llvm-6502/lib/Target/SystemZ
Richard Sandiford 4c708e586e [SystemZ] Update README.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@190404 91177308-0d34-0410-b5e6-96231b3b80d8
2013-09-10 12:22:45 +00:00
..
AsmParser Split generated asm mnemonic matching table into a separate table for each asm variant. 2013-07-24 07:33:14 +00:00
Disassembler
InstPrinter
MCTargetDesc Generate compact unwind encoding from CFI directives. 2013-09-09 02:37:14 +00:00
TargetInfo
CMakeLists.txt Target/*/CMakeLists.txt: Add the dependency to CommonTableGen explicitly for each corresponding CodeGen. 2013-08-06 06:38:37 +00:00
LLVMBuild.txt
Makefile
README.txt [SystemZ] Update README. 2013-09-10 12:22:45 +00:00
SystemZ.h [SystemZ] Add support for TMHH, TMHL, TMLH and TMLL 2013-09-03 15:38:35 +00:00
SystemZ.td
SystemZAsmPrinter.cpp
SystemZAsmPrinter.h
SystemZCallingConv.cpp
SystemZCallingConv.h
SystemZCallingConv.td
SystemZConstantPoolValue.cpp
SystemZConstantPoolValue.h
SystemZElimCompare.cpp [SystemZ] Optimize floating-point comparisons with zero 2013-08-07 11:10:06 +00:00
SystemZFrameLowering.cpp [SystemZ] Add support for sibling calls 2013-08-19 12:42:31 +00:00
SystemZFrameLowering.h
SystemZInstrBuilder.h
SystemZInstrFormats.td [SystemZ] Extend memcpy and memset support to all constant lengths 2013-08-27 09:54:29 +00:00
SystemZInstrFP.td [SystemZ] Tweak integer comparison code 2013-09-06 11:51:39 +00:00
SystemZInstrInfo.cpp [SystemZ] Fix handling of 64-bit memcmp results 2013-08-16 10:55:47 +00:00
SystemZInstrInfo.h [SystemZ] Use CLC and IPM to implement memcmp 2013-08-12 10:28:10 +00:00
SystemZInstrInfo.td [SystemZ] Add TM and TMY 2013-09-10 10:20:32 +00:00
SystemZISelDAGToDAG.cpp [SystemZ] Add NC, OC and XC 2013-09-05 10:36:45 +00:00
SystemZISelLowering.cpp [SystemZ] Add TM and TMY 2013-09-10 10:20:32 +00:00
SystemZISelLowering.h [SystemZ] Add TM and TMY 2013-09-10 10:20:32 +00:00
SystemZLongBranch.cpp [SystemZ] Use BRCT and BRCTG to eliminate add-&-compare sequences 2013-08-05 11:23:46 +00:00
SystemZMachineFunctionInfo.h
SystemZMCInstLower.cpp
SystemZMCInstLower.h
SystemZOperands.td [SystemZ] Extend memcpy and memset support to all constant lengths 2013-08-27 09:54:29 +00:00
SystemZOperators.td [SystemZ] Add TM and TMY 2013-09-10 10:20:32 +00:00
SystemZPatterns.td [SystemZ] Tweak integer comparison code 2013-09-06 11:51:39 +00:00
SystemZProcessors.td [SystemZ] Add FI[EDX]BRA 2013-08-21 08:58:08 +00:00
SystemZRegisterInfo.cpp
SystemZRegisterInfo.h
SystemZRegisterInfo.td
SystemZSelectionDAGInfo.cpp [SystemZ] Use XC for a memset of 0 2013-09-06 10:25:07 +00:00
SystemZSelectionDAGInfo.h [SystemZ] Use SRST to optimize memchr 2013-08-20 09:38:48 +00:00
SystemZSubtarget.cpp [SystemZ] Add FI[EDX]BRA 2013-08-21 08:58:08 +00:00
SystemZSubtarget.h [SystemZ] Add FI[EDX]BRA 2013-08-21 08:58:08 +00:00
SystemZTargetMachine.cpp Turn MipsOptimizeMathLibCalls into a target-independent scalar transform 2013-08-23 10:27:02 +00:00
SystemZTargetMachine.h

//===---------------------------------------------------------------------===//
// Random notes about and ideas for the SystemZ backend.
//===---------------------------------------------------------------------===//

The initial backend is deliberately restricted to z10.  We should add support
for later architectures at some point.

