llvm-6502/include/llvm/Instructions.h
2010-10-27 07:39:54 +00:00

3201 lines
127 KiB
C++

//===-- llvm/Instructions.h - Instruction subclass definitions --*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file exposes the class definitions of all of the subclasses of the
// Instruction class. This is meant to be an easy way to get access to all
// instruction subclasses.
//
//===----------------------------------------------------------------------===//
#ifndef LLVM_INSTRUCTIONS_H
#define LLVM_INSTRUCTIONS_H
#include "llvm/InstrTypes.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Attributes.h"
#include "llvm/CallingConv.h"
#include "llvm/ADT/SmallVector.h"
#include <iterator>
namespace llvm {
class ConstantInt;
class ConstantRange;
class APInt;
class LLVMContext;
class DominatorTree;
//===----------------------------------------------------------------------===//
// AllocaInst Class
//===----------------------------------------------------------------------===//
/// AllocaInst - an instruction to allocate memory on the stack
///
class AllocaInst : public UnaryInstruction {
protected:
virtual AllocaInst *clone_impl() const;
public:
explicit AllocaInst(const Type *Ty, Value *ArraySize = 0,
const Twine &Name = "", Instruction *InsertBefore = 0);
AllocaInst(const Type *Ty, Value *ArraySize,
const Twine &Name, BasicBlock *InsertAtEnd);
AllocaInst(const Type *Ty, const Twine &Name, Instruction *InsertBefore = 0);
AllocaInst(const Type *Ty, const Twine &Name, BasicBlock *InsertAtEnd);
AllocaInst(const Type *Ty, Value *ArraySize, unsigned Align,
const Twine &Name = "", Instruction *InsertBefore = 0);
AllocaInst(const Type *Ty, Value *ArraySize, unsigned Align,
const Twine &Name, BasicBlock *InsertAtEnd);
// Out of line virtual method, so the vtable, etc. has a home.
virtual ~AllocaInst();
/// isArrayAllocation - Return true if there is an allocation size parameter
/// to the allocation instruction that is not 1.
///
bool isArrayAllocation() const;
/// getArraySize - Get the number of elements allocated. For a simple
/// allocation of a single element, this will return a constant 1 value.
///
const Value *getArraySize() const { return getOperand(0); }
Value *getArraySize() { return getOperand(0); }
/// getType - Overload to return most specific pointer type
///
const PointerType *getType() const {
return reinterpret_cast<const PointerType*>(Instruction::getType());
}
/// getAllocatedType - Return the type that is being allocated by the
/// instruction.
///
const Type *getAllocatedType() const;
/// getAlignment - Return the alignment of the memory that is being allocated
/// by the instruction.
///
unsigned getAlignment() const {
return (1u << getSubclassDataFromInstruction()) >> 1;
}
void setAlignment(unsigned Align);
/// isStaticAlloca - Return true if this alloca is in the entry block of the
/// function and is a constant size. If so, the code generator will fold it
/// into the prolog/epilog code, so it is basically free.
bool isStaticAlloca() const;
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const AllocaInst *) { return true; }
static inline bool classof(const Instruction *I) {
return (I->getOpcode() == Instruction::Alloca);
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
// Shadow Instruction::setInstructionSubclassData with a private forwarding
// method so that subclasses cannot accidentally use it.
void setInstructionSubclassData(unsigned short D) {
Instruction::setInstructionSubclassData(D);
}
};
//===----------------------------------------------------------------------===//
// LoadInst Class
//===----------------------------------------------------------------------===//
/// LoadInst - an instruction for reading from memory. This uses the
/// SubclassData field in Value to store whether or not the load is volatile.
///
class LoadInst : public UnaryInstruction {
void AssertOK();
protected:
virtual LoadInst *clone_impl() const;
public:
LoadInst(Value *Ptr, const Twine &NameStr, Instruction *InsertBefore);
LoadInst(Value *Ptr, const Twine &NameStr, BasicBlock *InsertAtEnd);
LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile = false,
Instruction *InsertBefore = 0);
LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
unsigned Align, Instruction *InsertBefore = 0);
LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
BasicBlock *InsertAtEnd);
LoadInst(Value *Ptr, const Twine &NameStr, bool isVolatile,
unsigned Align, BasicBlock *InsertAtEnd);
LoadInst(Value *Ptr, const char *NameStr, Instruction *InsertBefore);
LoadInst(Value *Ptr, const char *NameStr, BasicBlock *InsertAtEnd);
explicit LoadInst(Value *Ptr, const char *NameStr = 0,
bool isVolatile = false, Instruction *InsertBefore = 0);
LoadInst(Value *Ptr, const char *NameStr, bool isVolatile,
BasicBlock *InsertAtEnd);
/// isVolatile - Return true if this is a load from a volatile memory
/// location.
///
bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
/// setVolatile - Specify whether this is a volatile load or not.
///
void setVolatile(bool V) {
setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
(V ? 1 : 0));
}
/// getAlignment - Return the alignment of the access that is being performed
///
unsigned getAlignment() const {
return (1 << (getSubclassDataFromInstruction() >> 1)) >> 1;
}
void setAlignment(unsigned Align);
Value *getPointerOperand() { return getOperand(0); }
const Value *getPointerOperand() const { return getOperand(0); }
static unsigned getPointerOperandIndex() { return 0U; }
unsigned getPointerAddressSpace() const {
return cast<PointerType>(getPointerOperand()->getType())->getAddressSpace();
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const LoadInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Load;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
// Shadow Instruction::setInstructionSubclassData with a private forwarding
// method so that subclasses cannot accidentally use it.
void setInstructionSubclassData(unsigned short D) {
Instruction::setInstructionSubclassData(D);
}
};
//===----------------------------------------------------------------------===//
// StoreInst Class
//===----------------------------------------------------------------------===//
/// StoreInst - an instruction for storing to memory
///
class StoreInst : public Instruction {
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
void AssertOK();
protected:
virtual StoreInst *clone_impl() const;
public:
// allocate space for exactly two operands
void *operator new(size_t s) {
return User::operator new(s, 2);
}
StoreInst(Value *Val, Value *Ptr, Instruction *InsertBefore);
StoreInst(Value *Val, Value *Ptr, BasicBlock *InsertAtEnd);
StoreInst(Value *Val, Value *Ptr, bool isVolatile = false,
Instruction *InsertBefore = 0);
StoreInst(Value *Val, Value *Ptr, bool isVolatile,
unsigned Align, Instruction *InsertBefore = 0);
StoreInst(Value *Val, Value *Ptr, bool isVolatile, BasicBlock *InsertAtEnd);
StoreInst(Value *Val, Value *Ptr, bool isVolatile,
unsigned Align, BasicBlock *InsertAtEnd);
/// isVolatile - Return true if this is a load from a volatile memory
/// location.
///
bool isVolatile() const { return getSubclassDataFromInstruction() & 1; }
/// setVolatile - Specify whether this is a volatile load or not.
///
void setVolatile(bool V) {
setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
(V ? 1 : 0));
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// getAlignment - Return the alignment of the access that is being performed
///
unsigned getAlignment() const {
return (1 << (getSubclassDataFromInstruction() >> 1)) >> 1;
}
void setAlignment(unsigned Align);
Value *getValueOperand() { return getOperand(0); }
const Value *getValueOperand() const { return getOperand(0); }
Value *getPointerOperand() { return getOperand(1); }
const Value *getPointerOperand() const { return getOperand(1); }
static unsigned getPointerOperandIndex() { return 1U; }
unsigned getPointerAddressSpace() const {
return cast<PointerType>(getPointerOperand()->getType())->getAddressSpace();
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const StoreInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Store;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
// Shadow Instruction::setInstructionSubclassData with a private forwarding
// method so that subclasses cannot accidentally use it.
void setInstructionSubclassData(unsigned short D) {
Instruction::setInstructionSubclassData(D);
}
};
template <>
struct OperandTraits<StoreInst> : public FixedNumOperandTraits<2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(StoreInst, Value)
//===----------------------------------------------------------------------===//
// GetElementPtrInst Class
//===----------------------------------------------------------------------===//
// checkType - Simple wrapper function to give a better assertion failure
// message on bad indexes for a gep instruction.
//
static inline const Type *checkType(const Type *Ty) {
assert(Ty && "Invalid GetElementPtrInst indices for type!");
return Ty;
}
/// GetElementPtrInst - an instruction for type-safe pointer arithmetic to
/// access elements of arrays and structs
///
class GetElementPtrInst : public Instruction {
GetElementPtrInst(const GetElementPtrInst &GEPI);
void init(Value *Ptr, Value* const *Idx, unsigned NumIdx,
const Twine &NameStr);
void init(Value *Ptr, Value *Idx, const Twine &NameStr);
template<typename RandomAccessIterator>
void init(Value *Ptr,
RandomAccessIterator IdxBegin,
RandomAccessIterator IdxEnd,
const Twine &NameStr,
// This argument ensures that we have an iterator we can
// do arithmetic on in constant time
std::random_access_iterator_tag) {
unsigned NumIdx = static_cast<unsigned>(std::distance(IdxBegin, IdxEnd));
if (NumIdx > 0) {
// This requires that the iterator points to contiguous memory.
init(Ptr, &*IdxBegin, NumIdx, NameStr); // FIXME: for the general case
// we have to build an array here
}
else {
init(Ptr, 0, NumIdx, NameStr);
}
}
/// getIndexedType - Returns the type of the element that would be loaded with
/// a load instruction with the specified parameters.
///
/// Null is returned if the indices are invalid for the specified
/// pointer type.
///
template<typename RandomAccessIterator>
static const Type *getIndexedType(const Type *Ptr,
RandomAccessIterator IdxBegin,
RandomAccessIterator IdxEnd,
// This argument ensures that we
// have an iterator we can do
// arithmetic on in constant time
std::random_access_iterator_tag) {
unsigned NumIdx = static_cast<unsigned>(std::distance(IdxBegin, IdxEnd));
if (NumIdx > 0)
// This requires that the iterator points to contiguous memory.
return getIndexedType(Ptr, &*IdxBegin, NumIdx);
else
return getIndexedType(Ptr, (Value *const*)0, NumIdx);
}
/// Constructors - Create a getelementptr instruction with a base pointer an
/// list of indices. The first ctor can optionally insert before an existing
/// instruction, the second appends the new instruction to the specified
/// BasicBlock.
template<typename RandomAccessIterator>
inline GetElementPtrInst(Value *Ptr, RandomAccessIterator IdxBegin,
RandomAccessIterator IdxEnd,
unsigned Values,
const Twine &NameStr,
Instruction *InsertBefore);
template<typename RandomAccessIterator>
inline GetElementPtrInst(Value *Ptr,
RandomAccessIterator IdxBegin,
RandomAccessIterator IdxEnd,
unsigned Values,
const Twine &NameStr, BasicBlock *InsertAtEnd);
/// Constructors - These two constructors are convenience methods because one
/// and two index getelementptr instructions are so common.
GetElementPtrInst(Value *Ptr, Value *Idx, const Twine &NameStr = "",
Instruction *InsertBefore = 0);
GetElementPtrInst(Value *Ptr, Value *Idx,
const Twine &NameStr, BasicBlock *InsertAtEnd);
protected:
virtual GetElementPtrInst *clone_impl() const;
public:
template<typename RandomAccessIterator>
static GetElementPtrInst *Create(Value *Ptr, RandomAccessIterator IdxBegin,
RandomAccessIterator IdxEnd,
const Twine &NameStr = "",
Instruction *InsertBefore = 0) {
typename std::iterator_traits<RandomAccessIterator>::difference_type
Values = 1 + std::distance(IdxBegin, IdxEnd);
return new(Values)
GetElementPtrInst(Ptr, IdxBegin, IdxEnd, Values, NameStr, InsertBefore);
}
template<typename RandomAccessIterator>
static GetElementPtrInst *Create(Value *Ptr,
RandomAccessIterator IdxBegin,
RandomAccessIterator IdxEnd,
const Twine &NameStr,
BasicBlock *InsertAtEnd) {
typename std::iterator_traits<RandomAccessIterator>::difference_type
Values = 1 + std::distance(IdxBegin, IdxEnd);
return new(Values)
GetElementPtrInst(Ptr, IdxBegin, IdxEnd, Values, NameStr, InsertAtEnd);
}
/// Constructors - These two creators are convenience methods because one
/// index getelementptr instructions are so common.
static GetElementPtrInst *Create(Value *Ptr, Value *Idx,
const Twine &NameStr = "",
Instruction *InsertBefore = 0) {
return new(2) GetElementPtrInst(Ptr, Idx, NameStr, InsertBefore);
}
static GetElementPtrInst *Create(Value *Ptr, Value *Idx,
const Twine &NameStr,
BasicBlock *InsertAtEnd) {
return new(2) GetElementPtrInst(Ptr, Idx, NameStr, InsertAtEnd);
}
/// Create an "inbounds" getelementptr. See the documentation for the
/// "inbounds" flag in LangRef.html for details.
template<typename RandomAccessIterator>
static GetElementPtrInst *CreateInBounds(Value *Ptr,
RandomAccessIterator IdxBegin,
RandomAccessIterator IdxEnd,
const Twine &NameStr = "",
Instruction *InsertBefore = 0) {
GetElementPtrInst *GEP = Create(Ptr, IdxBegin, IdxEnd,
NameStr, InsertBefore);
GEP->setIsInBounds(true);
return GEP;
}
template<typename RandomAccessIterator>
static GetElementPtrInst *CreateInBounds(Value *Ptr,
RandomAccessIterator IdxBegin,
RandomAccessIterator IdxEnd,
const Twine &NameStr,
BasicBlock *InsertAtEnd) {
GetElementPtrInst *GEP = Create(Ptr, IdxBegin, IdxEnd,
NameStr, InsertAtEnd);
GEP->setIsInBounds(true);
return GEP;
}
static GetElementPtrInst *CreateInBounds(Value *Ptr, Value *Idx,
const Twine &NameStr = "",
Instruction *InsertBefore = 0) {
GetElementPtrInst *GEP = Create(Ptr, Idx, NameStr, InsertBefore);
GEP->setIsInBounds(true);
return GEP;
}
static GetElementPtrInst *CreateInBounds(Value *Ptr, Value *Idx,
const Twine &NameStr,
BasicBlock *InsertAtEnd) {
GetElementPtrInst *GEP = Create(Ptr, Idx, NameStr, InsertAtEnd);
GEP->setIsInBounds(true);
return GEP;
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
// getType - Overload to return most specific pointer type...
const PointerType *getType() const {
return reinterpret_cast<const PointerType*>(Instruction::getType());
}
/// getIndexedType - Returns the type of the element that would be loaded with
/// a load instruction with the specified parameters.
