llvm-6502/lib/CodeGen/SelectionDAG/SelectionDAG.cpp
Chandler Carruth 0b8c9a80f2 Move all of the header files which are involved in modelling the LLVM IR
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.

There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.

The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.

I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).

I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-02 11:36:10 +00:00

6311 lines
230 KiB
C++

//===-- SelectionDAG.cpp - Implement the SelectionDAG data structures -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements the SelectionDAG class.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/SelectionDAG.h"
#include "SDNodeDbgValue.h"
#include "SDNodeOrdering.h"
#include "llvm/ADT/SetVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/Assembly/Writer.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/DebugInfo.h"
#include "llvm/IR/CallingConv.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalAlias.h"
#include "llvm/IR/GlobalVariable.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/ManagedStatic.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetIntrinsicInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetSelectionDAGInfo.h"
#include "llvm/TargetTransformInfo.h"
#include <algorithm>
#include <cmath>
using namespace llvm;
/// makeVTList - Return an instance of the SDVTList struct initialized with the
/// specified members.
static SDVTList makeVTList(const EVT *VTs, unsigned NumVTs) {
SDVTList Res = {VTs, NumVTs};
return Res;
}
static const fltSemantics *EVTToAPFloatSemantics(EVT VT) {
switch (VT.getSimpleVT().SimpleTy) {
default: llvm_unreachable("Unknown FP format");
case MVT::f16: return &APFloat::IEEEhalf;
case MVT::f32: return &APFloat::IEEEsingle;
case MVT::f64: return &APFloat::IEEEdouble;
case MVT::f80: return &APFloat::x87DoubleExtended;
case MVT::f128: return &APFloat::IEEEquad;
case MVT::ppcf128: return &APFloat::PPCDoubleDouble;
}
}
// Default null implementations of the callbacks.
void SelectionDAG::DAGUpdateListener::NodeDeleted(SDNode*, SDNode*) {}
void SelectionDAG::DAGUpdateListener::NodeUpdated(SDNode*) {}
//===----------------------------------------------------------------------===//
// ConstantFPSDNode Class
//===----------------------------------------------------------------------===//
/// isExactlyValue - We don't rely on operator== working on double values, as
/// it returns true for things that are clearly not equal, like -0.0 and 0.0.
/// As such, this method can be used to do an exact bit-for-bit comparison of
/// two floating point values.
bool ConstantFPSDNode::isExactlyValue(const APFloat& V) const {
return getValueAPF().bitwiseIsEqual(V);
}
bool ConstantFPSDNode::isValueValidForType(EVT VT,
const APFloat& Val) {
assert(VT.isFloatingPoint() && "Can only convert between FP types");
// convert modifies in place, so make a copy.
APFloat Val2 = APFloat(Val);
bool losesInfo;
(void) Val2.convert(*EVTToAPFloatSemantics(VT), APFloat::rmNearestTiesToEven,
&losesInfo);
return !losesInfo;
}
//===----------------------------------------------------------------------===//
// ISD Namespace
//===----------------------------------------------------------------------===//
/// isBuildVectorAllOnes - Return true if the specified node is a
/// BUILD_VECTOR where all of the elements are ~0 or undef.
bool ISD::isBuildVectorAllOnes(const SDNode *N) {
// Look through a bit convert.
if (N->getOpcode() == ISD::BITCAST)
N = N->getOperand(0).getNode();
if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
unsigned i = 0, e = N->getNumOperands();
// Skip over all of the undef values.
while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
++i;
// Do not accept an all-undef vector.
if (i == e) return false;
// Do not accept build_vectors that aren't all constants or which have non-~0
// elements. We have to be a bit careful here, as the type of the constant
// may not be the same as the type of the vector elements due to type
// legalization (the elements are promoted to a legal type for the target and
// a vector of a type may be legal when the base element type is not).
// We only want to check enough bits to cover the vector elements, because
// we care if the resultant vector is all ones, not whether the individual
// constants are.
SDValue NotZero = N->getOperand(i);
unsigned EltSize = N->getValueType(0).getVectorElementType().getSizeInBits();
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(NotZero)) {
if (CN->getAPIntValue().countTrailingOnes() < EltSize)
return false;
} else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(NotZero)) {
if (CFPN->getValueAPF().bitcastToAPInt().countTrailingOnes() < EltSize)
return false;
} else
return false;
// Okay, we have at least one ~0 value, check to see if the rest match or are
// undefs. Even with the above element type twiddling, this should be OK, as
// the same type legalization should have applied to all the elements.
for (++i; i != e; ++i)
if (N->getOperand(i) != NotZero &&
N->getOperand(i).getOpcode() != ISD::UNDEF)
return false;
return true;
}
/// isBuildVectorAllZeros - Return true if the specified node is a
/// BUILD_VECTOR where all of the elements are 0 or undef.
bool ISD::isBuildVectorAllZeros(const SDNode *N) {
// Look through a bit convert.
if (N->getOpcode() == ISD::BITCAST)
N = N->getOperand(0).getNode();
if (N->getOpcode() != ISD::BUILD_VECTOR) return false;
unsigned i = 0, e = N->getNumOperands();
// Skip over all of the undef values.
while (i != e && N->getOperand(i).getOpcode() == ISD::UNDEF)
++i;
// Do not accept an all-undef vector.
if (i == e) return false;
// Do not accept build_vectors that aren't all constants or which have non-0
// elements.
SDValue Zero = N->getOperand(i);
if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(Zero)) {
if (!CN->isNullValue())
return false;
} else if (ConstantFPSDNode *CFPN = dyn_cast<ConstantFPSDNode>(Zero)) {
if (!CFPN->getValueAPF().isPosZero())
return false;
} else
return false;
// Okay, we have at least one 0 value, check to see if the rest match or are
// undefs.
for (++i; i != e; ++i)
if (N->getOperand(i) != Zero &&
N->getOperand(i).getOpcode() != ISD::UNDEF)
return false;
return true;
}
/// isScalarToVector - Return true if the specified node is a
/// ISD::SCALAR_TO_VECTOR node or a BUILD_VECTOR node where only the low
/// element is not an undef.
bool ISD::isScalarToVector(const SDNode *N) {
if (N->getOpcode() == ISD::SCALAR_TO_VECTOR)
return true;
if (N->getOpcode() != ISD::BUILD_VECTOR)
return false;
if (N->getOperand(0).getOpcode() == ISD::UNDEF)
return false;
unsigned NumElems = N->getNumOperands();
if (NumElems == 1)
return false;
for (unsigned i = 1; i < NumElems; ++i) {
SDValue V = N->getOperand(i);
if (V.getOpcode() != ISD::UNDEF)
return false;
}
return true;
}
/// allOperandsUndef - Return true if the node has at least one operand
/// and all operands of the specified node are ISD::UNDEF.
bool ISD::allOperandsUndef(const SDNode *N) {
// Return false if the node has no operands.
// This is "logically inconsistent" with the definition of "all" but
// is probably the desired behavior.
if (N->getNumOperands() == 0)
return false;
for (unsigned i = 0, e = N->getNumOperands(); i != e ; ++i)
if (N->getOperand(i).getOpcode() != ISD::UNDEF)
return false;
return true;
}
/// getSetCCSwappedOperands - Return the operation corresponding to (Y op X)
/// when given the operation for (X op Y).
ISD::CondCode ISD::getSetCCSwappedOperands(ISD::CondCode Operation) {
// To perform this operation, we just need to swap the L and G bits of the
// operation.
unsigned OldL = (Operation >> 2) & 1;
unsigned OldG = (Operation >> 1) & 1;
return ISD::CondCode((Operation & ~6) | // Keep the N, U, E bits
(OldL << 1) | // New G bit
(OldG << 2)); // New L bit.
}
/// getSetCCInverse - Return the operation corresponding to !(X op Y), where
/// 'op' is a valid SetCC operation.
ISD::CondCode ISD::getSetCCInverse(ISD::CondCode Op, bool isInteger) {
unsigned Operation = Op;
if (isInteger)
Operation ^= 7; // Flip L, G, E bits, but not U.
else
Operation ^= 15; // Flip all of the condition bits.
if (Operation > ISD::SETTRUE2)
Operation &= ~8; // Don't let N and U bits get set.
return ISD::CondCode(Operation);
}
/// isSignedOp - For an integer comparison, return 1 if the comparison is a
/// signed operation and 2 if the result is an unsigned comparison. Return zero
/// if the operation does not depend on the sign of the input (setne and seteq).
static int isSignedOp(ISD::CondCode Opcode) {
switch (Opcode) {
default: llvm_unreachable("Illegal integer setcc operation!");
case ISD::SETEQ:
case ISD::SETNE: return 0;
case ISD::SETLT:
case ISD::SETLE:
case ISD::SETGT:
case ISD::SETGE: return 1;
case ISD::SETULT:
case ISD::SETULE:
case ISD::SETUGT:
case ISD::SETUGE: return 2;
}
}
/// getSetCCOrOperation - Return the result of a logical OR between different
/// comparisons of identical values: ((X op1 Y) | (X op2 Y)). This function
/// returns SETCC_INVALID if it is not possible to represent the resultant
/// comparison.
ISD::CondCode ISD::getSetCCOrOperation(ISD::CondCode Op1, ISD::CondCode Op2,
bool isInteger) {
if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
// Cannot fold a signed integer setcc with an unsigned integer setcc.
return ISD::SETCC_INVALID;
unsigned Op = Op1 | Op2; // Combine all of the condition bits.
// If the N and U bits get set then the resultant comparison DOES suddenly
// care about orderedness, and is true when ordered.
if (Op > ISD::SETTRUE2)
Op &= ~16; // Clear the U bit if the N bit is set.
// Canonicalize illegal integer setcc's.
if (isInteger && Op == ISD::SETUNE) // e.g. SETUGT | SETULT
Op = ISD::SETNE;
return ISD::CondCode(Op);
}
/// getSetCCAndOperation - Return the result of a logical AND between different
/// comparisons of identical values: ((X op1 Y) & (X op2 Y)). This
/// function returns zero if it is not possible to represent the resultant
/// comparison.
ISD::CondCode ISD::getSetCCAndOperation(ISD::CondCode Op1, ISD::CondCode Op2,
bool isInteger) {
if (isInteger && (isSignedOp(Op1) | isSignedOp(Op2)) == 3)
// Cannot fold a signed setcc with an unsigned setcc.
return ISD::SETCC_INVALID;
// Combine all of the condition bits.
