llvm-6502/include/llvm/Analysis/Dominators.h
Devang Patel 4cd950f61b Break friendship.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@37450 91177308-0d34-0410-b5e6-96231b3b80d8
2007-06-06 00:59:48 +00:00

521 lines
17 KiB
C++

//===- llvm/Analysis/Dominators.h - Dominator Info Calculation --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by the LLVM research group and is distributed under
// the University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the following classes:
// 1. DominatorTree: Represent dominators as an explicit tree structure.
// 2. ETForest: Efficient data structure for dominance comparisons and
// nearest-common-ancestor queries.
// 3. DominanceFrontier: Calculate and hold the dominance frontier for a
// function.
//
// These data structures are listed in increasing order of complexity. It
// takes longer to calculate the dominator frontier, for example, than the
// DominatorTree mapping.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_ANALYSIS_DOMINATORS_H
#define LLVM_ANALYSIS_DOMINATORS_H
#include "llvm/Analysis/ET-Forest.h"
#include "llvm/Pass.h"
#include <set>
namespace llvm {
class Instruction;
template <typename GraphType> struct GraphTraits;
//===----------------------------------------------------------------------===//
/// DominatorBase - Base class that other, more interesting dominator analyses
/// inherit from.
///
class DominatorBase : public FunctionPass {
protected:
std::vector<BasicBlock*> Roots;
const bool IsPostDominators;
inline DominatorBase(intptr_t ID, bool isPostDom) :
FunctionPass(ID), Roots(), IsPostDominators(isPostDom) {}
public:
/// getRoots - Return the root blocks of the current CFG. This may include
/// multiple blocks if we are computing post dominators. For forward
/// dominators, this will always be a single block (the entry node).
///
inline const std::vector<BasicBlock*> &getRoots() const { return Roots; }
/// isPostDominator - Returns true if analysis based of postdoms
///
bool isPostDominator() const { return IsPostDominators; }
};
//===----------------------------------------------------------------------===//
// DomTreeNode - Dominator Tree Node
class DomTreeNode {
BasicBlock *TheBB;
DomTreeNode *IDom;
std::vector<DomTreeNode*> Children;
public:
typedef std::vector<DomTreeNode*>::iterator iterator;
typedef std::vector<DomTreeNode*>::const_iterator const_iterator;
iterator begin() { return Children.begin(); }
iterator end() { return Children.end(); }
const_iterator begin() const { return Children.begin(); }
const_iterator end() const { return Children.end(); }
inline BasicBlock *getBlock() const { return TheBB; }
inline DomTreeNode *getIDom() const { return IDom; }
inline const std::vector<DomTreeNode*> &getChildren() const { return Children; }
/// properlyDominates - Returns true iff this dominates N and this != N.
/// Note that this is not a constant time operation!
///
bool properlyDominates(const DomTreeNode *N) const {
const DomTreeNode *IDom;
if (this == 0 || N == 0) return false;
while ((IDom = N->getIDom()) != 0 && IDom != this)
N = IDom; // Walk up the tree
return IDom != 0;
}
/// dominates - Returns true iff this dominates N. Note that this is not a
/// constant time operation!
///
inline bool dominates(const DomTreeNode *N) const {
if (N == this) return true; // A node trivially dominates itself.
return properlyDominates(N);
}
inline DomTreeNode(BasicBlock *BB, DomTreeNode *iDom) : TheBB(BB), IDom(iDom) {}
inline DomTreeNode *addChild(DomTreeNode *C) { Children.push_back(C); return C; }
void setIDom(DomTreeNode *NewIDom);
};
//===----------------------------------------------------------------------===//
/// DominatorTree - Calculate the immediate dominator tree for a function.