///
/// Null is returned if the indices are invalid for the specified
/// pointer type.
///
template<typename RandomAccessIterator>
static const Type *getIndexedType(const Type *Ptr,
RandomAccessIterator IdxBegin,
RandomAccessIterator IdxEnd) {
return getIndexedType(Ptr, IdxBegin, IdxEnd,
typename std::iterator_traits<RandomAccessIterator>::
iterator_category());
}
static const Type *getIndexedType(const Type *Ptr,
Value* const *Idx, unsigned NumIdx);
static const Type *getIndexedType(const Type *Ptr,
uint64_t const *Idx, unsigned NumIdx);
static const Type *getIndexedType(const Type *Ptr, Value *Idx);
inline op_iterator idx_begin() { return op_begin()+1; }
inline const_op_iterator idx_begin() const { return op_begin()+1; }
inline op_iterator idx_end() { return op_end(); }
inline const_op_iterator idx_end() const { return op_end(); }
Value *getPointerOperand() {
return getOperand(0);
}
const Value *getPointerOperand() const {
return getOperand(0);
}
static unsigned getPointerOperandIndex() {
return 0U; // get index for modifying correct operand
}
unsigned getPointerAddressSpace() const {
return cast<PointerType>(getType())->getAddressSpace();
}
/// getPointerOperandType - Method to return the pointer operand as a
/// PointerType.
const PointerType *getPointerOperandType() const {
return reinterpret_cast<const PointerType*>(getPointerOperand()->getType());
}
unsigned getNumIndices() const { // Note: always non-negative
return getNumOperands() - 1;
}
bool hasIndices() const {
return getNumOperands() > 1;
}
/// hasAllZeroIndices - Return true if all of the indices of this GEP are
/// zeros. If so, the result pointer and the first operand have the same
/// value, just potentially different types.
bool hasAllZeroIndices() const;
/// hasAllConstantIndices - Return true if all of the indices of this GEP are
/// constant integers. If so, the result pointer and the first operand have
/// a constant offset between them.
bool hasAllConstantIndices() const;
/// setIsInBounds - Set or clear the inbounds flag on this GEP instruction.
/// See LangRef.html for the meaning of inbounds on a getelementptr.
void setIsInBounds(bool b = true);
/// isInBounds - Determine whether the GEP has the inbounds flag.
bool isInBounds() const;
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const GetElementPtrInst *) { return true; }
static inline bool classof(const Instruction *I) {
return (I->getOpcode() == Instruction::GetElementPtr);
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
template <>
struct OperandTraits<GetElementPtrInst> : public VariadicOperandTraits<1> {
};
template<typename RandomAccessIterator>
GetElementPtrInst::GetElementPtrInst(Value *Ptr,
RandomAccessIterator IdxBegin,
RandomAccessIterator IdxEnd,
unsigned Values,
const Twine &NameStr,
Instruction *InsertBefore)
: Instruction(PointerType::get(checkType(
getIndexedType(Ptr->getType(),
IdxBegin, IdxEnd)),
cast<PointerType>(Ptr->getType())
->getAddressSpace()),
GetElementPtr,
OperandTraits<GetElementPtrInst>::op_end(this) - Values,
Values, InsertBefore) {
init(Ptr, IdxBegin, IdxEnd, NameStr,
typename std::iterator_traits<RandomAccessIterator>
::iterator_category());
}
template<typename RandomAccessIterator>
GetElementPtrInst::GetElementPtrInst(Value *Ptr,
RandomAccessIterator IdxBegin,
RandomAccessIterator IdxEnd,
unsigned Values,
const Twine &NameStr,
BasicBlock *InsertAtEnd)
: Instruction(PointerType::get(checkType(
getIndexedType(Ptr->getType(),
IdxBegin, IdxEnd)),
cast<PointerType>(Ptr->getType())
->getAddressSpace()),
GetElementPtr,
OperandTraits<GetElementPtrInst>::op_end(this) - Values,
Values, InsertAtEnd) {
init(Ptr, IdxBegin, IdxEnd, NameStr,
typename std::iterator_traits<RandomAccessIterator>
::iterator_category());
}
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(GetElementPtrInst, Value)
//===----------------------------------------------------------------------===//
// ICmpInst Class
//===----------------------------------------------------------------------===//
/// This instruction compares its operands according to the predicate given
/// to the constructor. It only operates on integers or pointers. The operands
/// must be identical types.
/// @brief Represent an integer comparison operator.
class ICmpInst: public CmpInst {
protected:
/// @brief Clone an indentical ICmpInst
virtual ICmpInst *clone_impl() const;
public:
/// @brief Constructor with insert-before-instruction semantics.
ICmpInst(
Instruction *InsertBefore, ///< Where to insert
Predicate pred, ///< The predicate to use for the comparison
Value *LHS, ///< The left-hand-side of the expression
Value *RHS, ///< The right-hand-side of the expression
const Twine &NameStr = "" ///< Name of the instruction
) : CmpInst(makeCmpResultType(LHS->getType()),
Instruction::ICmp, pred, LHS, RHS, NameStr,
InsertBefore) {
assert(pred >= CmpInst::FIRST_ICMP_PREDICATE &&
pred <= CmpInst::LAST_ICMP_PREDICATE &&
"Invalid ICmp predicate value");
assert(getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to ICmp instruction are not of the same type!");
// Check that the operands are the right type
assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||
getOperand(0)->getType()->isPointerTy()) &&
"Invalid operand types for ICmp instruction");
}
/// @brief Constructor with insert-at-end semantics.
ICmpInst(
BasicBlock &InsertAtEnd, ///< Block to insert into.
Predicate pred, ///< The predicate to use for the comparison
Value *LHS, ///< The left-hand-side of the expression
Value *RHS, ///< The right-hand-side of the expression
const Twine &NameStr = "" ///< Name of the instruction
) : CmpInst(makeCmpResultType(LHS->getType()),
Instruction::ICmp, pred, LHS, RHS, NameStr,
&InsertAtEnd) {
assert(pred >= CmpInst::FIRST_ICMP_PREDICATE &&
pred <= CmpInst::LAST_ICMP_PREDICATE &&
"Invalid ICmp predicate value");
assert(getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to ICmp instruction are not of the same type!");
// Check that the operands are the right type
assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||
getOperand(0)->getType()->isPointerTy()) &&
"Invalid operand types for ICmp instruction");
}
/// @brief Constructor with no-insertion semantics
ICmpInst(
Predicate pred, ///< The predicate to use for the comparison
Value *LHS, ///< The left-hand-side of the expression
Value *RHS, ///< The right-hand-side of the expression
const Twine &NameStr = "" ///< Name of the instruction
) : CmpInst(makeCmpResultType(LHS->getType()),
Instruction::ICmp, pred, LHS, RHS, NameStr) {
assert(pred >= CmpInst::FIRST_ICMP_PREDICATE &&
pred <= CmpInst::LAST_ICMP_PREDICATE &&
"Invalid ICmp predicate value");
assert(getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to ICmp instruction are not of the same type!");
// Check that the operands are the right type
assert((getOperand(0)->getType()->isIntOrIntVectorTy() ||
getOperand(0)->getType()->isPointerTy()) &&
"Invalid operand types for ICmp instruction");
}
/// For example, EQ->EQ, SLE->SLE, UGT->SGT, etc.
/// @returns the predicate that would be the result if the operand were
/// regarded as signed.
/// @brief Return the signed version of the predicate
Predicate getSignedPredicate() const {
return getSignedPredicate(getPredicate());
}
/// This is a static version that you can use without an instruction.
/// @brief Return the signed version of the predicate.
static Predicate getSignedPredicate(Predicate pred);
/// For example, EQ->EQ, SLE->ULE, UGT->UGT, etc.
/// @returns the predicate that would be the result if the operand were
/// regarded as unsigned.
/// @brief Return the unsigned version of the predicate
Predicate getUnsignedPredicate() const {
return getUnsignedPredicate(getPredicate());
}
/// This is a static version that you can use without an instruction.
/// @brief Return the unsigned version of the predicate.
static Predicate getUnsignedPredicate(Predicate pred);
/// isEquality - Return true if this predicate is either EQ or NE. This also
/// tests for commutativity.
static bool isEquality(Predicate P) {
return P == ICMP_EQ || P == ICMP_NE;
}
/// isEquality - Return true if this predicate is either EQ or NE. This also
/// tests for commutativity.
bool isEquality() const {
return isEquality(getPredicate());
}
/// @returns true if the predicate of this ICmpInst is commutative
/// @brief Determine if this relation is commutative.
bool isCommutative() const { return isEquality(); }
/// isRelational - Return true if the predicate is relational (not EQ or NE).
///
bool isRelational() const {
return !isEquality();
}
/// isRelational - Return true if the predicate is relational (not EQ or NE).
///
static bool isRelational(Predicate P) {
return !isEquality(P);
}
/// Initialize a set of values that all satisfy the predicate with C.
/// @brief Make a ConstantRange for a relation with a constant value.
static ConstantRange makeConstantRange(Predicate pred, const APInt &C);
/// Exchange the two operands to this instruction in such a way that it does
/// not modify the semantics of the instruction. The predicate value may be
/// changed to retain the same result if the predicate is order dependent
/// (e.g. ult).
/// @brief Swap operands and adjust predicate.
void swapOperands() {
setPredicate(getSwappedPredicate());
Op<0>().swap(Op<1>());
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const ICmpInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::ICmp;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// FCmpInst Class
//===----------------------------------------------------------------------===//
/// This instruction compares its operands according to the predicate given
/// to the constructor. It only operates on floating point values or packed
/// vectors of floating point values. The operands must be identical types.
/// @brief Represents a floating point comparison operator.
class FCmpInst: public CmpInst {
protected:
/// @brief Clone an indentical FCmpInst
virtual FCmpInst *clone_impl() const;
public:
/// @brief Constructor with insert-before-instruction semantics.
FCmpInst(
Instruction *InsertBefore, ///< Where to insert
Predicate pred, ///< The predicate to use for the comparison
Value *LHS, ///< The left-hand-side of the expression
Value *RHS, ///< The right-hand-side of the expression
const Twine &NameStr = "" ///< Name of the instruction
) : CmpInst(makeCmpResultType(LHS->getType()),
Instruction::FCmp, pred, LHS, RHS, NameStr,
InsertBefore) {
assert(pred <= FCmpInst::LAST_FCMP_PREDICATE &&
"Invalid FCmp predicate value");
assert(getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to FCmp instruction are not of the same type!");
// Check that the operands are the right type
assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
"Invalid operand types for FCmp instruction");
}
/// @brief Constructor with insert-at-end semantics.
FCmpInst(
BasicBlock &InsertAtEnd, ///< Block to insert into.