--

SystemZDAGToDAGISel::SelectInlineAsmMemoryOperand() is passed "m" for all
inline asm memory constraints; it doesn't get to see the original constraint.
This means that it must conservatively treat all inline asm constraints
as the most restricted type, "R".

--

If an inline asm ties an i32 "r" result to an i64 input, the input
will be treated as an i32, leaving the upper bits uninitialised.
For example:

define void @f4(i32 *%dst) {
  %val = call i32 asm "blah $0", "=r,0" (i64 103)
  store i32 %val, i32 *%dst
  ret void
}

from CodeGen/SystemZ/asm-09.ll will use LHI rather than LGHI.
to load 103.  This seems to be a general target-independent problem.

--

The tuning of the choice between LOAD ADDRESS (LA) and addition in
SystemZISelDAGToDAG.cpp is suspect.  It should be tweaked based on
performance measurements.

--

There is no scheduling support.

--

We don't use the BRANCH ON INDEX instructions.

--

We might want to use BRANCH ON CONDITION for conditional indirect calls
and conditional returns.

--

We don't use the TEST DATA CLASS instructions.

--

We could use the generic floating-point forms of LOAD COMPLEMENT,
LOAD NEGATIVE and LOAD POSITIVE in cases where we don't need the
condition codes.  For example, we could use LCDFR instead of LCDBR.

--

We only use MVC, XC and CLC for constant-length block operations.
We could extend them to variable-length operations too,
using EXECUTE RELATIVE LONG.

MVCIN, MVCLE and CLCLE may be worthwhile too.

--

We don't use CUSE or the TRANSLATE family of instructions for string
operations.  The TRANSLATE ones are probably more difficult to exploit.

--

We don't take full advantage of builtins like fabsl because the calling
conventions require f128s to be returned by invisible reference.

--

ADD LOGICAL WITH SIGNED IMMEDIATE could be useful when we need to
produce a carry.  SUBTRACT LOGICAL IMMEDIATE could be useful when we
need to produce a borrow.  (Note that there are no memory forms of
ADD LOGICAL WITH CARRY and SUBTRACT LOGICAL WITH BORROW, so the high
part of 128-bit memory operations would probably need to be done
via a register.)

--

We don't use the halfword forms of LOAD REVERSED and STORE REVERSED
(LRVH and STRVH).

--

We don't use ICM or STCM.

--

DAGCombiner doesn't yet fold truncations of extended loads.  Functions like:

    unsigned long f (unsigned long x, unsigned short *y)
    {
      return (x << 32) | *y;
    }

therefore end up as:

        sllg    %r2, %r2, 32
        llgh    %r0, 0(%r3)
        lr      %r2, %r0
        br      %r14

but truncating the load would give:

        sllg    %r2, %r2, 32
        lh      %r2, 0(%r3)
        br      %r14

--

Functions like:

define i64 @f1(i64 %a) {
  %and = and i64 %a, 1
  ret i64 %and
}

ought to be implemented as:

        lhi     %r0, 1
        ngr     %r2, %r0
        br      %r14

but two-address optimisations reverse the order of the AND and force:

        lhi     %r0, 1
        ngr     %r0, %r2
        lgr     %r2, %r0
        br      %r14

CodeGen/SystemZ/and-04.ll has several examples of this.

--

Out-of-range displacements are usually handled by loading the full
address into a register.  In many cases it would be better to create
an anchor point instead.  E.g. for:

define void @f4a(i128 *%aptr, i64 %base) {
  %addr = add i64 %base, 524288
  %bptr = inttoptr i64 %addr to i128 *
  %a = load volatile i128 *%aptr
  %b = load i128 *%bptr
  %add = add i128 %a, %b
  store i128 %add, i128 *%aptr
  ret void
}

(from CodeGen/SystemZ/int-add-08.ll) we load %base+524288 and %base+524296
into separate registers, rather than using %base+524288 as a base for both.

--

Dynamic stack allocations round the size to 8 bytes and then allocate
that rounded amount.  It would be simpler to subtract the unrounded
size from the copy of the stack pointer and then align the result.
See CodeGen/SystemZ/alloca-01.ll for an example.

--

Atomic loads and stores use the default compare-and-swap based implementation.
This is much too conservative in practice, since the architecture guarantees
that 1-, 2-, 4- and 8-byte loads and stores to aligned addresses are
inherently atomic.

--

If needed, we can support 16-byte atomics using LPQ, STPQ and CSDG.

--

We might want to model all access registers and use them to spill
32-bit values.