ISD::CondCode Result = ISD::CondCode(Op1 & Op2);
// Canonicalize illegal integer setcc's.
if (isInteger) {
switch (Result) {
default: break;
case ISD::SETUO : Result = ISD::SETFALSE; break; // SETUGT & SETULT
case ISD::SETOEQ: // SETEQ & SETU[LG]E
case ISD::SETUEQ: Result = ISD::SETEQ ; break; // SETUGE & SETULE
case ISD::SETOLT: Result = ISD::SETULT ; break; // SETULT & SETNE
case ISD::SETOGT: Result = ISD::SETUGT ; break; // SETUGT & SETNE
}
}
return Result;
}
//===----------------------------------------------------------------------===//
// SDNode Profile Support
//===----------------------------------------------------------------------===//
/// AddNodeIDOpcode - Add the node opcode to the NodeID data.
///
static void AddNodeIDOpcode(FoldingSetNodeID &ID, unsigned OpC) {
ID.AddInteger(OpC);
}
/// AddNodeIDValueTypes - Value type lists are intern'd so we can represent them
/// solely with their pointer.
static void AddNodeIDValueTypes(FoldingSetNodeID &ID, SDVTList VTList) {
ID.AddPointer(VTList.VTs);
}
/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
///
static void AddNodeIDOperands(FoldingSetNodeID &ID,
const SDValue *Ops, unsigned NumOps) {
for (; NumOps; --NumOps, ++Ops) {
ID.AddPointer(Ops->getNode());
ID.AddInteger(Ops->getResNo());
}
}
/// AddNodeIDOperands - Various routines for adding operands to the NodeID data.
///
static void AddNodeIDOperands(FoldingSetNodeID &ID,
const SDUse *Ops, unsigned NumOps) {
for (; NumOps; --NumOps, ++Ops) {
ID.AddPointer(Ops->getNode());
ID.AddInteger(Ops->getResNo());
}
}
static void AddNodeIDNode(FoldingSetNodeID &ID,
unsigned short OpC, SDVTList VTList,
const SDValue *OpList, unsigned N) {
AddNodeIDOpcode(ID, OpC);
AddNodeIDValueTypes(ID, VTList);
AddNodeIDOperands(ID, OpList, N);
}
/// AddNodeIDCustom - If this is an SDNode with special info, add this info to
/// the NodeID data.
static void AddNodeIDCustom(FoldingSetNodeID &ID, const SDNode *N) {
switch (N->getOpcode()) {
case ISD::TargetExternalSymbol:
case ISD::ExternalSymbol:
llvm_unreachable("Should only be used on nodes with operands");
default: break; // Normal nodes don't need extra info.
case ISD::TargetConstant:
case ISD::Constant:
ID.AddPointer(cast<ConstantSDNode>(N)->getConstantIntValue());
break;
case ISD::TargetConstantFP:
case ISD::ConstantFP: {
ID.AddPointer(cast<ConstantFPSDNode>(N)->getConstantFPValue());
break;
}
case ISD::TargetGlobalAddress:
case ISD::GlobalAddress:
case ISD::TargetGlobalTLSAddress:
case ISD::GlobalTLSAddress: {
const GlobalAddressSDNode *GA = cast<GlobalAddressSDNode>(N);
ID.AddPointer(GA->getGlobal());
ID.AddInteger(GA->getOffset());
ID.AddInteger(GA->getTargetFlags());
ID.AddInteger(GA->getAddressSpace());
break;
}
case ISD::BasicBlock:
ID.AddPointer(cast<BasicBlockSDNode>(N)->getBasicBlock());
break;
case ISD::Register:
ID.AddInteger(cast<RegisterSDNode>(N)->getReg());
break;
case ISD::RegisterMask:
ID.AddPointer(cast<RegisterMaskSDNode>(N)->getRegMask());
break;
case ISD::SRCVALUE:
ID.AddPointer(cast<SrcValueSDNode>(N)->getValue());
break;
case ISD::FrameIndex:
case ISD::TargetFrameIndex:
ID.AddInteger(cast<FrameIndexSDNode>(N)->getIndex());
break;
case ISD::JumpTable:
case ISD::TargetJumpTable:
ID.AddInteger(cast<JumpTableSDNode>(N)->getIndex());
ID.AddInteger(cast<JumpTableSDNode>(N)->getTargetFlags());
break;
case ISD::ConstantPool:
case ISD::TargetConstantPool: {
const ConstantPoolSDNode *CP = cast<ConstantPoolSDNode>(N);
ID.AddInteger(CP->getAlignment());
ID.AddInteger(CP->getOffset());
if (CP->isMachineConstantPoolEntry())
CP->getMachineCPVal()->addSelectionDAGCSEId(ID);
else
ID.AddPointer(CP->getConstVal());
ID.AddInteger(CP->getTargetFlags());
break;
}
case ISD::TargetIndex: {
const TargetIndexSDNode *TI = cast<TargetIndexSDNode>(N);
ID.AddInteger(TI->getIndex());
ID.AddInteger(TI->getOffset());
ID.AddInteger(TI->getTargetFlags());
break;
}
case ISD::LOAD: {
const LoadSDNode *LD = cast<LoadSDNode>(N);
ID.AddInteger(LD->getMemoryVT().getRawBits());
ID.AddInteger(LD->getRawSubclassData());
ID.AddInteger(LD->getPointerInfo().getAddrSpace());
break;
}
case ISD::STORE: {
const StoreSDNode *ST = cast<StoreSDNode>(N);
ID.AddInteger(ST->getMemoryVT().getRawBits());
ID.AddInteger(ST->getRawSubclassData());
ID.AddInteger(ST->getPointerInfo().getAddrSpace());
break;
}
case ISD::ATOMIC_CMP_SWAP:
case ISD::ATOMIC_SWAP:
case ISD::ATOMIC_LOAD_ADD:
case ISD::ATOMIC_LOAD_SUB:
case ISD::ATOMIC_LOAD_AND:
case ISD::ATOMIC_LOAD_OR:
case ISD::ATOMIC_LOAD_XOR:
case ISD::ATOMIC_LOAD_NAND:
case ISD::ATOMIC_LOAD_MIN:
case ISD::ATOMIC_LOAD_MAX:
case ISD::ATOMIC_LOAD_UMIN:
case ISD::ATOMIC_LOAD_UMAX:
case ISD::ATOMIC_LOAD:
case ISD::ATOMIC_STORE: {
const AtomicSDNode *AT = cast<AtomicSDNode>(N);
ID.AddInteger(AT->getMemoryVT().getRawBits());
ID.AddInteger(AT->getRawSubclassData());
ID.AddInteger(AT->getPointerInfo().getAddrSpace());
break;
}
case ISD::PREFETCH: {
const MemSDNode *PF = cast<MemSDNode>(N);
ID.AddInteger(PF->getPointerInfo().getAddrSpace());
break;
}
case ISD::VECTOR_SHUFFLE: {
const ShuffleVectorSDNode *SVN = cast<ShuffleVectorSDNode>(N);
for (unsigned i = 0, e = N->getValueType(0).getVectorNumElements();
i != e; ++i)
ID.AddInteger(SVN->getMaskElt(i));
break;
}
case ISD::TargetBlockAddress:
case ISD::BlockAddress: {
const BlockAddressSDNode *BA = cast<BlockAddressSDNode>(N);
ID.AddPointer(BA->getBlockAddress());
ID.AddInteger(BA->getOffset());
ID.AddInteger(BA->getTargetFlags());
break;
}
} // end switch (N->getOpcode())
// Target specific memory nodes could also have address spaces to check.
if (N->isTargetMemoryOpcode())
ID.AddInteger(cast<MemSDNode>(N)->getPointerInfo().getAddrSpace());
}
/// AddNodeIDNode - Generic routine for adding a nodes info to the NodeID
/// data.
static void AddNodeIDNode(FoldingSetNodeID &ID, const SDNode *N) {
AddNodeIDOpcode(ID, N->getOpcode());
// Add the return value info.
AddNodeIDValueTypes(ID, N->getVTList());
// Add the operand info.
AddNodeIDOperands(ID, N->op_begin(), N->getNumOperands());
// Handle SDNode leafs with special info.
AddNodeIDCustom(ID, N);
}
/// encodeMemSDNodeFlags - Generic routine for computing a value for use in
/// the CSE map that carries volatility, temporalness, indexing mode, and
/// extension/truncation information.
///
static inline unsigned
encodeMemSDNodeFlags(int ConvType, ISD::MemIndexedMode AM, bool isVolatile,
bool isNonTemporal, bool isInvariant) {
assert((ConvType & 3) == ConvType &&
"ConvType may not require more than 2 bits!");
assert((AM & 7) == AM &&
"AM may not require more than 3 bits!");
return ConvType |
(AM << 2) |
(isVolatile << 5) |
(isNonTemporal << 6) |
(isInvariant << 7);
}
//===----------------------------------------------------------------------===//
// SelectionDAG Class
//===----------------------------------------------------------------------===//
/// doNotCSE - Return true if CSE should not be performed for this node.
static bool doNotCSE(SDNode *N) {
if (N->getValueType(0) == MVT::Glue)
return true; // Never CSE anything that produces a flag.
switch (N->getOpcode()) {
default: break;
case ISD::HANDLENODE:
case ISD::EH_LABEL:
return true; // Never CSE these nodes.
}
// Check that remaining values produced are not flags.
for (unsigned i = 1, e = N->getNumValues(); i != e; ++i)
if (N->getValueType(i) == MVT::Glue)
return true; // Never CSE anything that produces a flag.
return false;
}
/// RemoveDeadNodes - This method deletes all unreachable nodes in the
/// SelectionDAG.
void SelectionDAG::RemoveDeadNodes() {
// Create a dummy node (which is not added to allnodes), that adds a reference
// to the root node, preventing it from being deleted.
HandleSDNode Dummy(getRoot());
SmallVector<SDNode*, 128> DeadNodes;
// Add all obviously-dead nodes to the DeadNodes worklist.
for (allnodes_iterator I = allnodes_begin(), E = allnodes_end(); I != E; ++I)
if (I->use_empty())
DeadNodes.push_back(I);
RemoveDeadNodes(DeadNodes);
// If the root changed (e.g. it was a dead load, update the root).
setRoot(Dummy.getValue());
}
/// RemoveDeadNodes - This method deletes the unreachable nodes in the
/// given list, and any nodes that become unreachable as a result.
void SelectionDAG::RemoveDeadNodes(SmallVectorImpl<SDNode *> &DeadNodes) {
// Process the worklist, deleting the nodes and adding their uses to the
// worklist.
while (!DeadNodes.empty()) {
SDNode *N = DeadNodes.pop_back_val();
for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
DUL->NodeDeleted(N, 0);
// Take the node out of the appropriate CSE map.