Predicate pred, ///< The predicate to use for the comparison
Value *LHS, ///< The left-hand-side of the expression
Value *RHS, ///< The right-hand-side of the expression
const Twine &NameStr = "" ///< Name of the instruction
) : CmpInst(makeCmpResultType(LHS->getType()),
Instruction::FCmp, pred, LHS, RHS, NameStr,
&InsertAtEnd) {
assert(pred <= FCmpInst::LAST_FCMP_PREDICATE &&
"Invalid FCmp predicate value");
assert(getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to FCmp instruction are not of the same type!");
// Check that the operands are the right type
assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
"Invalid operand types for FCmp instruction");
}
/// @brief Constructor with no-insertion semantics
FCmpInst(
Predicate pred, ///< The predicate to use for the comparison
Value *LHS, ///< The left-hand-side of the expression
Value *RHS, ///< The right-hand-side of the expression
const Twine &NameStr = "" ///< Name of the instruction
) : CmpInst(makeCmpResultType(LHS->getType()),
Instruction::FCmp, pred, LHS, RHS, NameStr) {
assert(pred <= FCmpInst::LAST_FCMP_PREDICATE &&
"Invalid FCmp predicate value");
assert(getOperand(0)->getType() == getOperand(1)->getType() &&
"Both operands to FCmp instruction are not of the same type!");
// Check that the operands are the right type
assert(getOperand(0)->getType()->isFPOrFPVectorTy() &&
"Invalid operand types for FCmp instruction");
}
/// @returns true if the predicate of this instruction is EQ or NE.
/// @brief Determine if this is an equality predicate.
bool isEquality() const {
return getPredicate() == FCMP_OEQ || getPredicate() == FCMP_ONE ||
getPredicate() == FCMP_UEQ || getPredicate() == FCMP_UNE;
}
/// @returns true if the predicate of this instruction is commutative.
/// @brief Determine if this is a commutative predicate.
bool isCommutative() const {
return isEquality() ||
getPredicate() == FCMP_FALSE ||
getPredicate() == FCMP_TRUE ||
getPredicate() == FCMP_ORD ||
getPredicate() == FCMP_UNO;
}
/// @returns true if the predicate is relational (not EQ or NE).
/// @brief Determine if this a relational predicate.
bool isRelational() const { return !isEquality(); }
/// Exchange the two operands to this instruction in such a way that it does
/// not modify the semantics of the instruction. The predicate value may be
/// changed to retain the same result if the predicate is order dependent
/// (e.g. ult).
/// @brief Swap operands and adjust predicate.
void swapOperands() {
setPredicate(getSwappedPredicate());
Op<0>().swap(Op<1>());
}
/// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const FCmpInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::FCmp;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
/// CallInst - This class represents a function call, abstracting a target
/// machine's calling convention. This class uses low bit of the SubClassData
/// field to indicate whether or not this is a tail call. The rest of the bits
/// hold the calling convention of the call.
///
class CallInst : public Instruction {
AttrListPtr AttributeList; ///< parameter attributes for call
CallInst(const CallInst &CI);
void init(Value *Func, Value* const *Params, unsigned NumParams);
void init(Value *Func, Value *Actual1, Value *Actual2);
void init(Value *Func, Value *Actual);
void init(Value *Func);
template<typename RandomAccessIterator>
void init(Value *Func,
RandomAccessIterator ArgBegin,
RandomAccessIterator ArgEnd,
const Twine &NameStr,
// This argument ensures that we have an iterator we can
// do arithmetic on in constant time
std::random_access_iterator_tag) {
unsigned NumArgs = (unsigned)std::distance(ArgBegin, ArgEnd);
// This requires that the iterator points to contiguous memory.
init(Func, NumArgs ? &*ArgBegin : 0, NumArgs);
setName(NameStr);
}
/// Construct a CallInst given a range of arguments. RandomAccessIterator
/// must be a random-access iterator pointing to contiguous storage
/// (e.g. a std::vector<>::iterator). Checks are made for
/// random-accessness but not for contiguous storage as that would
/// incur runtime overhead.
/// @brief Construct a CallInst from a range of arguments
template<typename RandomAccessIterator>
CallInst(Value *Func,
RandomAccessIterator ArgBegin, RandomAccessIterator ArgEnd,
const Twine &NameStr, Instruction *InsertBefore);
/// Construct a CallInst given a range of arguments. RandomAccessIterator
/// must be a random-access iterator pointing to contiguous storage
/// (e.g. a std::vector<>::iterator). Checks are made for
/// random-accessness but not for contiguous storage as that would
/// incur runtime overhead.
/// @brief Construct a CallInst from a range of arguments
template<typename RandomAccessIterator>
inline CallInst(Value *Func,
RandomAccessIterator ArgBegin, RandomAccessIterator ArgEnd,
const Twine &NameStr, BasicBlock *InsertAtEnd);
CallInst(Value *F, Value *Actual, const Twine &NameStr,
Instruction *InsertBefore);
CallInst(Value *F, Value *Actual, const Twine &NameStr,
BasicBlock *InsertAtEnd);
explicit CallInst(Value *F, const Twine &NameStr,
Instruction *InsertBefore);
CallInst(Value *F, const Twine &NameStr, BasicBlock *InsertAtEnd);
protected:
virtual CallInst *clone_impl() const;
public:
template<typename RandomAccessIterator>
static CallInst *Create(Value *Func,
RandomAccessIterator ArgBegin,
RandomAccessIterator ArgEnd,
const Twine &NameStr = "",
Instruction *InsertBefore = 0) {
return new(unsigned(ArgEnd - ArgBegin + 1))
CallInst(Func, ArgBegin, ArgEnd, NameStr, InsertBefore);
}
template<typename RandomAccessIterator>
static CallInst *Create(Value *Func,
RandomAccessIterator ArgBegin,
RandomAccessIterator ArgEnd,
const Twine &NameStr, BasicBlock *InsertAtEnd) {
return new(unsigned(ArgEnd - ArgBegin + 1))
CallInst(Func, ArgBegin, ArgEnd, NameStr, InsertAtEnd);
}
static CallInst *Create(Value *F, Value *Actual,
const Twine &NameStr = "",
Instruction *InsertBefore = 0) {
return new(2) CallInst(F, Actual, NameStr, InsertBefore);
}
static CallInst *Create(Value *F, Value *Actual, const Twine &NameStr,
BasicBlock *InsertAtEnd) {
return new(2) CallInst(F, Actual, NameStr, InsertAtEnd);
}
static CallInst *Create(Value *F, const Twine &NameStr = "",
Instruction *InsertBefore = 0) {
return new(1) CallInst(F, NameStr, InsertBefore);
}
static CallInst *Create(Value *F, const Twine &NameStr,
BasicBlock *InsertAtEnd) {
return new(1) CallInst(F, NameStr, InsertAtEnd);
}
/// CreateMalloc - Generate the IR for a call to malloc:
/// 1. Compute the malloc call's argument as the specified type's size,
/// possibly multiplied by the array size if the array size is not
/// constant 1.
/// 2. Call malloc with that argument.
/// 3. Bitcast the result of the malloc call to the specified type.
static Instruction *CreateMalloc(Instruction *InsertBefore,
const Type *IntPtrTy, const Type *AllocTy,
Value *AllocSize, Value *ArraySize = 0,
Function* MallocF = 0,
const Twine &Name = "");
static Instruction *CreateMalloc(BasicBlock *InsertAtEnd,
const Type *IntPtrTy, const Type *AllocTy,
Value *AllocSize, Value *ArraySize = 0,
Function* MallocF = 0,
const Twine &Name = "");
/// CreateFree - Generate the IR for a call to the builtin free function.
static Instruction* CreateFree(Value* Source, Instruction *InsertBefore);
static Instruction* CreateFree(Value* Source, BasicBlock *InsertAtEnd);
~CallInst();
bool isTailCall() const { return getSubclassDataFromInstruction() & 1; }
void setTailCall(bool isTC = true) {
setInstructionSubclassData((getSubclassDataFromInstruction() & ~1) |
unsigned(isTC));
}
/// Provide fast operand accessors
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// getNumArgOperands - Return the number of call arguments.
///
unsigned getNumArgOperands() const { return getNumOperands() - 1; }
/// getArgOperand/setArgOperand - Return/set the i-th call argument.
///
Value *getArgOperand(unsigned i) const { return getOperand(i); }
void setArgOperand(unsigned i, Value *v) { setOperand(i, v); }
/// getCallingConv/setCallingConv - Get or set the calling convention of this
/// function call.
CallingConv::ID getCallingConv() const {
return static_cast<CallingConv::ID>(getSubclassDataFromInstruction() >> 1);
}
void setCallingConv(CallingConv::ID CC) {
setInstructionSubclassData((getSubclassDataFromInstruction() & 1) |
(static_cast<unsigned>(CC) << 1));
}
/// getAttributes - Return the parameter attributes for this call.
///
const AttrListPtr &getAttributes() const { return AttributeList; }
/// setAttributes - Set the parameter attributes for this call.
///
void setAttributes(const AttrListPtr &Attrs) { AttributeList = Attrs; }
/// addAttribute - adds the attribute to the list of attributes.
void addAttribute(unsigned i, Attributes attr);
/// removeAttribute - removes the attribute from the list of attributes.
void removeAttribute(unsigned i, Attributes attr);
/// @brief Determine whether the call or the callee has the given attribute.
bool paramHasAttr(unsigned i, Attributes attr) const;
/// @brief Extract the alignment for a call or parameter (0=unknown).
unsigned getParamAlignment(unsigned i) const {
return AttributeList.getParamAlignment(i);
}
/// @brief Return true if the call should not be inlined.
bool isNoInline() const { return paramHasAttr(~0, Attribute::NoInline); }
void setIsNoInline(bool Value = true) {
if (Value) addAttribute(~0, Attribute::NoInline);
else removeAttribute(~0, Attribute::NoInline);
}
/// @brief Determine if the call does not access memory.
bool doesNotAccessMemory() const {
return paramHasAttr(~0, Attribute::ReadNone);
}
void setDoesNotAccessMemory(bool NotAccessMemory = true) {
if (NotAccessMemory) addAttribute(~0, Attribute::ReadNone);
else removeAttribute(~0, Attribute::ReadNone);
}
/// @brief Determine if the call does not access or only reads memory.
bool onlyReadsMemory() const {
return doesNotAccessMemory() || paramHasAttr(~0, Attribute::ReadOnly);
}
void setOnlyReadsMemory(bool OnlyReadsMemory = true) {
if (OnlyReadsMemory) addAttribute(~0, Attribute::ReadOnly);
else removeAttribute(~0, Attribute::ReadOnly | Attribute::ReadNone);
}
/// @brief Determine if the call cannot return.
bool doesNotReturn() const { return paramHasAttr(~0, Attribute::NoReturn); }
void setDoesNotReturn(bool DoesNotReturn = true) {
if (DoesNotReturn) addAttribute(~0, Attribute::NoReturn);
else removeAttribute(~0, Attribute::NoReturn);
}
/// @brief Determine if the call cannot unwind.
bool doesNotThrow() const { return paramHasAttr(~0, Attribute::NoUnwind); }
void setDoesNotThrow(bool DoesNotThrow = true) {
if (DoesNotThrow) addAttribute(~0, Attribute::NoUnwind);
else removeAttribute(~0, Attribute::NoUnwind);
}
/// @brief Determine if the call returns a structure through first
/// pointer argument.
bool hasStructRetAttr() const {
// Be friendly and also check the callee.
return paramHasAttr(1, Attribute::StructRet);
}
/// @brief Determine if any call argument is an aggregate passed by value.
bool hasByValArgument() const {
return AttributeList.hasAttrSomewhere(Attribute::ByVal);
}
/// getCalledFunction - Return the function called, or null if this is an
/// indirect function invocation.
///
Function *getCalledFunction() const {
return dyn_cast<Function>(Op<-1>());
}
/// getCalledValue - Get a pointer to the function that is invoked by this
/// instruction.
const Value *getCalledValue() const { return Op<-1>(); }
Value *getCalledValue() { return Op<-1>(); }
/// setCalledFunction - Set the function called.
void setCalledFunction(Value* Fn) {
Op<-1>() = Fn;
}
/// isInlineAsm - Check if this call is an inline asm statement.
bool isInlineAsm() const {
return isa<InlineAsm>(Op<-1>());
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const CallInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Call;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
// Shadow Instruction::setInstructionSubclassData with a private forwarding
// method so that subclasses cannot accidentally use it.
void setInstructionSubclassData(unsigned short D) {
Instruction::setInstructionSubclassData(D);
}
};
template <>
struct OperandTraits<CallInst> : public VariadicOperandTraits<1> {
};
template<typename RandomAccessIterator>
CallInst::CallInst(Value *Func,
RandomAccessIterator ArgBegin, RandomAccessIterator ArgEnd,
const Twine &NameStr, BasicBlock *InsertAtEnd)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
Instruction::Call,
OperandTraits<CallInst>::op_end(this) - (ArgEnd - ArgBegin + 1),
unsigned(ArgEnd - ArgBegin + 1), InsertAtEnd) {
init(Func, ArgBegin, ArgEnd, NameStr,
typename std::iterator_traits<RandomAccessIterator>
::iterator_category());
}
template<typename RandomAccessIterator>
CallInst::CallInst(Value *Func,
RandomAccessIterator ArgBegin, RandomAccessIterator ArgEnd,
const Twine &NameStr, Instruction *InsertBefore)
: Instruction(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
Instruction::Call,
OperandTraits<CallInst>::op_end(this) - (ArgEnd - ArgBegin + 1),
unsigned(ArgEnd - ArgBegin + 1), InsertBefore) {
init(Func, ArgBegin, ArgEnd, NameStr,
typename std::iterator_traits<RandomAccessIterator>
::iterator_category());
}
// Note: if you get compile errors about private methods then
// please update your code to use the high-level operand
// interfaces. See line 943 above.