///
class DominatorTreeBase : public DominatorBase {
protected:
std::map<BasicBlock*, DomTreeNode*> DomTreeNodes;
void reset();
typedef std::map<BasicBlock*, DomTreeNode*> DomTreeNodeMapType;
DomTreeNode *RootNode;
// Information record used during immediate dominators computation.
struct InfoRec {
unsigned Semi;
unsigned Size;
BasicBlock *Label, *Parent, *Child, *Ancestor;
std::vector<BasicBlock*> Bucket;
InfoRec() : Semi(0), Size(0), Label(0), Parent(0), Child(0), Ancestor(0){}
};
std::map<BasicBlock*, BasicBlock*> IDoms;
// Vertex - Map the DFS number to the BasicBlock*
std::vector<BasicBlock*> Vertex;
// Info - Collection of information used during the computation of idoms.
std::map<BasicBlock*, InfoRec> Info;
public:
DominatorTreeBase(intptr_t ID, bool isPostDom)
: DominatorBase(ID, isPostDom) {}
~DominatorTreeBase() { reset(); }
virtual void releaseMemory() { reset(); }
/// getNode - return the (Post)DominatorTree node for the specified basic
/// block. This is the same as using operator[] on this class.
///
inline DomTreeNode *getNode(BasicBlock *BB) const {
DomTreeNodeMapType::const_iterator i = DomTreeNodes.find(BB);
return (i != DomTreeNodes.end()) ? i->second : 0;
}
inline DomTreeNode *operator[](BasicBlock *BB) const {
return getNode(BB);
}
/// getRootNode - This returns the entry node for the CFG of the function. If
/// this tree represents the post-dominance relations for a function, however,
/// this root may be a node with the block == NULL. This is the case when
/// there are multiple exit nodes from a particular function. Consumers of
/// post-dominance information must be capable of dealing with this
/// possibility.
///
DomTreeNode *getRootNode() { return RootNode; }
const DomTreeNode *getRootNode() const { return RootNode; }
//===--------------------------------------------------------------------===//
// API to update (Post)DominatorTree information based on modifications to
// the CFG...
/// addNewBlock - Add a new node to the dominator tree information. This
/// creates a new node as a child of DomBB dominator node,linking it into
/// the children list of the immediate dominator.
DomTreeNode *addNewBlock(BasicBlock *BB, BasicBlock *DomBB) {
assert(getNode(BB) == 0 && "Block already in dominator tree!");
DomTreeNode *IDomNode = getNode(DomBB);
assert(IDomNode && "Not immediate dominator specified for block!");
return DomTreeNodes[BB] = IDomNode->addChild(new DomTreeNode(BB, IDomNode));
}
/// changeImmediateDominator - This method is used to update the dominator
/// tree information when a node's immediate dominator changes.
///
void changeImmediateDominator(DomTreeNode *N, DomTreeNode *NewIDom) {
assert(N && NewIDom && "Cannot change null node pointers!");
N->setIDom(NewIDom);
}
void changeImmediateDominator(BasicBlock *BB, BasicBlock *NewBB) {
changeImmediateDominator(getNode(BB), getNode(NewBB));
}
/// removeNode - Removes a node from the dominator tree. Block must not
/// dominate any other blocks. Invalidates any node pointing to removed
/// block.
void removeNode(BasicBlock *BB) {
assert(getNode(BB) && "Removing node that isn't in dominator tree.");
DomTreeNodes.erase(BB);
}
/// print - Convert to human readable form
///
virtual void print(std::ostream &OS, const Module* = 0) const;
void print(std::ostream *OS, const Module* M = 0) const {
if (OS) print(*OS, M);
}
virtual void dump();
};
//===-------------------------------------
/// DominatorTree Class - Concrete subclass of DominatorTreeBase that is used to
/// compute a normal dominator tree.
///
class DominatorTree : public DominatorTreeBase {
public:
static char ID; // Pass ID, replacement for typeid
DominatorTree() : DominatorTreeBase((intptr_t)&ID, false) {}
BasicBlock *getRoot() const {
assert(Roots.size() == 1 && "Should always have entry node!");
return Roots[0];
}
virtual bool runOnFunction(Function &F);
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
}
private:
void calculate(Function& F);
DomTreeNode *getNodeForBlock(BasicBlock *BB);
unsigned DFSPass(BasicBlock *V, InfoRec &VInfo, unsigned N);
void Compress(BasicBlock *V);
BasicBlock *Eval(BasicBlock *v);
void Link(BasicBlock *V, BasicBlock *W, InfoRec &WInfo);
inline BasicBlock *getIDom(BasicBlock *BB) const {
std::map<BasicBlock*, BasicBlock*>::const_iterator I = IDoms.find(BB);
return I != IDoms.end() ? I->second : 0;
}
};
//===-------------------------------------
/// DominatorTree GraphTraits specialization so the DominatorTree can be
/// iterable by generic graph iterators.