RemoveNodeFromCSEMaps(N);
// Next, brutally remove the operand list. This is safe to do, as there are
// no cycles in the graph.
for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
SDUse &Use = *I++;
SDNode *Operand = Use.getNode();
Use.set(SDValue());
// Now that we removed this operand, see if there are no uses of it left.
if (Operand->use_empty())
DeadNodes.push_back(Operand);
}
DeallocateNode(N);
}
}
void SelectionDAG::RemoveDeadNode(SDNode *N){
SmallVector<SDNode*, 16> DeadNodes(1, N);
// Create a dummy node that adds a reference to the root node, preventing
// it from being deleted. (This matters if the root is an operand of the
// dead node.)
HandleSDNode Dummy(getRoot());
RemoveDeadNodes(DeadNodes);
}
void SelectionDAG::DeleteNode(SDNode *N) {
// First take this out of the appropriate CSE map.
RemoveNodeFromCSEMaps(N);
// Finally, remove uses due to operands of this node, remove from the
// AllNodes list, and delete the node.
DeleteNodeNotInCSEMaps(N);
}
void SelectionDAG::DeleteNodeNotInCSEMaps(SDNode *N) {
assert(N != AllNodes.begin() && "Cannot delete the entry node!");
assert(N->use_empty() && "Cannot delete a node that is not dead!");
// Drop all of the operands and decrement used node's use counts.
N->DropOperands();
DeallocateNode(N);
}
void SelectionDAG::DeallocateNode(SDNode *N) {
if (N->OperandsNeedDelete)
delete[] N->OperandList;
// Set the opcode to DELETED_NODE to help catch bugs when node
// memory is reallocated.
N->NodeType = ISD::DELETED_NODE;
NodeAllocator.Deallocate(AllNodes.remove(N));
// Remove the ordering of this node.
Ordering->remove(N);
// If any of the SDDbgValue nodes refer to this SDNode, invalidate them.
ArrayRef<SDDbgValue*> DbgVals = DbgInfo->getSDDbgValues(N);
for (unsigned i = 0, e = DbgVals.size(); i != e; ++i)
DbgVals[i]->setIsInvalidated();
}
/// RemoveNodeFromCSEMaps - Take the specified node out of the CSE map that
/// correspond to it. This is useful when we're about to delete or repurpose
/// the node. We don't want future request for structurally identical nodes
/// to return N anymore.
bool SelectionDAG::RemoveNodeFromCSEMaps(SDNode *N) {
bool Erased = false;
switch (N->getOpcode()) {
case ISD::HANDLENODE: return false; // noop.
case ISD::CONDCODE:
assert(CondCodeNodes[cast<CondCodeSDNode>(N)->get()] &&
"Cond code doesn't exist!");
Erased = CondCodeNodes[cast<CondCodeSDNode>(N)->get()] != 0;
CondCodeNodes[cast<CondCodeSDNode>(N)->get()] = 0;
break;
case ISD::ExternalSymbol:
Erased = ExternalSymbols.erase(cast<ExternalSymbolSDNode>(N)->getSymbol());
break;
case ISD::TargetExternalSymbol: {
ExternalSymbolSDNode *ESN = cast<ExternalSymbolSDNode>(N);
Erased = TargetExternalSymbols.erase(
std::pair<std::string,unsigned char>(ESN->getSymbol(),
ESN->getTargetFlags()));
break;
}
case ISD::VALUETYPE: {
EVT VT = cast<VTSDNode>(N)->getVT();
if (VT.isExtended()) {
Erased = ExtendedValueTypeNodes.erase(VT);
} else {
Erased = ValueTypeNodes[VT.getSimpleVT().SimpleTy] != 0;
ValueTypeNodes[VT.getSimpleVT().SimpleTy] = 0;
}
break;
}
default:
// Remove it from the CSE Map.
assert(N->getOpcode() != ISD::DELETED_NODE && "DELETED_NODE in CSEMap!");
assert(N->getOpcode() != ISD::EntryToken && "EntryToken in CSEMap!");
Erased = CSEMap.RemoveNode(N);
break;
}
#ifndef NDEBUG
// Verify that the node was actually in one of the CSE maps, unless it has a
// flag result (which cannot be CSE'd) or is one of the special cases that are
// not subject to CSE.
if (!Erased && N->getValueType(N->getNumValues()-1) != MVT::Glue &&
!N->isMachineOpcode() && !doNotCSE(N)) {
N->dump(this);
dbgs() << "\n";
llvm_unreachable("Node is not in map!");
}
#endif
return Erased;
}
/// AddModifiedNodeToCSEMaps - The specified node has been removed from the CSE
/// maps and modified in place. Add it back to the CSE maps, unless an identical
/// node already exists, in which case transfer all its users to the existing
/// node. This transfer can potentially trigger recursive merging.
///
void
SelectionDAG::AddModifiedNodeToCSEMaps(SDNode *N) {
// For node types that aren't CSE'd, just act as if no identical node
// already exists.
if (!doNotCSE(N)) {
SDNode *Existing = CSEMap.GetOrInsertNode(N);
if (Existing != N) {
// If there was already an existing matching node, use ReplaceAllUsesWith
// to replace the dead one with the existing one. This can cause
// recursive merging of other unrelated nodes down the line.
ReplaceAllUsesWith(N, Existing);
// N is now dead. Inform the listeners and delete it.
for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
DUL->NodeDeleted(N, Existing);
DeleteNodeNotInCSEMaps(N);
return;
}
}
// If the node doesn't already exist, we updated it. Inform listeners.
for (DAGUpdateListener *DUL = UpdateListeners; DUL; DUL = DUL->Next)
DUL->NodeUpdated(N);
}
/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
/// were replaced with those specified. If this node is never memoized,
/// return null, otherwise return a pointer to the slot it would take. If a
/// node already exists with these operands, the slot will be non-null.
SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N, SDValue Op,
void *&InsertPos) {
if (doNotCSE(N))
return 0;
SDValue Ops[] = { Op };
FoldingSetNodeID ID;
AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 1);
AddNodeIDCustom(ID, N);
SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
return Node;
}
/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
/// were replaced with those specified. If this node is never memoized,
/// return null, otherwise return a pointer to the slot it would take. If a
/// node already exists with these operands, the slot will be non-null.
SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
SDValue Op1, SDValue Op2,
void *&InsertPos) {
if (doNotCSE(N))
return 0;
SDValue Ops[] = { Op1, Op2 };
FoldingSetNodeID ID;
AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, 2);
AddNodeIDCustom(ID, N);
SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
return Node;
}
/// FindModifiedNodeSlot - Find a slot for the specified node if its operands
/// were replaced with those specified. If this node is never memoized,
/// return null, otherwise return a pointer to the slot it would take. If a
/// node already exists with these operands, the slot will be non-null.
SDNode *SelectionDAG::FindModifiedNodeSlot(SDNode *N,
const SDValue *Ops,unsigned NumOps,
void *&InsertPos) {
if (doNotCSE(N))
return 0;
FoldingSetNodeID ID;
AddNodeIDNode(ID, N->getOpcode(), N->getVTList(), Ops, NumOps);
AddNodeIDCustom(ID, N);
SDNode *Node = CSEMap.FindNodeOrInsertPos(ID, InsertPos);
return Node;
}
#ifndef NDEBUG
/// VerifyNodeCommon - Sanity check the given node. Aborts if it is invalid.
static void VerifyNodeCommon(SDNode *N) {
switch (N->getOpcode()) {
default:
break;
case ISD::BUILD_PAIR: {
EVT VT = N->getValueType(0);
assert(N->getNumValues() == 1 && "Too many results!");
assert(!VT.isVector() && (VT.isInteger() || VT.isFloatingPoint()) &&
"Wrong return type!");
assert(N->getNumOperands() == 2 && "Wrong number of operands!");
assert(N->getOperand(0).getValueType() == N->getOperand(1).getValueType() &&
"Mismatched operand types!");
assert(N->getOperand(0).getValueType().isInteger() == VT.isInteger() &&
"Wrong operand type!");
assert(VT.getSizeInBits() == 2 * N->getOperand(0).getValueSizeInBits() &&
"Wrong return type size");
break;
}
case ISD::BUILD_VECTOR: {
assert(N->getNumValues() == 1 && "Too many results!");
assert(N->getValueType(0).isVector() && "Wrong return type!");
assert(N->getNumOperands() == N->getValueType(0).getVectorNumElements() &&
"Wrong number of operands!");
EVT EltVT = N->getValueType(0).getVectorElementType();
for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ++I) {
assert((I->getValueType() == EltVT ||
(EltVT.isInteger() && I->getValueType().isInteger() &&
EltVT.bitsLE(I->getValueType()))) &&
"Wrong operand type!");
assert(I->getValueType() == N->getOperand(0).getValueType() &&
"Operands must all have the same type");
}
break;
}
}
}
/// VerifySDNode - Sanity check the given SDNode. Aborts if it is invalid.
static void VerifySDNode(SDNode *N) {
// The SDNode allocators cannot be used to allocate nodes with fields that are
// not present in an SDNode!
assert(!isa<MemSDNode>(N) && "Bad MemSDNode!");
assert(!isa<ShuffleVectorSDNode>(N) && "Bad ShuffleVectorSDNode!");
assert(!isa<ConstantSDNode>(N) && "Bad ConstantSDNode!");
assert(!isa<ConstantFPSDNode>(N) && "Bad ConstantFPSDNode!");
assert(!isa<GlobalAddressSDNode>(N) && "Bad GlobalAddressSDNode!");
assert(!isa<FrameIndexSDNode>(N) && "Bad FrameIndexSDNode!");
assert(!isa<JumpTableSDNode>(N) && "Bad JumpTableSDNode!");
assert(!isa<ConstantPoolSDNode>(N) && "Bad ConstantPoolSDNode!");
assert(!isa<BasicBlockSDNode>(N) && "Bad BasicBlockSDNode!");
assert(!isa<SrcValueSDNode>(N) && "Bad SrcValueSDNode!");
assert(!isa<MDNodeSDNode>(N) && "Bad MDNodeSDNode!");
assert(!isa<RegisterSDNode>(N) && "Bad RegisterSDNode!");
assert(!isa<BlockAddressSDNode>(N) && "Bad BlockAddressSDNode!");
assert(!isa<EHLabelSDNode>(N) && "Bad EHLabelSDNode!");
assert(!isa<ExternalSymbolSDNode>(N) && "Bad ExternalSymbolSDNode!");
assert(!isa<CondCodeSDNode>(N) && "Bad CondCodeSDNode!");
assert(!isa<CvtRndSatSDNode>(N) && "Bad CvtRndSatSDNode!");
assert(!isa<VTSDNode>(N) && "Bad VTSDNode!");
assert(!isa<MachineSDNode>(N) && "Bad MachineSDNode!");
VerifyNodeCommon(N);
}
/// VerifyMachineNode - Sanity check the given MachineNode. Aborts if it is
/// invalid.
static void VerifyMachineNode(SDNode *N) {
// The MachineNode allocators cannot be used to allocate nodes with fields
// that are not present in a MachineNode!