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(CallInst, Value)
//===----------------------------------------------------------------------===//
// SelectInst Class
//===----------------------------------------------------------------------===//
/// SelectInst - This class represents the LLVM 'select' instruction.
///
class SelectInst : public Instruction {
void init(Value *C, Value *S1, Value *S2) {
assert(!areInvalidOperands(C, S1, S2) && "Invalid operands for select");
Op<0>() = C;
Op<1>() = S1;
Op<2>() = S2;
}
SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
Instruction *InsertBefore)
: Instruction(S1->getType(), Instruction::Select,
&Op<0>(), 3, InsertBefore) {
init(C, S1, S2);
setName(NameStr);
}
SelectInst(Value *C, Value *S1, Value *S2, const Twine &NameStr,
BasicBlock *InsertAtEnd)
: Instruction(S1->getType(), Instruction::Select,
&Op<0>(), 3, InsertAtEnd) {
init(C, S1, S2);
setName(NameStr);
}
protected:
virtual SelectInst *clone_impl() const;
public:
static SelectInst *Create(Value *C, Value *S1, Value *S2,
const Twine &NameStr = "",
Instruction *InsertBefore = 0) {
return new(3) SelectInst(C, S1, S2, NameStr, InsertBefore);
}
static SelectInst *Create(Value *C, Value *S1, Value *S2,
const Twine &NameStr,
BasicBlock *InsertAtEnd) {
return new(3) SelectInst(C, S1, S2, NameStr, InsertAtEnd);
}
const Value *getCondition() const { return Op<0>(); }
const Value *getTrueValue() const { return Op<1>(); }
const Value *getFalseValue() const { return Op<2>(); }
Value *getCondition() { return Op<0>(); }
Value *getTrueValue() { return Op<1>(); }
Value *getFalseValue() { return Op<2>(); }
/// areInvalidOperands - Return a string if the specified operands are invalid
/// for a select operation, otherwise return null.
static const char *areInvalidOperands(Value *Cond, Value *True, Value *False);
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
OtherOps getOpcode() const {
return static_cast<OtherOps>(Instruction::getOpcode());
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SelectInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Select;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
template <>
struct OperandTraits<SelectInst> : public FixedNumOperandTraits<3> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SelectInst, Value)
//===----------------------------------------------------------------------===//
// VAArgInst Class
//===----------------------------------------------------------------------===//
/// VAArgInst - This class represents the va_arg llvm instruction, which returns
/// an argument of the specified type given a va_list and increments that list
///
class VAArgInst : public UnaryInstruction {
protected:
virtual VAArgInst *clone_impl() const;
public:
VAArgInst(Value *List, const Type *Ty, const Twine &NameStr = "",
Instruction *InsertBefore = 0)
: UnaryInstruction(Ty, VAArg, List, InsertBefore) {
setName(NameStr);
}
VAArgInst(Value *List, const Type *Ty, const Twine &NameStr,
BasicBlock *InsertAtEnd)
: UnaryInstruction(Ty, VAArg, List, InsertAtEnd) {
setName(NameStr);
}
Value *getPointerOperand() { return getOperand(0); }
const Value *getPointerOperand() const { return getOperand(0); }
static unsigned getPointerOperandIndex() { return 0U; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const VAArgInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == VAArg;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// ExtractElementInst Class
//===----------------------------------------------------------------------===//
/// ExtractElementInst - This instruction extracts a single (scalar)
/// element from a VectorType value
///
class ExtractElementInst : public Instruction {
ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr = "",
Instruction *InsertBefore = 0);
ExtractElementInst(Value *Vec, Value *Idx, const Twine &NameStr,
BasicBlock *InsertAtEnd);
protected:
virtual ExtractElementInst *clone_impl() const;
public:
static ExtractElementInst *Create(Value *Vec, Value *Idx,
const Twine &NameStr = "",
Instruction *InsertBefore = 0) {
return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertBefore);
}
static ExtractElementInst *Create(Value *Vec, Value *Idx,
const Twine &NameStr,
BasicBlock *InsertAtEnd) {
return new(2) ExtractElementInst(Vec, Idx, NameStr, InsertAtEnd);
}
/// isValidOperands - Return true if an extractelement instruction can be
/// formed with the specified operands.
static bool isValidOperands(const Value *Vec, const Value *Idx);
Value *getVectorOperand() { return Op<0>(); }
Value *getIndexOperand() { return Op<1>(); }
const Value *getVectorOperand() const { return Op<0>(); }
const Value *getIndexOperand() const { return Op<1>(); }
const VectorType *getVectorOperandType() const {
return reinterpret_cast<const VectorType*>(getVectorOperand()->getType());
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const ExtractElementInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::ExtractElement;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
template <>
struct OperandTraits<ExtractElementInst> : public FixedNumOperandTraits<2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ExtractElementInst, Value)
//===----------------------------------------------------------------------===//
// InsertElementInst Class
//===----------------------------------------------------------------------===//
/// InsertElementInst - This instruction inserts a single (scalar)
/// element into a VectorType value
///
class InsertElementInst : public Instruction {
InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
const Twine &NameStr = "",
Instruction *InsertBefore = 0);
InsertElementInst(Value *Vec, Value *NewElt, Value *Idx,
const Twine &NameStr, BasicBlock *InsertAtEnd);
protected:
virtual InsertElementInst *clone_impl() const;
public:
static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
const Twine &NameStr = "",
Instruction *InsertBefore = 0) {
return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertBefore);
}
static InsertElementInst *Create(Value *Vec, Value *NewElt, Value *Idx,
const Twine &NameStr,
BasicBlock *InsertAtEnd) {
return new(3) InsertElementInst(Vec, NewElt, Idx, NameStr, InsertAtEnd);
}
/// isValidOperands - Return true if an insertelement instruction can be
/// formed with the specified operands.
static bool isValidOperands(const Value *Vec, const Value *NewElt,
const Value *Idx);
/// getType - Overload to return most specific vector type.
///
const VectorType *getType() const {
return reinterpret_cast<const VectorType*>(Instruction::getType());
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const InsertElementInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::InsertElement;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
template <>
struct OperandTraits<InsertElementInst> : public FixedNumOperandTraits<3> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertElementInst, Value)
//===----------------------------------------------------------------------===//
// ShuffleVectorInst Class
//===----------------------------------------------------------------------===//
/// ShuffleVectorInst - This instruction constructs a fixed permutation of two
/// input vectors.
///
class ShuffleVectorInst : public Instruction {
protected:
virtual ShuffleVectorInst *clone_impl() const;
public:
// allocate space for exactly three operands
void *operator new(size_t s) {
return User::operator new(s, 3);
}
ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
const Twine &NameStr = "",
Instruction *InsertBefor = 0);
ShuffleVectorInst(Value *V1, Value *V2, Value *Mask,
const Twine &NameStr, BasicBlock *InsertAtEnd);
/// isValidOperands - Return true if a shufflevector instruction can be
/// formed with the specified operands.
static bool isValidOperands(const Value *V1, const Value *V2,
const Value *Mask);
/// getType - Overload to return most specific vector type.
///
const VectorType *getType() const {
return reinterpret_cast<const VectorType*>(Instruction::getType());
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// getMaskValue - Return the index from the shuffle mask for the specified
/// output result. This is either -1 if the element is undef or a number less
/// than 2*numelements.
int getMaskValue(unsigned i) const;
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const ShuffleVectorInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::ShuffleVector;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
template <>
struct OperandTraits<ShuffleVectorInst> : public FixedNumOperandTraits<3> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ShuffleVectorInst, Value)
//===----------------------------------------------------------------------===//
// ExtractValueInst Class
//===----------------------------------------------------------------------===//
/// ExtractValueInst - This instruction extracts a struct member or array
/// element value from an aggregate value.
///
class ExtractValueInst : public UnaryInstruction {
SmallVector<unsigned, 4> Indices;
ExtractValueInst(const ExtractValueInst &EVI);
void init(const unsigned *Idx, unsigned NumIdx,
const Twine &NameStr);
void init(unsigned Idx, const Twine &NameStr);
template<typename RandomAccessIterator>
void init(RandomAccessIterator IdxBegin,
RandomAccessIterator IdxEnd,
const Twine &NameStr,
// This argument ensures that we have an iterator we can
// do arithmetic on in constant time
std::random_access_iterator_tag) {
unsigned NumIdx = static_cast<unsigned>(std::distance(IdxBegin, IdxEnd));
// There's no fundamental reason why we require at least one index
// (other than weirdness with &*IdxBegin being invalid; see
// getelementptr's init routine for example). But there's no
// present need to support it.
assert(NumIdx > 0 && "ExtractValueInst must have at least one index");
// This requires that the iterator points to contiguous memory.
init(&*IdxBegin, NumIdx, NameStr); // FIXME: for the general case
// we have to build an array here
}
/// getIndexedType - Returns the type of the element that would be extracted
/// with an extractvalue instruction with the specified parameters.
///
/// Null is returned if the indices are invalid for the specified
/// pointer type.
///
static const Type *getIndexedType(const Type *Agg,
const unsigned *Idx, unsigned NumIdx);
template<typename RandomAccessIterator>
static const Type *getIndexedType(const Type *Ptr,
RandomAccessIterator IdxBegin,
RandomAccessIterator IdxEnd,
// This argument ensures that we
// have an iterator we can do
// arithmetic on in constant time
std::random_access_iterator_tag) {
unsigned NumIdx = static_cast<unsigned>(std::distance(IdxBegin, IdxEnd));
if (NumIdx > 0)
// This requires that the iterator points to contiguous memory.
return getIndexedType(Ptr, &*IdxBegin, NumIdx);
else
return getIndexedType(Ptr, (const unsigned *)0, NumIdx);
}
/// Constructors - Create a extractvalue instruction with a base aggregate
/// value and a list of indices. The first ctor can optionally insert before
/// an existing instruction, the second appends the new instruction to the
/// specified BasicBlock.
template<typename RandomAccessIterator>
inline ExtractValueInst(Value *Agg,
RandomAccessIterator IdxBegin,
RandomAccessIterator IdxEnd,
const Twine &NameStr,
Instruction *InsertBefore);
template<typename RandomAccessIterator>
inline ExtractValueInst(Value *Agg,
RandomAccessIterator IdxBegin,
RandomAccessIterator IdxEnd,
const Twine &NameStr, BasicBlock *InsertAtEnd);
// allocate space for exactly one operand
void *operator new(size_t s) {
return User::operator new(s, 1);
}
protected:
virtual ExtractValueInst *clone_impl() const;
public:
template<typename RandomAccessIterator>
static ExtractValueInst *Create(Value *Agg,
RandomAccessIterator IdxBegin,
RandomAccessIterator IdxEnd,
const Twine &NameStr = "",
Instruction *InsertBefore = 0) {
return new
ExtractValueInst(Agg, IdxBegin, IdxEnd, NameStr, InsertBefore);
}
template<typename RandomAccessIterator>
static ExtractValueInst *Create(Value *Agg,
RandomAccessIterator IdxBegin,
RandomAccessIterator IdxEnd,
const Twine &NameStr,
BasicBlock *InsertAtEnd) {
return new ExtractValueInst(Agg, IdxBegin, IdxEnd, NameStr, InsertAtEnd);
}
/// Constructors - These two creators are convenience methods because one
/// index extractvalue instructions are much more common than those with
/// more than one.
static ExtractValueInst *Create(Value *Agg, unsigned Idx,
const Twine &NameStr = "",
Instruction *InsertBefore = 0) {
unsigned Idxs[1] = { Idx };
return new ExtractValueInst(Agg, Idxs, Idxs + 1, NameStr, InsertBefore);
}
static ExtractValueInst *Create(Value *Agg, unsigned Idx,
const Twine &NameStr,
BasicBlock *InsertAtEnd) {
unsigned Idxs[1] = { Idx };
return new ExtractValueInst(Agg, Idxs, Idxs + 1, NameStr, InsertAtEnd);
}
/// getIndexedType - Returns the type of the element that would be extracted
/// with an extractvalue instruction with the specified parameters.
///
/// Null is returned if the indices are invalid for the specified
/// pointer type.
