llvm-6502/lib/Transforms/Utils/LCSSA.cpp
Chandler Carruth 0b8c9a80f2 Move all of the header files which are involved in modelling the LLVM IR
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.

There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.

The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.

I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).

I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-02 11:36:10 +00:00

293 lines
10 KiB
C++

//===-- LCSSA.cpp - Convert loops into loop-closed SSA form ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass transforms loops by placing phi nodes at the end of the loops for
// all values that are live across the loop boundary. For example, it turns
// the left into the right code:
//
// for (...) for (...)
// if (c) if (c)
// X1 = ... X1 = ...
// else else
// X2 = ... X2 = ...
// X3 = phi(X1, X2) X3 = phi(X1, X2)
// ... = X3 + 4 X4 = phi(X3)
// ... = X4 + 4
//
// This is still valid LLVM; the extra phi nodes are purely redundant, and will
// be trivially eliminated by InstCombine. The major benefit of this
// transformation is that it makes many other loop optimizations, such as
// LoopUnswitching, simpler.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "lcssa"
#include "llvm/Transforms/Scalar.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/Dominators.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/Pass.h"
#include "llvm/Support/PredIteratorCache.h"
#include "llvm/Transforms/Utils/SSAUpdater.h"
using namespace llvm;
STATISTIC(NumLCSSA, "Number of live out of a loop variables");
namespace {
struct LCSSA : public LoopPass {
static char ID; // Pass identification, replacement for typeid
LCSSA() : LoopPass(ID) {
initializeLCSSAPass(*PassRegistry::getPassRegistry());
}
// Cached analysis information for the current function.
DominatorTree *DT;
LoopInfo *LI;
ScalarEvolution *SE;
std::vector<BasicBlock*> LoopBlocks;
PredIteratorCache PredCache;
Loop *L;
virtual bool runOnLoop(Loop *L, LPPassManager &LPM);
/// This transformation requires natural loop information & requires that
/// loop preheaders be inserted into the CFG. It maintains both of these,
/// as well as the CFG. It also requires dominator information.
///
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<DominatorTree>();
AU.addRequired<LoopInfo>();
AU.addPreservedID(LoopSimplifyID);
AU.addPreserved<ScalarEvolution>();
}
private:
bool ProcessInstruction(Instruction *Inst,
const SmallVectorImpl<BasicBlock*> &ExitBlocks);
/// verifyAnalysis() - Verify loop nest.
virtual void verifyAnalysis() const {
// Check the special guarantees that LCSSA makes.
assert(L->isLCSSAForm(*DT) && "LCSSA form not preserved!");
}
/// inLoop - returns true if the given block is within the current loop
bool inLoop(BasicBlock *B) const {
return std::binary_search(LoopBlocks.begin(), LoopBlocks.end(), B);
}
};
}
char LCSSA::ID = 0;
INITIALIZE_PASS_BEGIN(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTree)
INITIALIZE_PASS_DEPENDENCY(LoopInfo)
INITIALIZE_PASS_END(LCSSA, "lcssa", "Loop-Closed SSA Form Pass", false, false)
Pass *llvm::createLCSSAPass() { return new LCSSA(); }
char &llvm::LCSSAID = LCSSA::ID;
/// BlockDominatesAnExit - Return true if the specified block dominates at least
/// one of the blocks in the specified list.
static bool BlockDominatesAnExit(BasicBlock *BB,
const SmallVectorImpl<BasicBlock*> &ExitBlocks,
DominatorTree *DT) {
DomTreeNode *DomNode = DT->getNode(BB);
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
if (DT->dominates(DomNode, DT->getNode(ExitBlocks[i])))
return true;
return false;
}
/// runOnFunction - Process all loops in the function, inner-most out.
bool LCSSA::runOnLoop(Loop *TheLoop, LPPassManager &LPM) {
L = TheLoop;
DT = &getAnalysis<DominatorTree>();
LI = &getAnalysis<LoopInfo>();
SE = getAnalysisIfAvailable<ScalarEvolution>();
// Get the set of exiting blocks.
SmallVector<BasicBlock*, 8> ExitBlocks;
L->getExitBlocks(ExitBlocks);
if (ExitBlocks.empty())
return false;
// Speed up queries by creating a sorted vector of blocks.
LoopBlocks.clear();
LoopBlocks.insert(LoopBlocks.end(), L->block_begin(), L->block_end());
array_pod_sort(LoopBlocks.begin(), LoopBlocks.end());
// Look at all the instructions in the loop, checking to see if they have uses
// outside the loop. If so, rewrite those uses.
bool MadeChange = false;
for (Loop::block_iterator BBI = L->block_begin(), E = L->block_end();
BBI != E; ++BBI) {
BasicBlock *BB = *BBI;
// For large loops, avoid use-scanning by using dominance information: In
// particular, if a block does not dominate any of the loop exits, then none
// of the values defined in the block could be used outside the loop.