// Currently there are no such nodes.
VerifyNodeCommon(N);
}
#endif // NDEBUG
/// getEVTAlignment - Compute the default alignment value for the
/// given type.
///
unsigned SelectionDAG::getEVTAlignment(EVT VT) const {
Type *Ty = VT == MVT::iPTR ?
PointerType::get(Type::getInt8Ty(*getContext()), 0) :
VT.getTypeForEVT(*getContext());
return TLI.getDataLayout()->getABITypeAlignment(Ty);
}
// EntryNode could meaningfully have debug info if we can find it...
SelectionDAG::SelectionDAG(const TargetMachine &tm, CodeGenOpt::Level OL)
: TM(tm), TLI(*tm.getTargetLowering()), TSI(*tm.getSelectionDAGInfo()),
OptLevel(OL), EntryNode(ISD::EntryToken, DebugLoc(), getVTList(MVT::Other)),
Root(getEntryNode()), Ordering(0), UpdateListeners(0) {
AllNodes.push_back(&EntryNode);
Ordering = new SDNodeOrdering();
DbgInfo = new SDDbgInfo();
}
void SelectionDAG::init(MachineFunction &mf) {
MF = &mf;
Context = &mf.getFunction()->getContext();
}
SelectionDAG::~SelectionDAG() {
assert(!UpdateListeners && "Dangling registered DAGUpdateListeners");
allnodes_clear();
delete Ordering;
delete DbgInfo;
}
void SelectionDAG::allnodes_clear() {
assert(&*AllNodes.begin() == &EntryNode);
AllNodes.remove(AllNodes.begin());
while (!AllNodes.empty())
DeallocateNode(AllNodes.begin());
}
void SelectionDAG::clear() {
allnodes_clear();
OperandAllocator.Reset();
CSEMap.clear();
ExtendedValueTypeNodes.clear();
ExternalSymbols.clear();
TargetExternalSymbols.clear();
std::fill(CondCodeNodes.begin(), CondCodeNodes.end(),
static_cast<CondCodeSDNode*>(0));
std::fill(ValueTypeNodes.begin(), ValueTypeNodes.end(),
static_cast<SDNode*>(0));
EntryNode.UseList = 0;
AllNodes.push_back(&EntryNode);
Root = getEntryNode();
Ordering->clear();
DbgInfo->clear();
}
SDValue SelectionDAG::getAnyExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
return VT.bitsGT(Op.getValueType()) ?
getNode(ISD::ANY_EXTEND, DL, VT, Op) :
getNode(ISD::TRUNCATE, DL, VT, Op);
}
SDValue SelectionDAG::getSExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
return VT.bitsGT(Op.getValueType()) ?
getNode(ISD::SIGN_EXTEND, DL, VT, Op) :
getNode(ISD::TRUNCATE, DL, VT, Op);
}
SDValue SelectionDAG::getZExtOrTrunc(SDValue Op, DebugLoc DL, EVT VT) {
return VT.bitsGT(Op.getValueType()) ?
getNode(ISD::ZERO_EXTEND, DL, VT, Op) :
getNode(ISD::TRUNCATE, DL, VT, Op);
}
SDValue SelectionDAG::getZeroExtendInReg(SDValue Op, DebugLoc DL, EVT VT) {
assert(!VT.isVector() &&
"getZeroExtendInReg should use the vector element type instead of "
"the vector type!");
if (Op.getValueType() == VT) return Op;
unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
APInt Imm = APInt::getLowBitsSet(BitWidth,
VT.getSizeInBits());
return getNode(ISD::AND, DL, Op.getValueType(), Op,
getConstant(Imm, Op.getValueType()));
}
/// getNOT - Create a bitwise NOT operation as (XOR Val, -1).
///
SDValue SelectionDAG::getNOT(DebugLoc DL, SDValue Val, EVT VT) {
EVT EltVT = VT.getScalarType();
SDValue NegOne =
getConstant(APInt::getAllOnesValue(EltVT.getSizeInBits()), VT);
return getNode(ISD::XOR, DL, VT, Val, NegOne);
}
SDValue SelectionDAG::getConstant(uint64_t Val, EVT VT, bool isT) {
EVT EltVT = VT.getScalarType();
assert((EltVT.getSizeInBits() >= 64 ||
(uint64_t)((int64_t)Val >> EltVT.getSizeInBits()) + 1 < 2) &&
"getConstant with a uint64_t value that doesn't fit in the type!");
return getConstant(APInt(EltVT.getSizeInBits(), Val), VT, isT);
}
SDValue SelectionDAG::getConstant(const APInt &Val, EVT VT, bool isT) {
return getConstant(*ConstantInt::get(*Context, Val), VT, isT);
}
SDValue SelectionDAG::getConstant(const ConstantInt &Val, EVT VT, bool isT) {
assert(VT.isInteger() && "Cannot create FP integer constant!");
EVT EltVT = VT.getScalarType();
const ConstantInt *Elt = &Val;
// In some cases the vector type is legal but the element type is illegal and
// needs to be promoted, for example v8i8 on ARM. In this case, promote the
// inserted value (the type does not need to match the vector element type).
// Any extra bits introduced will be truncated away.
if (VT.isVector() && TLI.getTypeAction(*getContext(), EltVT) ==
TargetLowering::TypePromoteInteger) {
EltVT = TLI.getTypeToTransformTo(*getContext(), EltVT);
APInt NewVal = Elt->getValue().zext(EltVT.getSizeInBits());
Elt = ConstantInt::get(*getContext(), NewVal);
}
assert(Elt->getBitWidth() == EltVT.getSizeInBits() &&
"APInt size does not match type size!");
unsigned Opc = isT ? ISD::TargetConstant : ISD::Constant;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
ID.AddPointer(Elt);
void *IP = 0;
SDNode *N = NULL;
if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
if (!VT.isVector())
return SDValue(N, 0);
if (!N) {
N = new (NodeAllocator) ConstantSDNode(isT, Elt, EltVT);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
}
SDValue Result(N, 0);
if (VT.isVector()) {
SmallVector<SDValue, 8> Ops;
Ops.assign(VT.getVectorNumElements(), Result);
Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
}
return Result;
}
SDValue SelectionDAG::getIntPtrConstant(uint64_t Val, bool isTarget) {
return getConstant(Val, TLI.getPointerTy(), isTarget);
}
SDValue SelectionDAG::getConstantFP(const APFloat& V, EVT VT, bool isTarget) {
return getConstantFP(*ConstantFP::get(*getContext(), V), VT, isTarget);
}
SDValue SelectionDAG::getConstantFP(const ConstantFP& V, EVT VT, bool isTarget){
assert(VT.isFloatingPoint() && "Cannot create integer FP constant!");
EVT EltVT = VT.getScalarType();
// Do the map lookup using the actual bit pattern for the floating point
// value, so that we don't have problems with 0.0 comparing equal to -0.0, and
// we don't have issues with SNANs.
unsigned Opc = isTarget ? ISD::TargetConstantFP : ISD::ConstantFP;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(EltVT), 0, 0);
ID.AddPointer(&V);
void *IP = 0;
SDNode *N = NULL;
if ((N = CSEMap.FindNodeOrInsertPos(ID, IP)))
if (!VT.isVector())
return SDValue(N, 0);
if (!N) {
N = new (NodeAllocator) ConstantFPSDNode(isTarget, &V, EltVT);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
}
SDValue Result(N, 0);
if (VT.isVector()) {
SmallVector<SDValue, 8> Ops;
Ops.assign(VT.getVectorNumElements(), Result);
// FIXME DebugLoc info might be appropriate here
Result = getNode(ISD::BUILD_VECTOR, DebugLoc(), VT, &Ops[0], Ops.size());
}
return Result;
}
SDValue SelectionDAG::getConstantFP(double Val, EVT VT, bool isTarget) {
EVT EltVT = VT.getScalarType();
if (EltVT==MVT::f32)
return getConstantFP(APFloat((float)Val), VT, isTarget);
else if (EltVT==MVT::f64)
return getConstantFP(APFloat(Val), VT, isTarget);
else if (EltVT==MVT::f80 || EltVT==MVT::f128 || EltVT==MVT::ppcf128 ||
EltVT==MVT::f16) {
bool ignored;
APFloat apf = APFloat(Val);
apf.convert(*EVTToAPFloatSemantics(EltVT), APFloat::rmNearestTiesToEven,
&ignored);
return getConstantFP(apf, VT, isTarget);
} else
llvm_unreachable("Unsupported type in getConstantFP");
}
SDValue SelectionDAG::getGlobalAddress(const GlobalValue *GV, DebugLoc DL,
EVT VT, int64_t Offset,
bool isTargetGA,
unsigned char TargetFlags) {
assert((TargetFlags == 0 || isTargetGA) &&
"Cannot set target flags on target-independent globals");
// Truncate (with sign-extension) the offset value to the pointer size.
unsigned BitWidth = TLI.getPointerTy().getSizeInBits();
if (BitWidth < 64)
Offset = SignExtend64(Offset, BitWidth);
const GlobalVariable *GVar = dyn_cast<GlobalVariable>(GV);
if (!GVar) {
// If GV is an alias then use the aliasee for determining thread-localness.