///
template<typename RandomAccessIterator>
static const Type *getIndexedType(const Type *Ptr,
RandomAccessIterator IdxBegin,
RandomAccessIterator IdxEnd) {
return getIndexedType(Ptr, IdxBegin, IdxEnd,
typename std::iterator_traits<RandomAccessIterator>::
iterator_category());
}
static const Type *getIndexedType(const Type *Ptr, unsigned Idx);
typedef const unsigned* idx_iterator;
inline idx_iterator idx_begin() const { return Indices.begin(); }
inline idx_iterator idx_end() const { return Indices.end(); }
Value *getAggregateOperand() {
return getOperand(0);
}
const Value *getAggregateOperand() const {
return getOperand(0);
}
static unsigned getAggregateOperandIndex() {
return 0U; // get index for modifying correct operand
}
unsigned getNumIndices() const { // Note: always non-negative
return (unsigned)Indices.size();
}
bool hasIndices() const {
return true;
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const ExtractValueInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::ExtractValue;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
template<typename RandomAccessIterator>
ExtractValueInst::ExtractValueInst(Value *Agg,
RandomAccessIterator IdxBegin,
RandomAccessIterator IdxEnd,
const Twine &NameStr,
Instruction *InsertBefore)
: UnaryInstruction(checkType(getIndexedType(Agg->getType(),
IdxBegin, IdxEnd)),
ExtractValue, Agg, InsertBefore) {
init(IdxBegin, IdxEnd, NameStr,
typename std::iterator_traits<RandomAccessIterator>
::iterator_category());
}
template<typename RandomAccessIterator>
ExtractValueInst::ExtractValueInst(Value *Agg,
RandomAccessIterator IdxBegin,
RandomAccessIterator IdxEnd,
const Twine &NameStr,
BasicBlock *InsertAtEnd)
: UnaryInstruction(checkType(getIndexedType(Agg->getType(),
IdxBegin, IdxEnd)),
ExtractValue, Agg, InsertAtEnd) {
init(IdxBegin, IdxEnd, NameStr,
typename std::iterator_traits<RandomAccessIterator>
::iterator_category());
}
//===----------------------------------------------------------------------===//
// InsertValueInst Class
//===----------------------------------------------------------------------===//
/// InsertValueInst - This instruction inserts a struct field of array element
/// value into an aggregate value.
///
class InsertValueInst : public Instruction {
SmallVector<unsigned, 4> Indices;
void *operator new(size_t, unsigned); // Do not implement
InsertValueInst(const InsertValueInst &IVI);
void init(Value *Agg, Value *Val, const unsigned *Idx, unsigned NumIdx,
const Twine &NameStr);
void init(Value *Agg, Value *Val, unsigned Idx, const Twine &NameStr);
template<typename RandomAccessIterator>
void init(Value *Agg, Value *Val,
RandomAccessIterator IdxBegin, RandomAccessIterator IdxEnd,
const Twine &NameStr,
// This argument ensures that we have an iterator we can
// do arithmetic on in constant time
std::random_access_iterator_tag) {
unsigned NumIdx = static_cast<unsigned>(std::distance(IdxBegin, IdxEnd));
// There's no fundamental reason why we require at least one index
// (other than weirdness with &*IdxBegin being invalid; see
// getelementptr's init routine for example). But there's no
// present need to support it.
assert(NumIdx > 0 && "InsertValueInst must have at least one index");
// This requires that the iterator points to contiguous memory.
init(Agg, Val, &*IdxBegin, NumIdx, NameStr); // FIXME: for the general case
// we have to build an array here
}
/// Constructors - Create a insertvalue instruction with a base aggregate
/// value, a value to insert, and a list of indices. The first ctor can
/// optionally insert before an existing instruction, the second appends
/// the new instruction to the specified BasicBlock.
template<typename RandomAccessIterator>
inline InsertValueInst(Value *Agg, Value *Val,
RandomAccessIterator IdxBegin,
RandomAccessIterator IdxEnd,
const Twine &NameStr,
Instruction *InsertBefore);
template<typename RandomAccessIterator>
inline InsertValueInst(Value *Agg, Value *Val,
RandomAccessIterator IdxBegin,
RandomAccessIterator IdxEnd,
const Twine &NameStr, BasicBlock *InsertAtEnd);
/// Constructors - These two constructors are convenience methods because one
/// and two index insertvalue instructions are so common.
InsertValueInst(Value *Agg, Value *Val,
unsigned Idx, const Twine &NameStr = "",
Instruction *InsertBefore = 0);
InsertValueInst(Value *Agg, Value *Val, unsigned Idx,
const Twine &NameStr, BasicBlock *InsertAtEnd);
protected:
virtual InsertValueInst *clone_impl() const;
public:
// allocate space for exactly two operands
void *operator new(size_t s) {
return User::operator new(s, 2);
}
template<typename RandomAccessIterator>
static InsertValueInst *Create(Value *Agg, Value *Val,
RandomAccessIterator IdxBegin,
RandomAccessIterator IdxEnd,
const Twine &NameStr = "",
Instruction *InsertBefore = 0) {
return new InsertValueInst(Agg, Val, IdxBegin, IdxEnd,
NameStr, InsertBefore);
}
template<typename RandomAccessIterator>
static InsertValueInst *Create(Value *Agg, Value *Val,
RandomAccessIterator IdxBegin,
RandomAccessIterator IdxEnd,
const Twine &NameStr,
BasicBlock *InsertAtEnd) {
return new InsertValueInst(Agg, Val, IdxBegin, IdxEnd,
NameStr, InsertAtEnd);
}
/// Constructors - These two creators are convenience methods because one
/// index insertvalue instructions are much more common than those with
/// more than one.
static InsertValueInst *Create(Value *Agg, Value *Val, unsigned Idx,
const Twine &NameStr = "",
Instruction *InsertBefore = 0) {
return new InsertValueInst(Agg, Val, Idx, NameStr, InsertBefore);
}
static InsertValueInst *Create(Value *Agg, Value *Val, unsigned Idx,
const Twine &NameStr,
BasicBlock *InsertAtEnd) {
return new InsertValueInst(Agg, Val, Idx, NameStr, InsertAtEnd);
}
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
typedef const unsigned* idx_iterator;
inline idx_iterator idx_begin() const { return Indices.begin(); }
inline idx_iterator idx_end() const { return Indices.end(); }
Value *getAggregateOperand() {
return getOperand(0);
}
const Value *getAggregateOperand() const {
return getOperand(0);
}
static unsigned getAggregateOperandIndex() {
return 0U; // get index for modifying correct operand
}
Value *getInsertedValueOperand() {
return getOperand(1);
}
const Value *getInsertedValueOperand() const {
return getOperand(1);
}
static unsigned getInsertedValueOperandIndex() {
return 1U; // get index for modifying correct operand
}
unsigned getNumIndices() const { // Note: always non-negative
return (unsigned)Indices.size();
}
bool hasIndices() const {
return true;
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const InsertValueInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::InsertValue;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
template <>
struct OperandTraits<InsertValueInst> : public FixedNumOperandTraits<2> {
};
template<typename RandomAccessIterator>
InsertValueInst::InsertValueInst(Value *Agg,
Value *Val,
RandomAccessIterator IdxBegin,
RandomAccessIterator IdxEnd,
const Twine &NameStr,
Instruction *InsertBefore)
: Instruction(Agg->getType(), InsertValue,
OperandTraits<InsertValueInst>::op_begin(this),
2, InsertBefore) {
init(Agg, Val, IdxBegin, IdxEnd, NameStr,
typename std::iterator_traits<RandomAccessIterator>
::iterator_category());
}
template<typename RandomAccessIterator>
InsertValueInst::InsertValueInst(Value *Agg,
Value *Val,
RandomAccessIterator IdxBegin,
RandomAccessIterator IdxEnd,
const Twine &NameStr,
BasicBlock *InsertAtEnd)
: Instruction(Agg->getType(), InsertValue,
OperandTraits<InsertValueInst>::op_begin(this),
2, InsertAtEnd) {
init(Agg, Val, IdxBegin, IdxEnd, NameStr,
typename std::iterator_traits<RandomAccessIterator>
::iterator_category());
}
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InsertValueInst, Value)
//===----------------------------------------------------------------------===//
// PHINode Class
//===----------------------------------------------------------------------===//
// PHINode - The PHINode class is used to represent the magical mystical PHI
// node, that can not exist in nature, but can be synthesized in a computer
// scientist's overactive imagination.
//
class PHINode : public Instruction {
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
/// ReservedSpace - The number of operands actually allocated. NumOperands is
/// the number actually in use.
unsigned ReservedSpace;
PHINode(const PHINode &PN);
// allocate space for exactly zero operands
void *operator new(size_t s) {
return User::operator new(s, 0);
}
explicit PHINode(const Type *Ty, const Twine &NameStr = "",
Instruction *InsertBefore = 0)
: Instruction(Ty, Instruction::PHI, 0, 0, InsertBefore),
ReservedSpace(0) {
setName(NameStr);
}
PHINode(const Type *Ty, const Twine &NameStr, BasicBlock *InsertAtEnd)
: Instruction(Ty, Instruction::PHI, 0, 0, InsertAtEnd),
ReservedSpace(0) {
setName(NameStr);
}
protected:
virtual PHINode *clone_impl() const;
public:
static PHINode *Create(const Type *Ty, const Twine &NameStr = "",
Instruction *InsertBefore = 0) {
return new PHINode(Ty, NameStr, InsertBefore);
}
static PHINode *Create(const Type *Ty, const Twine &NameStr,
BasicBlock *InsertAtEnd) {
return new PHINode(Ty, NameStr, InsertAtEnd);
}
~PHINode();
/// reserveOperandSpace - This method can be used to avoid repeated
/// reallocation of PHI operand lists by reserving space for the correct
/// number of operands before adding them. Unlike normal vector reserves,
/// this method can also be used to trim the operand space.
void reserveOperandSpace(unsigned NumValues) {
resizeOperands(NumValues*2);
}
/// Provide fast operand accessors
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// getNumIncomingValues - Return the number of incoming edges
///
unsigned getNumIncomingValues() const { return getNumOperands()/2; }
/// getIncomingValue - Return incoming value number x
///
Value *getIncomingValue(unsigned i) const {
assert(i*2 < getNumOperands() && "Invalid value number!");
return getOperand(i*2);
}
void setIncomingValue(unsigned i, Value *V) {
assert(i*2 < getNumOperands() && "Invalid value number!");
setOperand(i*2, V);
}
static unsigned getOperandNumForIncomingValue(unsigned i) {
return i*2;
}
static unsigned getIncomingValueNumForOperand(unsigned i) {
assert(i % 2 == 0 && "Invalid incoming-value operand index!");
return i/2;
}
/// getIncomingBlock - Return incoming basic block number @p i.
///
BasicBlock *getIncomingBlock(unsigned i) const {
return cast<BasicBlock>(getOperand(i*2+1));
}
/// getIncomingBlock - Return incoming basic block corresponding
/// to an operand of the PHI.
///
BasicBlock *getIncomingBlock(const Use &U) const {
assert(this == U.getUser() && "Iterator doesn't point to PHI's Uses?");
return cast<BasicBlock>((&U + 1)->get());
}
/// getIncomingBlock - Return incoming basic block corresponding
/// to value use iterator.
///
template <typename U>
BasicBlock *getIncomingBlock(value_use_iterator<U> I) const {
return getIncomingBlock(I.getUse());
}
void setIncomingBlock(unsigned i, BasicBlock *BB) {
setOperand(i*2+1, (Value*)BB);
}
static unsigned getOperandNumForIncomingBlock(unsigned i) {
return i*2+1;
}
static unsigned getIncomingBlockNumForOperand(unsigned i) {
assert(i % 2 == 1 && "Invalid incoming-block operand index!");
return i/2;
}
/// addIncoming - Add an incoming value to the end of the PHI list
///
void addIncoming(Value *V, BasicBlock *BB) {
assert(V && "PHI node got a null value!");
assert(BB && "PHI node got a null basic block!");
assert(getType() == V->getType() &&
"All operands to PHI node must be the same type as the PHI node!");
unsigned OpNo = NumOperands;
if (OpNo+2 > ReservedSpace)
resizeOperands(0); // Get more space!
// Initialize some new operands.
NumOperands = OpNo+2;
OperandList[OpNo] = V;
OperandList[OpNo+1] = (Value*)BB;
}
/// removeIncomingValue - Remove an incoming value. This is useful if a
/// predecessor basic block is deleted. The value removed is returned.
///
/// If the last incoming value for a PHI node is removed (and DeletePHIIfEmpty
/// is true), the PHI node is destroyed and any uses of it are replaced with
/// dummy values. The only time there should be zero incoming values to a PHI
/// node is when the block is dead, so this strategy is sound.
///
Value *removeIncomingValue(unsigned Idx, bool DeletePHIIfEmpty = true);
Value *removeIncomingValue(const BasicBlock *BB, bool DeletePHIIfEmpty=true) {
int Idx = getBasicBlockIndex(BB);
assert(Idx >= 0 && "Invalid basic block argument to remove!");
return removeIncomingValue(Idx, DeletePHIIfEmpty);
}
/// getBasicBlockIndex - Return the first index of the specified basic
/// block in the value list for this PHI. Returns -1 if no instance.
