
"outerloop3:\n"
" br label %innerloop1\n"
"innerloop1:\n"
" %B = bitcast i8 undef to i8\n"
" %x = call i1 @switch()\n"
" br i1 %x, label %innerloop1, label %innerloop1exit\n"
"innerloop1exit:\n"
" br label %innerloop2\n"
"innerloop2:\n"
" %A = bitcast i8 undef to i8\n"
" %y = call i1 @switch()\n"
" br i1 %x, label %innerloop2, label %innerloop2exit\n"
"innerloop2exit:"
" ;; In outer loop3 now.\n"
" %z = call i1 @switch()\n"
" br i1 %z, label %outerloop3, label %exit\n"
"exit:\n"
" ret void\n"
"}");
ExpectPath(true);
}
static const char *BranchInsideLoopIR =
"declare i1 @switch()\n"
"\n"
"define void @test() {\n"
"entry:\n"
" br label %loop\n"
"loop:\n"
" %x = call i1 @switch()\n"
" br i1 %x, label %nextloopblock, label %exit\n"
"nextloopblock:\n"
" %y = call i1 @switch()\n"
" br i1 %y, label %left, label %right\n"
"left:\n"
" %A = bitcast i8 undef to i8\n"
" br label %loop\n"
"right:\n"
" %B = bitcast i8 undef to i8\n"
" br label %loop\n"
"exit:\n"
" ret void\n"
"}";
TEST_F(IsPotentiallyReachableTest, BranchInsideLoop) {
ParseAssembly(BranchInsideLoopIR);
ExpectPath(true);
}
TEST_F(IsPotentiallyReachableTest, ModifyTest) {
ParseAssembly(BranchInsideLoopIR);
succ_iterator S = succ_begin(++M->getFunction("test")->begin());
BasicBlock *OldBB = S[0];
S[0] = S[1];
ExpectPath(false);
S[0] = OldBB;
ExpectPath(true);
}