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(GV))
GVar = dyn_cast_or_null<GlobalVariable>(GA->resolveAliasedGlobal(false));
}
unsigned Opc;
if (GVar && GVar->isThreadLocal())
Opc = isTargetGA ? ISD::TargetGlobalTLSAddress : ISD::GlobalTLSAddress;
else
Opc = isTargetGA ? ISD::TargetGlobalAddress : ISD::GlobalAddress;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
ID.AddPointer(GV);
ID.AddInteger(Offset);
ID.AddInteger(TargetFlags);
ID.AddInteger(GV->getType()->getAddressSpace());
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
SDNode *N = new (NodeAllocator) GlobalAddressSDNode(Opc, DL, GV, VT,
Offset, TargetFlags);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getFrameIndex(int FI, EVT VT, bool isTarget) {
unsigned Opc = isTarget ? ISD::TargetFrameIndex : ISD::FrameIndex;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
ID.AddInteger(FI);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
SDNode *N = new (NodeAllocator) FrameIndexSDNode(FI, VT, isTarget);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getJumpTable(int JTI, EVT VT, bool isTarget,
unsigned char TargetFlags) {
assert((TargetFlags == 0 || isTarget) &&
"Cannot set target flags on target-independent jump tables");
unsigned Opc = isTarget ? ISD::TargetJumpTable : ISD::JumpTable;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
ID.AddInteger(JTI);
ID.AddInteger(TargetFlags);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
SDNode *N = new (NodeAllocator) JumpTableSDNode(JTI, VT, isTarget,
TargetFlags);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getConstantPool(const Constant *C, EVT VT,
unsigned Alignment, int Offset,
bool isTarget,
unsigned char TargetFlags) {
assert((TargetFlags == 0 || isTarget) &&
"Cannot set target flags on target-independent globals");
if (Alignment == 0)
Alignment = TLI.getDataLayout()->getPrefTypeAlignment(C->getType());
unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
ID.AddInteger(Alignment);
ID.AddInteger(Offset);
ID.AddPointer(C);
ID.AddInteger(TargetFlags);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
Alignment, TargetFlags);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getConstantPool(MachineConstantPoolValue *C, EVT VT,
unsigned Alignment, int Offset,
bool isTarget,
unsigned char TargetFlags) {
assert((TargetFlags == 0 || isTarget) &&
"Cannot set target flags on target-independent globals");
if (Alignment == 0)
Alignment = TLI.getDataLayout()->getPrefTypeAlignment(C->getType());
unsigned Opc = isTarget ? ISD::TargetConstantPool : ISD::ConstantPool;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
ID.AddInteger(Alignment);
ID.AddInteger(Offset);
C->addSelectionDAGCSEId(ID);
ID.AddInteger(TargetFlags);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
SDNode *N = new (NodeAllocator) ConstantPoolSDNode(isTarget, C, VT, Offset,
Alignment, TargetFlags);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getTargetIndex(int Index, EVT VT, int64_t Offset,
unsigned char TargetFlags) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::TargetIndex, getVTList(VT), 0, 0);
ID.AddInteger(Index);
ID.AddInteger(Offset);
ID.AddInteger(TargetFlags);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
SDNode *N = new (NodeAllocator) TargetIndexSDNode(Index, VT, Offset,
TargetFlags);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getBasicBlock(MachineBasicBlock *MBB) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::BasicBlock, getVTList(MVT::Other), 0, 0);
ID.AddPointer(MBB);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
SDNode *N = new (NodeAllocator) BasicBlockSDNode(MBB);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getValueType(EVT VT) {
if (VT.isSimple() && (unsigned)VT.getSimpleVT().SimpleTy >=
ValueTypeNodes.size())
ValueTypeNodes.resize(VT.getSimpleVT().SimpleTy+1);
SDNode *&N = VT.isExtended() ?
ExtendedValueTypeNodes[VT] : ValueTypeNodes[VT.getSimpleVT().SimpleTy];
if (N) return SDValue(N, 0);
N = new (NodeAllocator) VTSDNode(VT);
AllNodes.push_back(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getExternalSymbol(const char *Sym, EVT VT) {
SDNode *&N = ExternalSymbols[Sym];
if (N) return SDValue(N, 0);
N = new (NodeAllocator) ExternalSymbolSDNode(false, Sym, 0, VT);
AllNodes.push_back(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getTargetExternalSymbol(const char *Sym, EVT VT,
unsigned char TargetFlags) {
SDNode *&N =
TargetExternalSymbols[std::pair<std::string,unsigned char>(Sym,
TargetFlags)];
if (N) return SDValue(N, 0);
N = new (NodeAllocator) ExternalSymbolSDNode(true, Sym, TargetFlags, VT);
AllNodes.push_back(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getCondCode(ISD::CondCode Cond) {
if ((unsigned)Cond >= CondCodeNodes.size())
CondCodeNodes.resize(Cond+1);
if (CondCodeNodes[Cond] == 0) {
CondCodeSDNode *N = new (NodeAllocator) CondCodeSDNode(Cond);
CondCodeNodes[Cond] = N;
AllNodes.push_back(N);
}
return SDValue(CondCodeNodes[Cond], 0);
}
// commuteShuffle - swaps the values of N1 and N2, and swaps all indices in
// the shuffle mask M that point at N1 to point at N2, and indices that point
// N2 to point at N1.
static void commuteShuffle(SDValue &N1, SDValue &N2, SmallVectorImpl<int> &M) {
std::swap(N1, N2);
int NElts = M.size();
for (int i = 0; i != NElts; ++i) {
if (M[i] >= NElts)
M[i] -= NElts;
else if (M[i] >= 0)
M[i] += NElts;
}
}
SDValue SelectionDAG::getVectorShuffle(EVT VT, DebugLoc dl, SDValue N1,
SDValue N2, const int *Mask) {
assert(N1.getValueType() == N2.getValueType() && "Invalid VECTOR_SHUFFLE");
assert(VT.isVector() && N1.getValueType().isVector() &&
"Vector Shuffle VTs must be a vectors");
assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType()
&& "Vector Shuffle VTs must have same element type");
// Canonicalize shuffle undef, undef -> undef
if (N1.getOpcode() == ISD::UNDEF && N2.getOpcode() == ISD::UNDEF)
return getUNDEF(VT);
// Validate that all indices in Mask are within the range of the elements
// input to the shuffle.
unsigned NElts = VT.getVectorNumElements();
SmallVector<int, 8> MaskVec;
for (unsigned i = 0; i != NElts; ++i) {
assert(Mask[i] < (int)(NElts * 2) && "Index out of range");
MaskVec.push_back(Mask[i]);
}
// Canonicalize shuffle v, v -> v, undef
if (N1 == N2) {
N2 = getUNDEF(VT);
for (unsigned i = 0; i != NElts; ++i)
if (MaskVec[i] >= (int)NElts) MaskVec[i] -= NElts;
}
// Canonicalize shuffle undef, v -> v, undef. Commute the shuffle mask.
if (N1.getOpcode() == ISD::UNDEF)
commuteShuffle(N1, N2, MaskVec);
// Canonicalize all index into lhs, -> shuffle lhs, undef
// Canonicalize all index into rhs, -> shuffle rhs, undef
bool AllLHS = true, AllRHS = true;
bool N2Undef = N2.getOpcode() == ISD::UNDEF;
for (unsigned i = 0; i != NElts; ++i) {
if (MaskVec[i] >= (int)NElts) {
if (N2Undef)
MaskVec[i] = -1;
else
AllLHS = false;
} else if (MaskVec[i] >= 0) {
AllRHS = false;
}
}
if (AllLHS && AllRHS)
return getUNDEF(VT);
if (AllLHS && !N2Undef)
N2 = getUNDEF(VT);
if (AllRHS) {
N1 = getUNDEF(VT);
commuteShuffle(N1, N2, MaskVec);
}
// If Identity shuffle, or all shuffle in to undef, return that node.
bool AllUndef = true;
bool Identity = true;
for (unsigned i = 0; i != NElts; ++i) {
if (MaskVec[i] >= 0 && MaskVec[i] != (int)i) Identity = false;
if (MaskVec[i] >= 0) AllUndef = false;
}
if (Identity && NElts == N1.getValueType().getVectorNumElements())
return N1;
if (AllUndef)
return getUNDEF(VT);
FoldingSetNodeID ID;
SDValue Ops[2] = { N1, N2 };
AddNodeIDNode(ID, ISD::VECTOR_SHUFFLE, getVTList(VT), Ops, 2);
for (unsigned i = 0; i != NElts; ++i)
ID.AddInteger(MaskVec[i]);
void* IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
// Allocate the mask array for the node out of the BumpPtrAllocator, since
// SDNode doesn't have access to it. This memory will be "leaked" when
// the node is deallocated, but recovered when the NodeAllocator is released.
int *MaskAlloc = OperandAllocator.Allocate<int>(NElts);
memcpy(MaskAlloc, &MaskVec[0], NElts * sizeof(int));
ShuffleVectorSDNode *N =
new (NodeAllocator) ShuffleVectorSDNode(VT, dl, N1, N2, MaskAlloc);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getConvertRndSat(EVT VT, DebugLoc dl,
SDValue Val, SDValue DTy,
SDValue STy, SDValue Rnd, SDValue Sat,
ISD::CvtCode Code) {
// If the src and dest types are the same and the conversion is between
// integer types of the same sign or two floats, no conversion is necessary.
if (DTy == STy &&
(Code == ISD::CVT_UU || Code == ISD::CVT_SS || Code == ISD::CVT_FF))
return Val;
FoldingSetNodeID ID;
SDValue Ops[] = { Val, DTy, STy, Rnd, Sat };
AddNodeIDNode(ID, ISD::CONVERT_RNDSAT, getVTList(VT), &Ops[0], 5);
void* IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
CvtRndSatSDNode *N = new (NodeAllocator) CvtRndSatSDNode(VT, dl, Ops, 5,
Code);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getRegister(unsigned RegNo, EVT VT) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::Register, getVTList(VT), 0, 0);
ID.AddInteger(RegNo);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
SDNode *N = new (NodeAllocator) RegisterSDNode(RegNo, VT);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getRegisterMask(const uint32_t *RegMask) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::RegisterMask, getVTList(MVT::Untyped), 0, 0);
ID.AddPointer(RegMask);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
SDNode *N = new (NodeAllocator) RegisterMaskSDNode(RegMask);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getEHLabel(DebugLoc dl, SDValue Root, MCSymbol *Label) {
FoldingSetNodeID ID;
SDValue Ops[] = { Root };
AddNodeIDNode(ID, ISD::EH_LABEL, getVTList(MVT::Other), &Ops[0], 1);
ID.AddPointer(Label);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
SDNode *N = new (NodeAllocator) EHLabelSDNode(dl, Root, Label);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getBlockAddress(const BlockAddress *BA, EVT VT,
int64_t Offset,
bool isTarget,
unsigned char TargetFlags) {
unsigned Opc = isTarget ? ISD::TargetBlockAddress : ISD::BlockAddress;
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, getVTList(VT), 0, 0);
ID.AddPointer(BA);
ID.AddInteger(Offset);
ID.AddInteger(TargetFlags);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
SDNode *N = new (NodeAllocator) BlockAddressSDNode(Opc, VT, BA, Offset,
TargetFlags);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getSrcValue(const Value *V) {
assert((!V || V->getType()->isPointerTy()) &&
"SrcValue is not a pointer?");
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::SRCVALUE, getVTList(MVT::Other), 0, 0);
ID.AddPointer(V);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
SDNode *N = new (NodeAllocator) SrcValueSDNode(V);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDValue(N, 0);
}
/// getMDNode - Return an MDNodeSDNode which holds an MDNode.