///
int getBasicBlockIndex(const BasicBlock *BB) const {
Use *OL = OperandList;
for (unsigned i = 0, e = getNumOperands(); i != e; i += 2)
if (OL[i+1].get() == (const Value*)BB) return i/2;
return -1;
}
Value *getIncomingValueForBlock(const BasicBlock *BB) const {
return getIncomingValue(getBasicBlockIndex(BB));
}
/// hasConstantValue - If the specified PHI node always merges together the
/// same value, return the value, otherwise return null.
///
/// If the PHI has undef operands, but all the rest of the operands are
/// some unique value, return that value if it can be proved that the
/// value dominates the PHI. If DT is null, use a conservative check,
/// otherwise use DT to test for dominance.
///
Value *hasConstantValue(DominatorTree *DT = 0) const;
/// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const PHINode *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::PHI;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
void resizeOperands(unsigned NumOperands);
};
template <>
struct OperandTraits<PHINode> : public HungoffOperandTraits<2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(PHINode, Value)
//===----------------------------------------------------------------------===//
// ReturnInst Class
//===----------------------------------------------------------------------===//
//===---------------------------------------------------------------------------
/// ReturnInst - Return a value (possibly void), from a function. Execution
/// does not continue in this function any longer.
///
class ReturnInst : public TerminatorInst {
ReturnInst(const ReturnInst &RI);
private:
// ReturnInst constructors:
// ReturnInst() - 'ret void' instruction
// ReturnInst( null) - 'ret void' instruction
// ReturnInst(Value* X) - 'ret X' instruction
// ReturnInst( null, Inst *I) - 'ret void' instruction, insert before I
// ReturnInst(Value* X, Inst *I) - 'ret X' instruction, insert before I
// ReturnInst( null, BB *B) - 'ret void' instruction, insert @ end of B
// ReturnInst(Value* X, BB *B) - 'ret X' instruction, insert @ end of B
//
// NOTE: If the Value* passed is of type void then the constructor behaves as
// if it was passed NULL.
explicit ReturnInst(LLVMContext &C, Value *retVal = 0,
Instruction *InsertBefore = 0);
ReturnInst(LLVMContext &C, Value *retVal, BasicBlock *InsertAtEnd);
explicit ReturnInst(LLVMContext &C, BasicBlock *InsertAtEnd);
protected:
virtual ReturnInst *clone_impl() const;
public:
static ReturnInst* Create(LLVMContext &C, Value *retVal = 0,
Instruction *InsertBefore = 0) {
return new(!!retVal) ReturnInst(C, retVal, InsertBefore);
}
static ReturnInst* Create(LLVMContext &C, Value *retVal,
BasicBlock *InsertAtEnd) {
return new(!!retVal) ReturnInst(C, retVal, InsertAtEnd);
}
static ReturnInst* Create(LLVMContext &C, BasicBlock *InsertAtEnd) {
return new(0) ReturnInst(C, InsertAtEnd);
}
virtual ~ReturnInst();
/// Provide fast operand accessors
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// Convenience accessor. Returns null if there is no return value.
Value *getReturnValue() const {
return getNumOperands() != 0 ? getOperand(0) : 0;
}
unsigned getNumSuccessors() const { return 0; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const ReturnInst *) { return true; }
static inline bool classof(const Instruction *I) {
return (I->getOpcode() == Instruction::Ret);
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
virtual BasicBlock *getSuccessorV(unsigned idx) const;
virtual unsigned getNumSuccessorsV() const;
virtual void setSuccessorV(unsigned idx, BasicBlock *B);
};
template <>
struct OperandTraits<ReturnInst> : public VariadicOperandTraits<> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(ReturnInst, Value)
//===----------------------------------------------------------------------===//
// BranchInst Class
//===----------------------------------------------------------------------===//
//===---------------------------------------------------------------------------
/// BranchInst - Conditional or Unconditional Branch instruction.
///
class BranchInst : public TerminatorInst {
/// Ops list - Branches are strange. The operands are ordered:
/// [Cond, FalseDest,] TrueDest. This makes some accessors faster because
/// they don't have to check for cond/uncond branchness. These are mostly
/// accessed relative from op_end().
BranchInst(const BranchInst &BI);
void AssertOK();
// BranchInst constructors (where {B, T, F} are blocks, and C is a condition):
// BranchInst(BB *B) - 'br B'
// BranchInst(BB* T, BB *F, Value *C) - 'br C, T, F'
// BranchInst(BB* B, Inst *I) - 'br B' insert before I
// BranchInst(BB* T, BB *F, Value *C, Inst *I) - 'br C, T, F', insert before I
// BranchInst(BB* B, BB *I) - 'br B' insert at end
// BranchInst(BB* T, BB *F, Value *C, BB *I) - 'br C, T, F', insert at end
explicit BranchInst(BasicBlock *IfTrue, Instruction *InsertBefore = 0);
BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
Instruction *InsertBefore = 0);
BranchInst(BasicBlock *IfTrue, BasicBlock *InsertAtEnd);
BranchInst(BasicBlock *IfTrue, BasicBlock *IfFalse, Value *Cond,
BasicBlock *InsertAtEnd);
protected:
virtual BranchInst *clone_impl() const;
public:
static BranchInst *Create(BasicBlock *IfTrue, Instruction *InsertBefore = 0) {
return new(1, true) BranchInst(IfTrue, InsertBefore);
}
static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
Value *Cond, Instruction *InsertBefore = 0) {
return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertBefore);
}
static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *InsertAtEnd) {
return new(1, true) BranchInst(IfTrue, InsertAtEnd);
}
static BranchInst *Create(BasicBlock *IfTrue, BasicBlock *IfFalse,
Value *Cond, BasicBlock *InsertAtEnd) {
return new(3) BranchInst(IfTrue, IfFalse, Cond, InsertAtEnd);
}
~BranchInst();
/// Transparently provide more efficient getOperand methods.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
bool isUnconditional() const { return getNumOperands() == 1; }
bool isConditional() const { return getNumOperands() == 3; }
Value *getCondition() const {
assert(isConditional() && "Cannot get condition of an uncond branch!");
return Op<-3>();
}
void setCondition(Value *V) {
assert(isConditional() && "Cannot set condition of unconditional branch!");
Op<-3>() = V;
}
// setUnconditionalDest - Change the current branch to an unconditional branch
// targeting the specified block.
// FIXME: Eliminate this ugly method.
void setUnconditionalDest(BasicBlock *Dest) {
Op<-1>() = (Value*)Dest;
if (isConditional()) { // Convert this to an uncond branch.
Op<-2>() = 0;
Op<-3>() = 0;
NumOperands = 1;
OperandList = op_begin();
}
}
unsigned getNumSuccessors() const { return 1+isConditional(); }
BasicBlock *getSuccessor(unsigned i) const {
assert(i < getNumSuccessors() && "Successor # out of range for Branch!");
return cast_or_null<BasicBlock>((&Op<-1>() - i)->get());
}
void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
assert(idx < getNumSuccessors() && "Successor # out of range for Branch!");
*(&Op<-1>() - idx) = (Value*)NewSucc;
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const BranchInst *) { return true; }
static inline bool classof(const Instruction *I) {
return (I->getOpcode() == Instruction::Br);
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
virtual BasicBlock *getSuccessorV(unsigned idx) const;
virtual unsigned getNumSuccessorsV() const;
virtual void setSuccessorV(unsigned idx, BasicBlock *B);
};
template <>
struct OperandTraits<BranchInst> : public VariadicOperandTraits<1> {};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(BranchInst, Value)
//===----------------------------------------------------------------------===//
// SwitchInst Class
//===----------------------------------------------------------------------===//
//===---------------------------------------------------------------------------
/// SwitchInst - Multiway switch
///
class SwitchInst : public TerminatorInst {
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
unsigned ReservedSpace;
// Operand[0] = Value to switch on
// Operand[1] = Default basic block destination
// Operand[2n ] = Value to match
// Operand[2n+1] = BasicBlock to go to on match
SwitchInst(const SwitchInst &SI);
void init(Value *Value, BasicBlock *Default, unsigned NumCases);
void resizeOperands(unsigned No);
// allocate space for exactly zero operands
void *operator new(size_t s) {
return User::operator new(s, 0);
}
/// SwitchInst ctor - Create a new switch instruction, specifying a value to
/// switch on and a default destination. The number of additional cases can
/// be specified here to make memory allocation more efficient. This
/// constructor can also autoinsert before another instruction.
SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
Instruction *InsertBefore);
/// SwitchInst ctor - Create a new switch instruction, specifying a value to
/// switch on and a default destination. The number of additional cases can
/// be specified here to make memory allocation more efficient. This
/// constructor also autoinserts at the end of the specified BasicBlock.
SwitchInst(Value *Value, BasicBlock *Default, unsigned NumCases,
BasicBlock *InsertAtEnd);
protected:
virtual SwitchInst *clone_impl() const;
public:
static SwitchInst *Create(Value *Value, BasicBlock *Default,
unsigned NumCases, Instruction *InsertBefore = 0) {
return new SwitchInst(Value, Default, NumCases, InsertBefore);
}
static SwitchInst *Create(Value *Value, BasicBlock *Default,
unsigned NumCases, BasicBlock *InsertAtEnd) {
return new SwitchInst(Value, Default, NumCases, InsertAtEnd);
}
~SwitchInst();
/// Provide fast operand accessors
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
// Accessor Methods for Switch stmt
Value *getCondition() const { return getOperand(0); }
void setCondition(Value *V) { setOperand(0, V); }
BasicBlock *getDefaultDest() const {
return cast<BasicBlock>(getOperand(1));
}
/// getNumCases - return the number of 'cases' in this switch instruction.
/// Note that case #0 is always the default case.
unsigned getNumCases() const {
return getNumOperands()/2;
}
/// getCaseValue - Return the specified case value. Note that case #0, the
/// default destination, does not have a case value.
ConstantInt *getCaseValue(unsigned i) {
assert(i && i < getNumCases() && "Illegal case value to get!");
return getSuccessorValue(i);
}
/// getCaseValue - Return the specified case value. Note that case #0, the
/// default destination, does not have a case value.
const ConstantInt *getCaseValue(unsigned i) const {
assert(i && i < getNumCases() && "Illegal case value to get!");
return getSuccessorValue(i);
}
/// findCaseValue - Search all of the case values for the specified constant.
/// If it is explicitly handled, return the case number of it, otherwise
/// return 0 to indicate that it is handled by the default handler.
unsigned findCaseValue(const ConstantInt *C) const {
for (unsigned i = 1, e = getNumCases(); i != e; ++i)
if (getCaseValue(i) == C)
return i;
return 0;
}
/// findCaseDest - Finds the unique case value for a given successor. Returns
/// null if the successor is not found, not unique, or is the default case.
ConstantInt *findCaseDest(BasicBlock *BB) {
if (BB == getDefaultDest()) return NULL;
ConstantInt *CI = NULL;
for (unsigned i = 1, e = getNumCases(); i != e; ++i) {
if (getSuccessor(i) == BB) {
if (CI) return NULL; // Multiple cases lead to BB.
else CI = getCaseValue(i);
}
}
return CI;
}
/// addCase - Add an entry to the switch instruction...
///
void addCase(ConstantInt *OnVal, BasicBlock *Dest);
/// removeCase - This method removes the specified successor from the switch
/// instruction. Note that this cannot be used to remove the default
/// destination (successor #0).
///
void removeCase(unsigned idx);
unsigned getNumSuccessors() const { return getNumOperands()/2; }
BasicBlock *getSuccessor(unsigned idx) const {
assert(idx < getNumSuccessors() &&"Successor idx out of range for switch!");
return cast<BasicBlock>(getOperand(idx*2+1));
}
void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
assert(idx < getNumSuccessors() && "Successor # out of range for switch!");
setOperand(idx*2+1, (Value*)NewSucc);
}
// getSuccessorValue - Return the value associated with the specified
// successor.
ConstantInt *getSuccessorValue(unsigned idx) const {
assert(idx < getNumSuccessors() && "Successor # out of range!");
return reinterpret_cast<ConstantInt*>(getOperand(idx*2));
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SwitchInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Switch;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
virtual BasicBlock *getSuccessorV(unsigned idx) const;
virtual unsigned getNumSuccessorsV() const;
virtual void setSuccessorV(unsigned idx, BasicBlock *B);
};
template <>
struct OperandTraits<SwitchInst> : public HungoffOperandTraits<2> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(SwitchInst, Value)
//===----------------------------------------------------------------------===//
// IndirectBrInst Class
//===----------------------------------------------------------------------===//
//===---------------------------------------------------------------------------
/// IndirectBrInst - Indirect Branch Instruction.