if (!BlockDominatesAnExit(BB, ExitBlocks, DT))
continue;
for (BasicBlock::iterator I = BB->begin(), E = BB->end();
I != E; ++I) {
// Reject two common cases fast: instructions with no uses (like stores)
// and instructions with one use that is in the same block as this.
if (I->use_empty() ||
(I->hasOneUse() && I->use_back()->getParent() == BB &&
!isa<PHINode>(I->use_back())))
continue;
MadeChange |= ProcessInstruction(I, ExitBlocks);
}
}
// If we modified the code, remove any caches about the loop from SCEV to
// avoid dangling entries.
// FIXME: This is a big hammer, can we clear the cache more selectively?
if (SE && MadeChange)
SE->forgetLoop(L);
assert(L->isLCSSAForm(*DT));
PredCache.clear();
return MadeChange;
}
/// isExitBlock - Return true if the specified block is in the list.
static bool isExitBlock(BasicBlock *BB,
const SmallVectorImpl<BasicBlock*> &ExitBlocks) {
for (unsigned i = 0, e = ExitBlocks.size(); i != e; ++i)
if (ExitBlocks[i] == BB)
return true;
return false;
}
/// ProcessInstruction - Given an instruction in the loop, check to see if it
/// has any uses that are outside the current loop. If so, insert LCSSA PHI
/// nodes and rewrite the uses.
bool LCSSA::ProcessInstruction(Instruction *Inst,
const SmallVectorImpl<BasicBlock*> &ExitBlocks) {
SmallVector<Use*, 16> UsesToRewrite;
BasicBlock *InstBB = Inst->getParent();
for (Value::use_iterator UI = Inst->use_begin(), E = Inst->use_end();
UI != E; ++UI) {
User *U = *UI;
BasicBlock *UserBB = cast<Instruction>(U)->getParent();
if (PHINode *PN = dyn_cast<PHINode>(U))
UserBB = PN->getIncomingBlock(UI);
if (InstBB != UserBB && !inLoop(UserBB))
UsesToRewrite.push_back(&UI.getUse());
}
// If there are no uses outside the loop, exit with no change.
if (UsesToRewrite.empty()) return false;
++NumLCSSA; // We are applying the transformation
// Invoke instructions are special in that their result value is not available
// along their unwind edge. The code below tests to see whether DomBB dominates
// the value, so adjust DomBB to the normal destination block, which is
// effectively where the value is first usable.
BasicBlock *DomBB = Inst->getParent();
if (InvokeInst *Inv = dyn_cast<InvokeInst>(Inst))
DomBB = Inv->getNormalDest();
DomTreeNode *DomNode = DT->getNode(DomBB);
SmallVector<PHINode*, 16> AddedPHIs;
SSAUpdater SSAUpdate;
SSAUpdate.Initialize(Inst->getType(), Inst->getName());
// Insert the LCSSA phi's into all of the exit blocks dominated by the
// value, and add them to the Phi's map.
for (SmallVectorImpl<BasicBlock*>::const_iterator BBI = ExitBlocks.begin(),
BBE = ExitBlocks.end(); BBI != BBE; ++BBI) {
BasicBlock *ExitBB = *BBI;
if (!DT->dominates(DomNode, DT->getNode(ExitBB))) continue;
// If we already inserted something for this BB, don't reprocess it.
if (SSAUpdate.HasValueForBlock(ExitBB)) continue;
PHINode *PN = PHINode::Create(Inst->getType(),
PredCache.GetNumPreds(ExitBB),
Inst->getName()+".lcssa",
ExitBB->begin());
// Add inputs from inside the loop for this PHI.
for (BasicBlock **PI = PredCache.GetPreds(ExitBB); *PI; ++PI) {
PN->addIncoming(Inst, *PI);
// If the exit block has a predecessor not within the loop, arrange for
// the incoming value use corresponding to that predecessor to be
// rewritten in terms of a different LCSSA PHI.
if (!inLoop(*PI))
UsesToRewrite.push_back(
&PN->getOperandUse(
PN->getOperandNumForIncomingValue(PN->getNumIncomingValues()-1)));
}
AddedPHIs.push_back(PN);
// Remember that this phi makes the value alive in this block.
SSAUpdate.AddAvailableValue(ExitBB, PN);
}
// Rewrite all uses outside the loop in terms of the new PHIs we just
// inserted.
for (unsigned i = 0, e = UsesToRewrite.size(); i != e; ++i) {
// If this use is in an exit block, rewrite to use the newly inserted PHI.
// This is required for correctness because SSAUpdate doesn't handle uses in
// the same block. It assumes the PHI we inserted is at the end of the
// block.
Instruction *User = cast<Instruction>(UsesToRewrite[i]->getUser());
BasicBlock *UserBB = User->getParent();
if (PHINode *PN = dyn_cast<PHINode>(User))
UserBB = PN->getIncomingBlock(*UsesToRewrite[i]);
if (isa<PHINode>(UserBB->begin()) &&
isExitBlock(UserBB, ExitBlocks)) {
// Tell the VHs that the uses changed. This updates SCEV's caches.
if (UsesToRewrite[i]->get()->hasValueHandle())
ValueHandleBase::ValueIsRAUWd(*UsesToRewrite[i], UserBB->begin());
UsesToRewrite[i]->set(UserBB->begin());
continue;
}
// Otherwise, do full PHI insertion.
SSAUpdate.RewriteUse(*UsesToRewrite[i]);
}
// Remove PHI nodes that did not have any uses rewritten.
for (unsigned i = 0, e = AddedPHIs.size(); i != e; ++i) {
if (AddedPHIs[i]->use_empty())
AddedPHIs[i]->eraseFromParent();
}
return true;
}