SDValue SelectionDAG::getMDNode(const MDNode *MD) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::MDNODE_SDNODE, getVTList(MVT::Other), 0, 0);
ID.AddPointer(MD);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
SDNode *N = new (NodeAllocator) MDNodeSDNode(MD);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDValue(N, 0);
}
/// getShiftAmountOperand - Return the specified value casted to
/// the target's desired shift amount type.
SDValue SelectionDAG::getShiftAmountOperand(EVT LHSTy, SDValue Op) {
EVT OpTy = Op.getValueType();
MVT ShTy = TLI.getShiftAmountTy(LHSTy);
if (OpTy == ShTy || OpTy.isVector()) return Op;
ISD::NodeType Opcode = OpTy.bitsGT(ShTy) ? ISD::TRUNCATE : ISD::ZERO_EXTEND;
return getNode(Opcode, Op.getDebugLoc(), ShTy, Op);
}
/// CreateStackTemporary - Create a stack temporary, suitable for holding the
/// specified value type.
SDValue SelectionDAG::CreateStackTemporary(EVT VT, unsigned minAlign) {
MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
unsigned ByteSize = VT.getStoreSize();
Type *Ty = VT.getTypeForEVT(*getContext());
unsigned StackAlign =
std::max((unsigned)TLI.getDataLayout()->getPrefTypeAlignment(Ty), minAlign);
int FrameIdx = FrameInfo->CreateStackObject(ByteSize, StackAlign, false);
return getFrameIndex(FrameIdx, TLI.getPointerTy());
}
/// CreateStackTemporary - Create a stack temporary suitable for holding
/// either of the specified value types.
SDValue SelectionDAG::CreateStackTemporary(EVT VT1, EVT VT2) {
unsigned Bytes = std::max(VT1.getStoreSizeInBits(),
VT2.getStoreSizeInBits())/8;
Type *Ty1 = VT1.getTypeForEVT(*getContext());
Type *Ty2 = VT2.getTypeForEVT(*getContext());
const DataLayout *TD = TLI.getDataLayout();
unsigned Align = std::max(TD->getPrefTypeAlignment(Ty1),
TD->getPrefTypeAlignment(Ty2));
MachineFrameInfo *FrameInfo = getMachineFunction().getFrameInfo();
int FrameIdx = FrameInfo->CreateStackObject(Bytes, Align, false);
return getFrameIndex(FrameIdx, TLI.getPointerTy());
}
SDValue SelectionDAG::FoldSetCC(EVT VT, SDValue N1,
SDValue N2, ISD::CondCode Cond, DebugLoc dl) {
// These setcc operations always fold.
switch (Cond) {
default: break;
case ISD::SETFALSE:
case ISD::SETFALSE2: return getConstant(0, VT);
case ISD::SETTRUE:
case ISD::SETTRUE2: return getConstant(1, VT);
case ISD::SETOEQ:
case ISD::SETOGT:
case ISD::SETOGE:
case ISD::SETOLT:
case ISD::SETOLE:
case ISD::SETONE:
case ISD::SETO:
case ISD::SETUO:
case ISD::SETUEQ:
case ISD::SETUNE:
assert(!N1.getValueType().isInteger() && "Illegal setcc for integer!");
break;
}
if (ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode())) {
const APInt &C2 = N2C->getAPIntValue();
if (ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode())) {
const APInt &C1 = N1C->getAPIntValue();
switch (Cond) {
default: llvm_unreachable("Unknown integer setcc!");
case ISD::SETEQ: return getConstant(C1 == C2, VT);
case ISD::SETNE: return getConstant(C1 != C2, VT);
case ISD::SETULT: return getConstant(C1.ult(C2), VT);
case ISD::SETUGT: return getConstant(C1.ugt(C2), VT);
case ISD::SETULE: return getConstant(C1.ule(C2), VT);
case ISD::SETUGE: return getConstant(C1.uge(C2), VT);
case ISD::SETLT: return getConstant(C1.slt(C2), VT);
case ISD::SETGT: return getConstant(C1.sgt(C2), VT);
case ISD::SETLE: return getConstant(C1.sle(C2), VT);
case ISD::SETGE: return getConstant(C1.sge(C2), VT);
}
}
}
if (ConstantFPSDNode *N1C = dyn_cast<ConstantFPSDNode>(N1.getNode())) {
if (ConstantFPSDNode *N2C = dyn_cast<ConstantFPSDNode>(N2.getNode())) {
APFloat::cmpResult R = N1C->getValueAPF().compare(N2C->getValueAPF());
switch (Cond) {
default: break;
case ISD::SETEQ: if (R==APFloat::cmpUnordered)
return getUNDEF(VT);
// fall through
case ISD::SETOEQ: return getConstant(R==APFloat::cmpEqual, VT);
case ISD::SETNE: if (R==APFloat::cmpUnordered)
return getUNDEF(VT);
// fall through
case ISD::SETONE: return getConstant(R==APFloat::cmpGreaterThan ||
R==APFloat::cmpLessThan, VT);
case ISD::SETLT: if (R==APFloat::cmpUnordered)
return getUNDEF(VT);
// fall through
case ISD::SETOLT: return getConstant(R==APFloat::cmpLessThan, VT);
case ISD::SETGT: if (R==APFloat::cmpUnordered)
return getUNDEF(VT);
// fall through
case ISD::SETOGT: return getConstant(R==APFloat::cmpGreaterThan, VT);
case ISD::SETLE: if (R==APFloat::cmpUnordered)
return getUNDEF(VT);
// fall through
case ISD::SETOLE: return getConstant(R==APFloat::cmpLessThan ||
R==APFloat::cmpEqual, VT);
case ISD::SETGE: if (R==APFloat::cmpUnordered)
return getUNDEF(VT);
// fall through
case ISD::SETOGE: return getConstant(R==APFloat::cmpGreaterThan ||
R==APFloat::cmpEqual, VT);
case ISD::SETO: return getConstant(R!=APFloat::cmpUnordered, VT);
case ISD::SETUO: return getConstant(R==APFloat::cmpUnordered, VT);
case ISD::SETUEQ: return getConstant(R==APFloat::cmpUnordered ||
R==APFloat::cmpEqual, VT);
case ISD::SETUNE: return getConstant(R!=APFloat::cmpEqual, VT);
case ISD::SETULT: return getConstant(R==APFloat::cmpUnordered ||
R==APFloat::cmpLessThan, VT);
case ISD::SETUGT: return getConstant(R==APFloat::cmpGreaterThan ||
R==APFloat::cmpUnordered, VT);
case ISD::SETULE: return getConstant(R!=APFloat::cmpGreaterThan, VT);
case ISD::SETUGE: return getConstant(R!=APFloat::cmpLessThan, VT);
}
} else {
// Ensure that the constant occurs on the RHS.
return getSetCC(dl, VT, N2, N1, ISD::getSetCCSwappedOperands(Cond));
}
}
// Could not fold it.
return SDValue();
}
/// SignBitIsZero - Return true if the sign bit of Op is known to be zero. We
/// use this predicate to simplify operations downstream.
bool SelectionDAG::SignBitIsZero(SDValue Op, unsigned Depth) const {
// This predicate is not safe for vector operations.
if (Op.getValueType().isVector())
return false;
unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
return MaskedValueIsZero(Op, APInt::getSignBit(BitWidth), Depth);
}
/// MaskedValueIsZero - Return true if 'V & Mask' is known to be zero. We use
/// this predicate to simplify operations downstream. Mask is known to be zero
/// for bits that V cannot have.
bool SelectionDAG::MaskedValueIsZero(SDValue Op, const APInt &Mask,
unsigned Depth) const {
APInt KnownZero, KnownOne;
ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
return (KnownZero & Mask) == Mask;
}
/// ComputeMaskedBits - Determine which of the bits specified in Mask are
/// known to be either zero or one and return them in the KnownZero/KnownOne
/// bitsets. This code only analyzes bits in Mask, in order to short-circuit
/// processing.
void SelectionDAG::ComputeMaskedBits(SDValue Op, APInt &KnownZero,
APInt &KnownOne, unsigned Depth) const {
unsigned BitWidth = Op.getValueType().getScalarType().getSizeInBits();
KnownZero = KnownOne = APInt(BitWidth, 0); // Don't know anything.
if (Depth == 6)
return; // Limit search depth.
APInt KnownZero2, KnownOne2;
switch (Op.getOpcode()) {
case ISD::Constant:
// We know all of the bits for a constant!
KnownOne = cast<ConstantSDNode>(Op)->getAPIntValue();
KnownZero = ~KnownOne;
return;
case ISD::AND:
// If either the LHS or the RHS are Zero, the result is zero.
ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Output known-1 bits are only known if set in both the LHS & RHS.
KnownOne &= KnownOne2;
// Output known-0 are known to be clear if zero in either the LHS | RHS.
KnownZero |= KnownZero2;
return;
case ISD::OR:
ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Output known-0 bits are only known if clear in both the LHS & RHS.
KnownZero &= KnownZero2;
// Output known-1 are known to be set if set in either the LHS | RHS.
KnownOne |= KnownOne2;
return;
case ISD::XOR: {
ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Output known-0 bits are known if clear or set in both the LHS & RHS.