///
class IndirectBrInst : public TerminatorInst {
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
unsigned ReservedSpace;
// Operand[0] = Value to switch on
// Operand[1] = Default basic block destination
// Operand[2n ] = Value to match
// Operand[2n+1] = BasicBlock to go to on match
IndirectBrInst(const IndirectBrInst &IBI);
void init(Value *Address, unsigned NumDests);
void resizeOperands(unsigned No);
// allocate space for exactly zero operands
void *operator new(size_t s) {
return User::operator new(s, 0);
}
/// IndirectBrInst ctor - Create a new indirectbr instruction, specifying an
/// Address to jump to. The number of expected destinations can be specified
/// here to make memory allocation more efficient. This constructor can also
/// autoinsert before another instruction.
IndirectBrInst(Value *Address, unsigned NumDests, Instruction *InsertBefore);
/// IndirectBrInst ctor - Create a new indirectbr instruction, specifying an
/// Address to jump to. The number of expected destinations can be specified
/// here to make memory allocation more efficient. This constructor also
/// autoinserts at the end of the specified BasicBlock.
IndirectBrInst(Value *Address, unsigned NumDests, BasicBlock *InsertAtEnd);
protected:
virtual IndirectBrInst *clone_impl() const;
public:
static IndirectBrInst *Create(Value *Address, unsigned NumDests,
Instruction *InsertBefore = 0) {
return new IndirectBrInst(Address, NumDests, InsertBefore);
}
static IndirectBrInst *Create(Value *Address, unsigned NumDests,
BasicBlock *InsertAtEnd) {
return new IndirectBrInst(Address, NumDests, InsertAtEnd);
}
~IndirectBrInst();
/// Provide fast operand accessors.
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
// Accessor Methods for IndirectBrInst instruction.
Value *getAddress() { return getOperand(0); }
const Value *getAddress() const { return getOperand(0); }
void setAddress(Value *V) { setOperand(0, V); }
/// getNumDestinations - return the number of possible destinations in this
/// indirectbr instruction.
unsigned getNumDestinations() const { return getNumOperands()-1; }
/// getDestination - Return the specified destination.
BasicBlock *getDestination(unsigned i) { return getSuccessor(i); }
const BasicBlock *getDestination(unsigned i) const { return getSuccessor(i); }
/// addDestination - Add a destination.
///
void addDestination(BasicBlock *Dest);
/// removeDestination - This method removes the specified successor from the
/// indirectbr instruction.
void removeDestination(unsigned i);
unsigned getNumSuccessors() const { return getNumOperands()-1; }
BasicBlock *getSuccessor(unsigned i) const {
return cast<BasicBlock>(getOperand(i+1));
}
void setSuccessor(unsigned i, BasicBlock *NewSucc) {
setOperand(i+1, (Value*)NewSucc);
}
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const IndirectBrInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::IndirectBr;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
virtual BasicBlock *getSuccessorV(unsigned idx) const;
virtual unsigned getNumSuccessorsV() const;
virtual void setSuccessorV(unsigned idx, BasicBlock *B);
};
template <>
struct OperandTraits<IndirectBrInst> : public HungoffOperandTraits<1> {
};
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(IndirectBrInst, Value)
//===----------------------------------------------------------------------===//
// InvokeInst Class
//===----------------------------------------------------------------------===//
/// InvokeInst - Invoke instruction. The SubclassData field is used to hold the
/// calling convention of the call.
///
class InvokeInst : public TerminatorInst {
AttrListPtr AttributeList;
InvokeInst(const InvokeInst &BI);
void init(Value *Fn, BasicBlock *IfNormal, BasicBlock *IfException,
Value* const *Args, unsigned NumArgs);
template<typename RandomAccessIterator>
void init(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException,
RandomAccessIterator ArgBegin, RandomAccessIterator ArgEnd,
const Twine &NameStr,
// This argument ensures that we have an iterator we can
// do arithmetic on in constant time
std::random_access_iterator_tag) {
unsigned NumArgs = (unsigned)std::distance(ArgBegin, ArgEnd);
// This requires that the iterator points to contiguous memory.
init(Func, IfNormal, IfException, NumArgs ? &*ArgBegin : 0, NumArgs);
setName(NameStr);
}
/// Construct an InvokeInst given a range of arguments.
/// RandomAccessIterator must be a random-access iterator pointing to
/// contiguous storage (e.g. a std::vector<>::iterator). Checks are
/// made for random-accessness but not for contiguous storage as
/// that would incur runtime overhead.
///
/// @brief Construct an InvokeInst from a range of arguments
template<typename RandomAccessIterator>
inline InvokeInst(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException,
RandomAccessIterator ArgBegin, RandomAccessIterator ArgEnd,
unsigned Values,
const Twine &NameStr, Instruction *InsertBefore);
/// Construct an InvokeInst given a range of arguments.
/// RandomAccessIterator must be a random-access iterator pointing to
/// contiguous storage (e.g. a std::vector<>::iterator). Checks are
/// made for random-accessness but not for contiguous storage as
/// that would incur runtime overhead.
///
/// @brief Construct an InvokeInst from a range of arguments
template<typename RandomAccessIterator>
inline InvokeInst(Value *Func, BasicBlock *IfNormal, BasicBlock *IfException,
RandomAccessIterator ArgBegin, RandomAccessIterator ArgEnd,
unsigned Values,
const Twine &NameStr, BasicBlock *InsertAtEnd);
protected:
virtual InvokeInst *clone_impl() const;
public:
template<typename RandomAccessIterator>
static InvokeInst *Create(Value *Func,
BasicBlock *IfNormal, BasicBlock *IfException,
RandomAccessIterator ArgBegin,
RandomAccessIterator ArgEnd,
const Twine &NameStr = "",
Instruction *InsertBefore = 0) {
unsigned Values(ArgEnd - ArgBegin + 3);
return new(Values) InvokeInst(Func, IfNormal, IfException, ArgBegin, ArgEnd,
Values, NameStr, InsertBefore);
}
template<typename RandomAccessIterator>
static InvokeInst *Create(Value *Func,
BasicBlock *IfNormal, BasicBlock *IfException,
RandomAccessIterator ArgBegin,
RandomAccessIterator ArgEnd,
const Twine &NameStr,
BasicBlock *InsertAtEnd) {
unsigned Values(ArgEnd - ArgBegin + 3);
return new(Values) InvokeInst(Func, IfNormal, IfException, ArgBegin, ArgEnd,
Values, NameStr, InsertAtEnd);
}
/// Provide fast operand accessors
DECLARE_TRANSPARENT_OPERAND_ACCESSORS(Value);
/// getNumArgOperands - Return the number of invoke arguments.
///
unsigned getNumArgOperands() const { return getNumOperands() - 3; }
/// getArgOperand/setArgOperand - Return/set the i-th invoke argument.
///
Value *getArgOperand(unsigned i) const { return getOperand(i); }
void setArgOperand(unsigned i, Value *v) { setOperand(i, v); }
/// getCallingConv/setCallingConv - Get or set the calling convention of this
/// function call.
CallingConv::ID getCallingConv() const {
return static_cast<CallingConv::ID>(getSubclassDataFromInstruction());
}
void setCallingConv(CallingConv::ID CC) {
setInstructionSubclassData(static_cast<unsigned>(CC));
}
/// getAttributes - Return the parameter attributes for this invoke.
///
const AttrListPtr &getAttributes() const { return AttributeList; }
/// setAttributes - Set the parameter attributes for this invoke.
///
void setAttributes(const AttrListPtr &Attrs) { AttributeList = Attrs; }
/// addAttribute - adds the attribute to the list of attributes.
void addAttribute(unsigned i, Attributes attr);
/// removeAttribute - removes the attribute from the list of attributes.
void removeAttribute(unsigned i, Attributes attr);
/// @brief Determine whether the call or the callee has the given attribute.
bool paramHasAttr(unsigned i, Attributes attr) const;
/// @brief Extract the alignment for a call or parameter (0=unknown).
unsigned getParamAlignment(unsigned i) const {
return AttributeList.getParamAlignment(i);
}
/// @brief Return true if the call should not be inlined.
bool isNoInline() const { return paramHasAttr(~0, Attribute::NoInline); }
void setIsNoInline(bool Value = true) {
if (Value) addAttribute(~0, Attribute::NoInline);
else removeAttribute(~0, Attribute::NoInline);
}
/// @brief Determine if the call does not access memory.
bool doesNotAccessMemory() const {
return paramHasAttr(~0, Attribute::ReadNone);
}
void setDoesNotAccessMemory(bool NotAccessMemory = true) {
if (NotAccessMemory) addAttribute(~0, Attribute::ReadNone);
else removeAttribute(~0, Attribute::ReadNone);
}
/// @brief Determine if the call does not access or only reads memory.
bool onlyReadsMemory() const {
return doesNotAccessMemory() || paramHasAttr(~0, Attribute::ReadOnly);
}
void setOnlyReadsMemory(bool OnlyReadsMemory = true) {
if (OnlyReadsMemory) addAttribute(~0, Attribute::ReadOnly);
else removeAttribute(~0, Attribute::ReadOnly | Attribute::ReadNone);
}
/// @brief Determine if the call cannot return.
bool doesNotReturn() const { return paramHasAttr(~0, Attribute::NoReturn); }
void setDoesNotReturn(bool DoesNotReturn = true) {
if (DoesNotReturn) addAttribute(~0, Attribute::NoReturn);
else removeAttribute(~0, Attribute::NoReturn);
}
/// @brief Determine if the call cannot unwind.
bool doesNotThrow() const { return paramHasAttr(~0, Attribute::NoUnwind); }
void setDoesNotThrow(bool DoesNotThrow = true) {
if (DoesNotThrow) addAttribute(~0, Attribute::NoUnwind);
else removeAttribute(~0, Attribute::NoUnwind);
}
/// @brief Determine if the call returns a structure through first
/// pointer argument.
bool hasStructRetAttr() const {
// Be friendly and also check the callee.
return paramHasAttr(1, Attribute::StructRet);
}
/// @brief Determine if any call argument is an aggregate passed by value.
bool hasByValArgument() const {
return AttributeList.hasAttrSomewhere(Attribute::ByVal);
}
/// getCalledFunction - Return the function called, or null if this is an
/// indirect function invocation.
///
Function *getCalledFunction() const {
return dyn_cast<Function>(Op<-3>());
}
/// getCalledValue - Get a pointer to the function that is invoked by this
/// instruction
const Value *getCalledValue() const { return Op<-3>(); }
Value *getCalledValue() { return Op<-3>(); }
/// setCalledFunction - Set the function called.
void setCalledFunction(Value* Fn) {
Op<-3>() = Fn;
}
// get*Dest - Return the destination basic blocks...
BasicBlock *getNormalDest() const {
return cast<BasicBlock>(Op<-2>());
}
BasicBlock *getUnwindDest() const {
return cast<BasicBlock>(Op<-1>());
}
void setNormalDest(BasicBlock *B) {
Op<-2>() = reinterpret_cast<Value*>(B);
}
void setUnwindDest(BasicBlock *B) {
Op<-1>() = reinterpret_cast<Value*>(B);
}
BasicBlock *getSuccessor(unsigned i) const {
assert(i < 2 && "Successor # out of range for invoke!");
return i == 0 ? getNormalDest() : getUnwindDest();
}
void setSuccessor(unsigned idx, BasicBlock *NewSucc) {
assert(idx < 2 && "Successor # out of range for invoke!");
*(&Op<-2>() + idx) = reinterpret_cast<Value*>(NewSucc);
}
unsigned getNumSuccessors() const { return 2; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const InvokeInst *) { return true; }
static inline bool classof(const Instruction *I) {
return (I->getOpcode() == Instruction::Invoke);
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
virtual BasicBlock *getSuccessorV(unsigned idx) const;
virtual unsigned getNumSuccessorsV() const;
virtual void setSuccessorV(unsigned idx, BasicBlock *B);
// Shadow Instruction::setInstructionSubclassData with a private forwarding
// method so that subclasses cannot accidentally use it.
void setInstructionSubclassData(unsigned short D) {
Instruction::setInstructionSubclassData(D);
}
};
template <>
struct OperandTraits<InvokeInst> : public VariadicOperandTraits<3> {
};
template<typename RandomAccessIterator>
InvokeInst::InvokeInst(Value *Func,
BasicBlock *IfNormal, BasicBlock *IfException,
RandomAccessIterator ArgBegin,
RandomAccessIterator ArgEnd,
unsigned Values,
const Twine &NameStr, Instruction *InsertBefore)
: TerminatorInst(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
Instruction::Invoke,
OperandTraits<InvokeInst>::op_end(this) - Values,
Values, InsertBefore) {
init(Func, IfNormal, IfException, ArgBegin, ArgEnd, NameStr,
typename std::iterator_traits<RandomAccessIterator>
::iterator_category());
}
template<typename RandomAccessIterator>
InvokeInst::InvokeInst(Value *Func,
BasicBlock *IfNormal, BasicBlock *IfException,
RandomAccessIterator ArgBegin,
RandomAccessIterator ArgEnd,
unsigned Values,
const Twine &NameStr, BasicBlock *InsertAtEnd)
: TerminatorInst(cast<FunctionType>(cast<PointerType>(Func->getType())
->getElementType())->getReturnType(),
Instruction::Invoke,
OperandTraits<InvokeInst>::op_end(this) - Values,
Values, InsertAtEnd) {
init(Func, IfNormal, IfException, ArgBegin, ArgEnd, NameStr,
typename std::iterator_traits<RandomAccessIterator>
::iterator_category());
}
DEFINE_TRANSPARENT_OPERAND_ACCESSORS(InvokeInst, Value)
//===----------------------------------------------------------------------===//
// UnwindInst Class
//===----------------------------------------------------------------------===//
//===---------------------------------------------------------------------------
/// UnwindInst - Immediately exit the current function, unwinding the stack
/// until an invoke instruction is found.