///
template <> struct GraphTraits<DomTreeNode*> {
typedef DomTreeNode NodeType;
typedef NodeType::iterator ChildIteratorType;
static NodeType *getEntryNode(NodeType *N) {
return N;
}
static inline ChildIteratorType child_begin(NodeType* N) {
return N->begin();
}
static inline ChildIteratorType child_end(NodeType* N) {
return N->end();
}
};
template <> struct GraphTraits<DominatorTree*>
: public GraphTraits<DomTreeNode*> {
static NodeType *getEntryNode(DominatorTree *DT) {
return DT->getRootNode();
}
};
//===-------------------------------------
/// ET-Forest Class - Class used to construct forwards and backwards
/// ET-Forests
///
class ETForestBase : public DominatorBase {
public:
ETForestBase(intptr_t ID, bool isPostDom)
: DominatorBase(ID, isPostDom), Nodes(),
DFSInfoValid(false), SlowQueries(0) {}
virtual void releaseMemory() { reset(); }
typedef std::map<BasicBlock*, ETNode*> ETMapType;
// FIXME : There is no need to make this interface public.
// Fix predicate simplifier.
void updateDFSNumbers();
/// dominates - Return true if A dominates B.
///
inline bool dominates(BasicBlock *A, BasicBlock *B) {
if (A == B)
return true;
ETNode *NodeA = getNode(A);
ETNode *NodeB = getNode(B);
if (DFSInfoValid)
return NodeB->DominatedBy(NodeA);
else {
// If we end up with too many slow queries, just update the
// DFS numbers on the theory that we are going to keep querying.
SlowQueries++;
if (SlowQueries > 32) {
updateDFSNumbers();
return NodeB->DominatedBy(NodeA);
}
return NodeB->DominatedBySlow(NodeA);
}
}
// dominates - Return true if A dominates B. This performs the
// special checks necessary if A and B are in the same basic block.
bool dominates(Instruction *A, Instruction *B);
/// properlyDominates - Return true if A dominates B and A != B.
///
bool properlyDominates(BasicBlock *A, BasicBlock *B) {
return dominates(A, B) && A != B;
}
/// isReachableFromEntry - Return true if A is dominated by the entry
/// block of the function containing it.
const bool isReachableFromEntry(BasicBlock* A);
/// Return the nearest common dominator of A and B.
BasicBlock *nearestCommonDominator(BasicBlock *A, BasicBlock *B) const {
ETNode *NodeA = getNode(A);
ETNode *NodeB = getNode(B);
ETNode *Common = NodeA->NCA(NodeB);
if (!Common)
return NULL;
return Common->getData<BasicBlock>();
}
/// Return the immediate dominator of A.
BasicBlock *getIDom(BasicBlock *A) const {
ETNode *NodeA = getNode(A);
if (!NodeA) return 0;
const ETNode *idom = NodeA->getFather();
return idom ? idom->getData<BasicBlock>() : 0;
}
void getETNodeChildren(BasicBlock *A, std::vector<BasicBlock*>& children) const {
ETNode *NodeA = getNode(A);
if (!NodeA) return;
const ETNode* son = NodeA->getSon();
if (!son) return;
children.push_back(son->getData<BasicBlock>());
const ETNode* brother = son->getBrother();
while (brother != son) {
children.push_back(brother->getData<BasicBlock>());
brother = brother->getBrother();
}
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<DominatorTree>();
}
//===--------------------------------------------------------------------===//
// API to update Forest information based on modifications
// to the CFG...
/// addNewBlock - Add a new block to the CFG, with the specified immediate
/// dominator.
///
void addNewBlock(BasicBlock *BB, BasicBlock *IDom);
/// setImmediateDominator - Update the immediate dominator information to
/// change the current immediate dominator for the specified block
/// to another block. This method requires that BB for NewIDom
/// already have an ETNode, otherwise just use addNewBlock.
///
void setImmediateDominator(BasicBlock *BB, BasicBlock *NewIDom);
/// print - Convert to human readable form
///
virtual void print(std::ostream &OS, const Module* = 0) const;
void print(std::ostream *OS, const Module* M = 0) const {
if (OS) print(*OS, M);
}
virtual void dump();
protected:
/// getNode - return the (Post)DominatorTree node for the specified basic
/// block. This is the same as using operator[] on this class.