APInt KnownZeroOut = (KnownZero & KnownZero2) | (KnownOne & KnownOne2);
// Output known-1 are known to be set if set in only one of the LHS, RHS.
KnownOne = (KnownZero & KnownOne2) | (KnownOne & KnownZero2);
KnownZero = KnownZeroOut;
return;
}
case ISD::MUL: {
ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// If low bits are zero in either operand, output low known-0 bits.
// Also compute a conserative estimate for high known-0 bits.
// More trickiness is possible, but this is sufficient for the
// interesting case of alignment computation.
KnownOne.clearAllBits();
unsigned TrailZ = KnownZero.countTrailingOnes() +
KnownZero2.countTrailingOnes();
unsigned LeadZ = std::max(KnownZero.countLeadingOnes() +
KnownZero2.countLeadingOnes(),
BitWidth) - BitWidth;
TrailZ = std::min(TrailZ, BitWidth);
LeadZ = std::min(LeadZ, BitWidth);
KnownZero = APInt::getLowBitsSet(BitWidth, TrailZ) |
APInt::getHighBitsSet(BitWidth, LeadZ);
return;
}
case ISD::UDIV: {
// For the purposes of computing leading zeros we can conservatively
// treat a udiv as a logical right shift by the power of 2 known to
// be less than the denominator.
ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
unsigned LeadZ = KnownZero2.countLeadingOnes();
KnownOne2.clearAllBits();
KnownZero2.clearAllBits();
ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
unsigned RHSUnknownLeadingOnes = KnownOne2.countLeadingZeros();
if (RHSUnknownLeadingOnes != BitWidth)
LeadZ = std::min(BitWidth,
LeadZ + BitWidth - RHSUnknownLeadingOnes - 1);
KnownZero = APInt::getHighBitsSet(BitWidth, LeadZ);
return;
}
case ISD::SELECT:
ComputeMaskedBits(Op.getOperand(2), KnownZero, KnownOne, Depth+1);
ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Only known if known in both the LHS and RHS.
KnownOne &= KnownOne2;
KnownZero &= KnownZero2;
return;
case ISD::SELECT_CC:
ComputeMaskedBits(Op.getOperand(3), KnownZero, KnownOne, Depth+1);
ComputeMaskedBits(Op.getOperand(2), KnownZero2, KnownOne2, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
// Only known if known in both the LHS and RHS.
KnownOne &= KnownOne2;
KnownZero &= KnownZero2;
return;
case ISD::SADDO:
case ISD::UADDO:
case ISD::SSUBO:
case ISD::USUBO:
case ISD::SMULO:
case ISD::UMULO:
if (Op.getResNo() != 1)
return;
// The boolean result conforms to getBooleanContents. Fall through.
case ISD::SETCC:
// If we know the result of a setcc has the top bits zero, use this info.
if (TLI.getBooleanContents(Op.getValueType().isVector()) ==
TargetLowering::ZeroOrOneBooleanContent && BitWidth > 1)
KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - 1);
return;
case ISD::SHL:
// (shl X, C1) & C2 == 0 iff (X & C2 >>u C1) == 0
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
unsigned ShAmt = SA->getZExtValue();
// If the shift count is an invalid immediate, don't do anything.
if (ShAmt >= BitWidth)
return;
ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero <<= ShAmt;
KnownOne <<= ShAmt;
// low bits known zero.
KnownZero |= APInt::getLowBitsSet(BitWidth, ShAmt);
}
return;
case ISD::SRL:
// (ushr X, C1) & C2 == 0 iff (-1 >> C1) & C2 == 0
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
unsigned ShAmt = SA->getZExtValue();
// If the shift count is an invalid immediate, don't do anything.
if (ShAmt >= BitWidth)
return;
ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero = KnownZero.lshr(ShAmt);
KnownOne = KnownOne.lshr(ShAmt);
APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
KnownZero |= HighBits; // High bits known zero.
}
return;
case ISD::SRA:
if (ConstantSDNode *SA = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
unsigned ShAmt = SA->getZExtValue();
// If the shift count is an invalid immediate, don't do anything.
if (ShAmt >= BitWidth)
return;
// If any of the demanded bits are produced by the sign extension, we also
// demand the input sign bit.
APInt HighBits = APInt::getHighBitsSet(BitWidth, ShAmt);
ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero = KnownZero.lshr(ShAmt);
KnownOne = KnownOne.lshr(ShAmt);
// Handle the sign bits.
APInt SignBit = APInt::getSignBit(BitWidth);
SignBit = SignBit.lshr(ShAmt); // Adjust to where it is now in the mask.
if (KnownZero.intersects(SignBit)) {
KnownZero |= HighBits; // New bits are known zero.
} else if (KnownOne.intersects(SignBit)) {
KnownOne |= HighBits; // New bits are known one.
}
}
return;
case ISD::SIGN_EXTEND_INREG: {
EVT EVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
unsigned EBits = EVT.getScalarType().getSizeInBits();
// Sign extension. Compute the demanded bits in the result that are not
// present in the input.
APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - EBits);
APInt InSignBit = APInt::getSignBit(EBits);
APInt InputDemandedBits = APInt::getLowBitsSet(BitWidth, EBits);
// If the sign extended bits are demanded, we know that the sign
// bit is demanded.
InSignBit = InSignBit.zext(BitWidth);
if (NewBits.getBoolValue())
InputDemandedBits |= InSignBit;
ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
KnownOne &= InputDemandedBits;
KnownZero &= InputDemandedBits;
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
// If the sign bit of the input is known set or clear, then we know the
// top bits of the result.
if (KnownZero.intersects(InSignBit)) { // Input sign bit known clear
KnownZero |= NewBits;
KnownOne &= ~NewBits;
} else if (KnownOne.intersects(InSignBit)) { // Input sign bit known set
KnownOne |= NewBits;
KnownZero &= ~NewBits;
} else { // Input sign bit unknown
KnownZero &= ~NewBits;
KnownOne &= ~NewBits;
}
return;
}
case ISD::CTTZ:
case ISD::CTTZ_ZERO_UNDEF:
case ISD::CTLZ:
case ISD::CTLZ_ZERO_UNDEF:
case ISD::CTPOP: {
unsigned LowBits = Log2_32(BitWidth)+1;
KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - LowBits);
KnownOne.clearAllBits();
return;
}
case ISD::LOAD: {
LoadSDNode *LD = cast<LoadSDNode>(Op);
if (ISD::isZEXTLoad(Op.getNode())) {
EVT VT = LD->getMemoryVT();
unsigned MemBits = VT.getScalarType().getSizeInBits();
KnownZero |= APInt::getHighBitsSet(BitWidth, BitWidth - MemBits);
} else if (const MDNode *Ranges = LD->getRanges()) {
computeMaskedBitsLoad(*Ranges, KnownZero);
}
return;
}
case ISD::ZERO_EXTEND: {
EVT InVT = Op.getOperand(0).getValueType();
unsigned InBits = InVT.getScalarType().getSizeInBits();
APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits);
KnownZero = KnownZero.trunc(InBits);
KnownOne = KnownOne.trunc(InBits);
ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
KnownZero = KnownZero.zext(BitWidth);
KnownOne = KnownOne.zext(BitWidth);
KnownZero |= NewBits;
return;
}
case ISD::SIGN_EXTEND: {
EVT InVT = Op.getOperand(0).getValueType();
unsigned InBits = InVT.getScalarType().getSizeInBits();
APInt InSignBit = APInt::getSignBit(InBits);
APInt NewBits = APInt::getHighBitsSet(BitWidth, BitWidth - InBits);
KnownZero = KnownZero.trunc(InBits);
KnownOne = KnownOne.trunc(InBits);
ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
// Note if the sign bit is known to be zero or one.
bool SignBitKnownZero = KnownZero.isNegative();
bool SignBitKnownOne = KnownOne.isNegative();
assert(!(SignBitKnownZero && SignBitKnownOne) &&
"Sign bit can't be known to be both zero and one!");
KnownZero = KnownZero.zext(BitWidth);
KnownOne = KnownOne.zext(BitWidth);
// If the sign bit is known zero or one, the top bits match.
if (SignBitKnownZero)
KnownZero |= NewBits;
else if (SignBitKnownOne)
KnownOne |= NewBits;
return;
}
case ISD::ANY_EXTEND: {
EVT InVT = Op.getOperand(0).getValueType();
unsigned InBits = InVT.getScalarType().getSizeInBits();
KnownZero = KnownZero.trunc(InBits);
KnownOne = KnownOne.trunc(InBits);
ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
KnownZero = KnownZero.zext(BitWidth);
KnownOne = KnownOne.zext(BitWidth);
return;
}
case ISD::TRUNCATE: {
EVT InVT = Op.getOperand(0).getValueType();
unsigned InBits = InVT.getScalarType().getSizeInBits();
KnownZero = KnownZero.zext(InBits);
KnownOne = KnownOne.zext(InBits);
ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
assert((KnownZero & KnownOne) == 0 && "Bits known to be one AND zero?");
KnownZero = KnownZero.trunc(BitWidth);
KnownOne = KnownOne.trunc(BitWidth);
break;
}
case ISD::AssertZext: {
EVT VT = cast<VTSDNode>(Op.getOperand(1))->getVT();
APInt InMask = APInt::getLowBitsSet(BitWidth, VT.getSizeInBits());
ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
KnownZero |= (~InMask);
KnownOne &= (~KnownZero);
return;
}
case ISD::FGETSIGN:
// All bits are zero except the low bit.
KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - 1);
return;
case ISD::SUB: {
if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0))) {
// We know that the top bits of C-X are clear if X contains less bits
// than C (i.e. no wrap-around can happen). For example, 20-X is
// positive if we can prove that X is >= 0 and < 16.
if (CLHS->getAPIntValue().isNonNegative()) {
unsigned NLZ = (CLHS->getAPIntValue()+1).countLeadingZeros();
// NLZ can't be BitWidth with no sign bit
APInt MaskV = APInt::getHighBitsSet(BitWidth, NLZ+1);
ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
// If all of the MaskV bits are known to be zero, then we know the
// output top bits are zero, because we now know that the output is
// from [0-C].
if ((KnownZero2 & MaskV) == MaskV) {
unsigned NLZ2 = CLHS->getAPIntValue().countLeadingZeros();
// Top bits known zero.