///
class UnwindInst : public TerminatorInst {
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
protected:
virtual UnwindInst *clone_impl() const;
public:
// allocate space for exactly zero operands
void *operator new(size_t s) {
return User::operator new(s, 0);
}
explicit UnwindInst(LLVMContext &C, Instruction *InsertBefore = 0);
explicit UnwindInst(LLVMContext &C, BasicBlock *InsertAtEnd);
unsigned getNumSuccessors() const { return 0; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const UnwindInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Unwind;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
virtual BasicBlock *getSuccessorV(unsigned idx) const;
virtual unsigned getNumSuccessorsV() const;
virtual void setSuccessorV(unsigned idx, BasicBlock *B);
};
//===----------------------------------------------------------------------===//
// UnreachableInst Class
//===----------------------------------------------------------------------===//
//===---------------------------------------------------------------------------
/// UnreachableInst - This function has undefined behavior. In particular, the
/// presence of this instruction indicates some higher level knowledge that the
/// end of the block cannot be reached.
///
class UnreachableInst : public TerminatorInst {
void *operator new(size_t, unsigned); // DO NOT IMPLEMENT
protected:
virtual UnreachableInst *clone_impl() const;
public:
// allocate space for exactly zero operands
void *operator new(size_t s) {
return User::operator new(s, 0);
}
explicit UnreachableInst(LLVMContext &C, Instruction *InsertBefore = 0);
explicit UnreachableInst(LLVMContext &C, BasicBlock *InsertAtEnd);
unsigned getNumSuccessors() const { return 0; }
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const UnreachableInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Instruction::Unreachable;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
private:
virtual BasicBlock *getSuccessorV(unsigned idx) const;
virtual unsigned getNumSuccessorsV() const;
virtual void setSuccessorV(unsigned idx, BasicBlock *B);
};
//===----------------------------------------------------------------------===//
// TruncInst Class
//===----------------------------------------------------------------------===//
/// @brief This class represents a truncation of integer types.
class TruncInst : public CastInst {
protected:
/// @brief Clone an identical TruncInst
virtual TruncInst *clone_impl() const;
public:
/// @brief Constructor with insert-before-instruction semantics
TruncInst(
Value *S, ///< The value to be truncated
const Type *Ty, ///< The (smaller) type to truncate to
const Twine &NameStr = "", ///< A name for the new instruction
Instruction *InsertBefore = 0 ///< Where to insert the new instruction
);
/// @brief Constructor with insert-at-end-of-block semantics
TruncInst(
Value *S, ///< The value to be truncated
const Type *Ty, ///< The (smaller) type to truncate to
const Twine &NameStr, ///< A name for the new instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const TruncInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == Trunc;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// ZExtInst Class
//===----------------------------------------------------------------------===//
/// @brief This class represents zero extension of integer types.
class ZExtInst : public CastInst {
protected:
/// @brief Clone an identical ZExtInst
virtual ZExtInst *clone_impl() const;
public:
/// @brief Constructor with insert-before-instruction semantics
ZExtInst(
Value *S, ///< The value to be zero extended
const Type *Ty, ///< The type to zero extend to
const Twine &NameStr = "", ///< A name for the new instruction
Instruction *InsertBefore = 0 ///< Where to insert the new instruction
);
/// @brief Constructor with insert-at-end semantics.
ZExtInst(
Value *S, ///< The value to be zero extended
const Type *Ty, ///< The type to zero extend to
const Twine &NameStr, ///< A name for the new instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const ZExtInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == ZExt;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// SExtInst Class
//===----------------------------------------------------------------------===//
/// @brief This class represents a sign extension of integer types.
class SExtInst : public CastInst {
protected:
/// @brief Clone an identical SExtInst
virtual SExtInst *clone_impl() const;
public:
/// @brief Constructor with insert-before-instruction semantics
SExtInst(
Value *S, ///< The value to be sign extended
const Type *Ty, ///< The type to sign extend to
const Twine &NameStr = "", ///< A name for the new instruction
Instruction *InsertBefore = 0 ///< Where to insert the new instruction
);
/// @brief Constructor with insert-at-end-of-block semantics
SExtInst(
Value *S, ///< The value to be sign extended
const Type *Ty, ///< The type to sign extend to
const Twine &NameStr, ///< A name for the new instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SExtInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == SExt;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// FPTruncInst Class
//===----------------------------------------------------------------------===//
/// @brief This class represents a truncation of floating point types.
class FPTruncInst : public CastInst {
protected:
/// @brief Clone an identical FPTruncInst
virtual FPTruncInst *clone_impl() const;
public:
/// @brief Constructor with insert-before-instruction semantics
FPTruncInst(
Value *S, ///< The value to be truncated
const Type *Ty, ///< The type to truncate to
const Twine &NameStr = "", ///< A name for the new instruction
Instruction *InsertBefore = 0 ///< Where to insert the new instruction
);
/// @brief Constructor with insert-before-instruction semantics
FPTruncInst(
Value *S, ///< The value to be truncated
const Type *Ty, ///< The type to truncate to
const Twine &NameStr, ///< A name for the new instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const FPTruncInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == FPTrunc;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// FPExtInst Class
//===----------------------------------------------------------------------===//
/// @brief This class represents an extension of floating point types.
class FPExtInst : public CastInst {
protected:
/// @brief Clone an identical FPExtInst
virtual FPExtInst *clone_impl() const;
public:
/// @brief Constructor with insert-before-instruction semantics
FPExtInst(
Value *S, ///< The value to be extended
const Type *Ty, ///< The type to extend to
const Twine &NameStr = "", ///< A name for the new instruction
Instruction *InsertBefore = 0 ///< Where to insert the new instruction
);
/// @brief Constructor with insert-at-end-of-block semantics
FPExtInst(
Value *S, ///< The value to be extended
const Type *Ty, ///< The type to extend to
const Twine &NameStr, ///< A name for the new instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const FPExtInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == FPExt;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// UIToFPInst Class
//===----------------------------------------------------------------------===//
/// @brief This class represents a cast unsigned integer to floating point.
class UIToFPInst : public CastInst {
protected:
/// @brief Clone an identical UIToFPInst
virtual UIToFPInst *clone_impl() const;
public:
/// @brief Constructor with insert-before-instruction semantics
UIToFPInst(
Value *S, ///< The value to be converted
const Type *Ty, ///< The type to convert to
const Twine &NameStr = "", ///< A name for the new instruction
Instruction *InsertBefore = 0 ///< Where to insert the new instruction
);
/// @brief Constructor with insert-at-end-of-block semantics
UIToFPInst(
Value *S, ///< The value to be converted
const Type *Ty, ///< The type to convert to
const Twine &NameStr, ///< A name for the new instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const UIToFPInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == UIToFP;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// SIToFPInst Class
//===----------------------------------------------------------------------===//
/// @brief This class represents a cast from signed integer to floating point.
class SIToFPInst : public CastInst {
protected:
/// @brief Clone an identical SIToFPInst
virtual SIToFPInst *clone_impl() const;
public:
/// @brief Constructor with insert-before-instruction semantics
SIToFPInst(
Value *S, ///< The value to be converted
const Type *Ty, ///< The type to convert to
const Twine &NameStr = "", ///< A name for the new instruction
Instruction *InsertBefore = 0 ///< Where to insert the new instruction
);
/// @brief Constructor with insert-at-end-of-block semantics
SIToFPInst(
Value *S, ///< The value to be converted
const Type *Ty, ///< The type to convert to
const Twine &NameStr, ///< A name for the new instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const SIToFPInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == SIToFP;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// FPToUIInst Class
//===----------------------------------------------------------------------===//
/// @brief This class represents a cast from floating point to unsigned integer
class FPToUIInst : public CastInst {
protected:
/// @brief Clone an identical FPToUIInst
virtual FPToUIInst *clone_impl() const;
public:
/// @brief Constructor with insert-before-instruction semantics
FPToUIInst(
Value *S, ///< The value to be converted
const Type *Ty, ///< The type to convert to
const Twine &NameStr = "", ///< A name for the new instruction
Instruction *InsertBefore = 0 ///< Where to insert the new instruction
);
/// @brief Constructor with insert-at-end-of-block semantics
FPToUIInst(
Value *S, ///< The value to be converted
const Type *Ty, ///< The type to convert to
const Twine &NameStr, ///< A name for the new instruction
BasicBlock *InsertAtEnd ///< Where to insert the new instruction
);
/// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const FPToUIInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == FPToUI;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// FPToSIInst Class
//===----------------------------------------------------------------------===//
/// @brief This class represents a cast from floating point to signed integer.
class FPToSIInst : public CastInst {
protected:
/// @brief Clone an identical FPToSIInst
virtual FPToSIInst *clone_impl() const;
public:
/// @brief Constructor with insert-before-instruction semantics
FPToSIInst(
Value *S, ///< The value to be converted
const Type *Ty, ///< The type to convert to
const Twine &NameStr = "", ///< A name for the new instruction
Instruction *InsertBefore = 0 ///< Where to insert the new instruction
);
/// @brief Constructor with insert-at-end-of-block semantics
FPToSIInst(
Value *S, ///< The value to be converted
const Type *Ty, ///< The type to convert to
const Twine &NameStr, ///< A name for the new instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// @brief Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const FPToSIInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == FPToSI;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// IntToPtrInst Class
//===----------------------------------------------------------------------===//
/// @brief This class represents a cast from an integer to a pointer.
class IntToPtrInst : public CastInst {
public:
/// @brief Constructor with insert-before-instruction semantics
IntToPtrInst(
Value *S, ///< The value to be converted
const Type *Ty, ///< The type to convert to
const Twine &NameStr = "", ///< A name for the new instruction
Instruction *InsertBefore = 0 ///< Where to insert the new instruction
);
/// @brief Constructor with insert-at-end-of-block semantics
IntToPtrInst(
Value *S, ///< The value to be converted
const Type *Ty, ///< The type to convert to
const Twine &NameStr, ///< A name for the new instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
/// @brief Clone an identical IntToPtrInst
virtual IntToPtrInst *clone_impl() const;
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const IntToPtrInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == IntToPtr;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// PtrToIntInst Class
//===----------------------------------------------------------------------===//
/// @brief This class represents a cast from a pointer to an integer
class PtrToIntInst : public CastInst {
protected:
/// @brief Clone an identical PtrToIntInst
virtual PtrToIntInst *clone_impl() const;
public:
/// @brief Constructor with insert-before-instruction semantics
PtrToIntInst(
Value *S, ///< The value to be converted
const Type *Ty, ///< The type to convert to
const Twine &NameStr = "", ///< A name for the new instruction
Instruction *InsertBefore = 0 ///< Where to insert the new instruction
);
/// @brief Constructor with insert-at-end-of-block semantics
PtrToIntInst(
Value *S, ///< The value to be converted
const Type *Ty, ///< The type to convert to
const Twine &NameStr, ///< A name for the new instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const PtrToIntInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == PtrToInt;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
//===----------------------------------------------------------------------===//
// BitCastInst Class
//===----------------------------------------------------------------------===//
/// @brief This class represents a no-op cast from one type to another.
class BitCastInst : public CastInst {
protected:
/// @brief Clone an identical BitCastInst
virtual BitCastInst *clone_impl() const;
public:
/// @brief Constructor with insert-before-instruction semantics
BitCastInst(
Value *S, ///< The value to be casted
const Type *Ty, ///< The type to casted to
const Twine &NameStr = "", ///< A name for the new instruction
Instruction *InsertBefore = 0 ///< Where to insert the new instruction
);
/// @brief Constructor with insert-at-end-of-block semantics
BitCastInst(
Value *S, ///< The value to be casted
const Type *Ty, ///< The type to casted to
const Twine &NameStr, ///< A name for the new instruction
BasicBlock *InsertAtEnd ///< The block to insert the instruction into
);
// Methods for support type inquiry through isa, cast, and dyn_cast:
static inline bool classof(const BitCastInst *) { return true; }
static inline bool classof(const Instruction *I) {
return I->getOpcode() == BitCast;
}
static inline bool classof(const Value *V) {
return isa<Instruction>(V) && classof(cast<Instruction>(V));
}
};
} // End llvm namespace
#endif