///
inline ETNode *getNode(BasicBlock *BB) const {
ETMapType::const_iterator i = Nodes.find(BB);
return (i != Nodes.end()) ? i->second : 0;
}
inline ETNode *operator[](BasicBlock *BB) const {
return getNode(BB);
}
void reset();
ETMapType Nodes;
bool DFSInfoValid;
unsigned int SlowQueries;
};
//==-------------------------------------
/// ETForest Class - Concrete subclass of ETForestBase that is used to
/// compute a forwards ET-Forest.
class ETForest : public ETForestBase {
public:
static char ID; // Pass identification, replacement for typeid
ETForest() : ETForestBase((intptr_t)&ID, false) {}
BasicBlock *getRoot() const {
assert(Roots.size() == 1 && "Should always have entry node!");
return Roots[0];
}
virtual bool runOnFunction(Function &F) {
reset(); // Reset from the last time we were run...
DominatorTree &DT = getAnalysis<DominatorTree>();
Roots = DT.getRoots();
calculate(DT);
return false;
}
void calculate(const DominatorTree &DT);
// FIXME : There is no need to make getNodeForBlock public. Fix
// predicate simplifier.
ETNode *getNodeForBlock(BasicBlock *BB);
};
//===----------------------------------------------------------------------===//
/// DominanceFrontierBase - Common base class for computing forward and inverse
/// dominance frontiers for a function.
///
class DominanceFrontierBase : public DominatorBase {
public:
typedef std::set<BasicBlock*> DomSetType; // Dom set for a bb
typedef std::map<BasicBlock*, DomSetType> DomSetMapType; // Dom set map
protected:
DomSetMapType Frontiers;
public:
DominanceFrontierBase(intptr_t ID, bool isPostDom)
: DominatorBase(ID, isPostDom) {}
virtual void releaseMemory() { Frontiers.clear(); }
// Accessor interface:
typedef DomSetMapType::iterator iterator;
typedef DomSetMapType::const_iterator const_iterator;
iterator begin() { return Frontiers.begin(); }
const_iterator begin() const { return Frontiers.begin(); }
iterator end() { return Frontiers.end(); }
const_iterator end() const { return Frontiers.end(); }
iterator find(BasicBlock *B) { return Frontiers.find(B); }
const_iterator find(BasicBlock *B) const { return Frontiers.find(B); }
void addBasicBlock(BasicBlock *BB, const DomSetType &frontier) {
assert(find(BB) == end() && "Block already in DominanceFrontier!");
Frontiers.insert(std::make_pair(BB, frontier));
}
void addToFrontier(iterator I, BasicBlock *Node) {
assert(I != end() && "BB is not in DominanceFrontier!");
I->second.insert(Node);
}
void removeFromFrontier(iterator I, BasicBlock *Node) {
assert(I != end() && "BB is not in DominanceFrontier!");
assert(I->second.count(Node) && "Node is not in DominanceFrontier of BB");
I->second.erase(Node);
}
/// print - Convert to human readable form
///
virtual void print(std::ostream &OS, const Module* = 0) const;
void print(std::ostream *OS, const Module* M = 0) const {
if (OS) print(*OS, M);
}
virtual void dump();
};
//===-------------------------------------
/// DominanceFrontier Class - Concrete subclass of DominanceFrontierBase that is
/// used to compute a forward dominator frontiers.
///
class DominanceFrontier : public DominanceFrontierBase {
public:
static char ID; // Pass ID, replacement for typeid
DominanceFrontier() :
DominanceFrontierBase((intptr_t)& ID, false) {}
BasicBlock *getRoot() const {
assert(Roots.size() == 1 && "Should always have entry node!");
return Roots[0];
}
virtual bool runOnFunction(Function &) {
Frontiers.clear();
DominatorTree &DT = getAnalysis<DominatorTree>();
Roots = DT.getRoots();
assert(Roots.size() == 1 && "Only one entry block for forward domfronts!");
calculate(DT, DT[Roots[0]]);
return false;
}
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<DominatorTree>();
}
private:
const DomSetType &calculate(const DominatorTree &DT,
const DomTreeNode *Node);
};
} // End llvm namespace
#endif