KnownZero = APInt::getHighBitsSet(BitWidth, NLZ2);
}
}
}
}
// fall through
case ISD::ADD:
case ISD::ADDE: {
// Output known-0 bits are known if clear or set in both the low clear bits
// common to both LHS & RHS. For example, 8+(X<<3) is known to have the
// low 3 bits clear.
ComputeMaskedBits(Op.getOperand(0), KnownZero2, KnownOne2, Depth+1);
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
unsigned KnownZeroOut = KnownZero2.countTrailingOnes();
ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
assert((KnownZero2 & KnownOne2) == 0 && "Bits known to be one AND zero?");
KnownZeroOut = std::min(KnownZeroOut,
KnownZero2.countTrailingOnes());
if (Op.getOpcode() == ISD::ADD) {
KnownZero |= APInt::getLowBitsSet(BitWidth, KnownZeroOut);
return;
}
// With ADDE, a carry bit may be added in, so we can only use this
// information if we know (at least) that the low two bits are clear. We
// then return to the caller that the low bit is unknown but that other bits
// are known zero.
if (KnownZeroOut >= 2) // ADDE
KnownZero |= APInt::getBitsSet(BitWidth, 1, KnownZeroOut);
return;
}
case ISD::SREM:
if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
const APInt &RA = Rem->getAPIntValue().abs();
if (RA.isPowerOf2()) {
APInt LowBits = RA - 1;
APInt Mask2 = LowBits | APInt::getSignBit(BitWidth);
ComputeMaskedBits(Op.getOperand(0), KnownZero2,KnownOne2,Depth+1);
// The low bits of the first operand are unchanged by the srem.
KnownZero = KnownZero2 & LowBits;
KnownOne = KnownOne2 & LowBits;
// If the first operand is non-negative or has all low bits zero, then
// the upper bits are all zero.
if (KnownZero2[BitWidth-1] || ((KnownZero2 & LowBits) == LowBits))
KnownZero |= ~LowBits;
// If the first operand is negative and not all low bits are zero, then
// the upper bits are all one.
if (KnownOne2[BitWidth-1] && ((KnownOne2 & LowBits) != 0))
KnownOne |= ~LowBits;
assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
}
}
return;
case ISD::UREM: {
if (ConstantSDNode *Rem = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
const APInt &RA = Rem->getAPIntValue();
if (RA.isPowerOf2()) {
APInt LowBits = (RA - 1);
KnownZero |= ~LowBits;
ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne,Depth+1);
assert((KnownZero & KnownOne) == 0&&"Bits known to be one AND zero?");
break;
}
}
// Since the result is less than or equal to either operand, any leading
// zero bits in either operand must also exist in the result.
ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
ComputeMaskedBits(Op.getOperand(1), KnownZero2, KnownOne2, Depth+1);
uint32_t Leaders = std::max(KnownZero.countLeadingOnes(),
KnownZero2.countLeadingOnes());
KnownOne.clearAllBits();
KnownZero = APInt::getHighBitsSet(BitWidth, Leaders);
return;
}
case ISD::FrameIndex:
case ISD::TargetFrameIndex:
if (unsigned Align = InferPtrAlignment(Op)) {
// The low bits are known zero if the pointer is aligned.
KnownZero = APInt::getLowBitsSet(BitWidth, Log2_32(Align));
return;
}
break;
default:
if (Op.getOpcode() < ISD::BUILTIN_OP_END)
break;
// Fallthrough
case ISD::INTRINSIC_WO_CHAIN:
case ISD::INTRINSIC_W_CHAIN:
case ISD::INTRINSIC_VOID:
// Allow the target to implement this method for its nodes.
TLI.computeMaskedBitsForTargetNode(Op, KnownZero, KnownOne, *this, Depth);
return;
}
}
/// ComputeNumSignBits - Return the number of times the sign bit of the
/// register is replicated into the other bits. We know that at least 1 bit
/// is always equal to the sign bit (itself), but other cases can give us
/// information. For example, immediately after an "SRA X, 2", we know that
/// the top 3 bits are all equal to each other, so we return 3.
unsigned SelectionDAG::ComputeNumSignBits(SDValue Op, unsigned Depth) const{
EVT VT = Op.getValueType();
assert(VT.isInteger() && "Invalid VT!");
unsigned VTBits = VT.getScalarType().getSizeInBits();
unsigned Tmp, Tmp2;
unsigned FirstAnswer = 1;
if (Depth == 6)
return 1; // Limit search depth.
switch (Op.getOpcode()) {
default: break;
case ISD::AssertSext:
Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
return VTBits-Tmp+1;
case ISD::AssertZext:
Tmp = cast<VTSDNode>(Op.getOperand(1))->getVT().getSizeInBits();
return VTBits-Tmp;
case ISD::Constant: {
const APInt &Val = cast<ConstantSDNode>(Op)->getAPIntValue();
return Val.getNumSignBits();
}
case ISD::SIGN_EXTEND:
Tmp = VTBits-Op.getOperand(0).getValueType().getScalarType().getSizeInBits();
return ComputeNumSignBits(Op.getOperand(0), Depth+1) + Tmp;
case ISD::SIGN_EXTEND_INREG:
// Max of the input and what this extends.
Tmp =
cast<VTSDNode>(Op.getOperand(1))->getVT().getScalarType().getSizeInBits();
Tmp = VTBits-Tmp+1;
Tmp2 = ComputeNumSignBits(Op.getOperand(0), Depth+1);
return std::max(Tmp, Tmp2);
case ISD::SRA:
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
// SRA X, C -> adds C sign bits.
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
Tmp += C->getZExtValue();
if (Tmp > VTBits) Tmp = VTBits;
}
return Tmp;
case ISD::SHL:
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
// shl destroys sign bits.
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
if (C->getZExtValue() >= VTBits || // Bad shift.
C->getZExtValue() >= Tmp) break; // Shifted all sign bits out.
return Tmp - C->getZExtValue();
}
break;
case ISD::AND:
case ISD::OR:
case ISD::XOR: // NOT is handled here.
// Logical binary ops preserve the number of sign bits at the worst.
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
if (Tmp != 1) {
Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
FirstAnswer = std::min(Tmp, Tmp2);
// We computed what we know about the sign bits as our first
// answer. Now proceed to the generic code that uses
// ComputeMaskedBits, and pick whichever answer is better.
}
break;
case ISD::SELECT:
Tmp = ComputeNumSignBits(Op.getOperand(1), Depth+1);
if (Tmp == 1) return 1; // Early out.
Tmp2 = ComputeNumSignBits(Op.getOperand(2), Depth+1);
return std::min(Tmp, Tmp2);
case ISD::SADDO:
case ISD::UADDO:
case ISD::SSUBO:
case ISD::USUBO:
case ISD::SMULO:
case ISD::UMULO:
if (Op.getResNo() != 1)
break;
// The boolean result conforms to getBooleanContents. Fall through.
case ISD::SETCC:
// If setcc returns 0/-1, all bits are sign bits.
if (TLI.getBooleanContents(Op.getValueType().isVector()) ==
TargetLowering::ZeroOrNegativeOneBooleanContent)
return VTBits;
break;
case ISD::ROTL:
case ISD::ROTR:
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1))) {
unsigned RotAmt = C->getZExtValue() & (VTBits-1);
// Handle rotate right by N like a rotate left by 32-N.
if (Op.getOpcode() == ISD::ROTR)
RotAmt = (VTBits-RotAmt) & (VTBits-1);
// If we aren't rotating out all of the known-in sign bits, return the
// number that are left. This handles rotl(sext(x), 1) for example.
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
if (Tmp > RotAmt+1) return Tmp-RotAmt;
}
break;
case ISD::ADD:
// Add can have at most one carry bit. Thus we know that the output
// is, at worst, one more bit than the inputs.
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
if (Tmp == 1) return 1; // Early out.
// Special case decrementing a value (ADD X, -1):
if (ConstantSDNode *CRHS = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
if (CRHS->isAllOnesValue()) {
APInt KnownZero, KnownOne;
ComputeMaskedBits(Op.getOperand(0), KnownZero, KnownOne, Depth+1);
// If the input is known to be 0 or 1, the output is 0/-1, which is all
// sign bits set.
if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue())
return VTBits;
// If we are subtracting one from a positive number, there is no carry
// out of the result.
if (KnownZero.isNegative())
return Tmp;
}
Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
if (Tmp2 == 1) return 1;
return std::min(Tmp, Tmp2)-1;
case ISD::SUB:
Tmp2 = ComputeNumSignBits(Op.getOperand(1), Depth+1);
if (Tmp2 == 1) return 1;
// Handle NEG.
if (ConstantSDNode *CLHS = dyn_cast<ConstantSDNode>(Op.getOperand(0)))
if (CLHS->isNullValue()) {
APInt KnownZero, KnownOne;
ComputeMaskedBits(Op.getOperand(1), KnownZero, KnownOne, Depth+1);
// If the input is known to be 0 or 1, the output is 0/-1, which is all
// sign bits set.
if ((KnownZero | APInt(VTBits, 1)).isAllOnesValue())
return VTBits;
// If the input is known to be positive (the sign bit is known clear),
// the output of the NEG has the same number of sign bits as the input.
if (KnownZero.isNegative())
return Tmp2;
// Otherwise, we treat this like a SUB.
}
// Sub can have at most one carry bit. Thus we know that the output
// is, at worst, one more bit than the inputs.
Tmp = ComputeNumSignBits(Op.getOperand(0), Depth+1);
if (Tmp == 1) return 1; // Early out.
return std::min(Tmp, Tmp2)-1;
case ISD::TRUNCATE:
// FIXME: it's tricky to do anything useful for this, but it is an important
// case for targets like X86.
break;
}
// Handle LOADX separately here. EXTLOAD case will fallthrough.
if (LoadSDNode *LD = dyn_cast<LoadSDNode>(Op)) {
unsigned ExtType = LD->getExtensionType();
switch (ExtType) {
default: break;
case ISD::SEXTLOAD: // '17' bits known
Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
return VTBits-Tmp+1;
case ISD::ZEXTLOAD: // '16' bits known
Tmp = LD->getMemoryVT().getScalarType().getSizeInBits();
return VTBits-Tmp;
}
}
// Allow the target to implement this method for its nodes.
if (Op.getOpcode() >= ISD::BUILTIN_OP_END ||
Op.getOpcode() == ISD::INTRINSIC_WO_CHAIN ||
Op.getOpcode() == ISD::INTRINSIC_W_CHAIN ||
Op.getOpcode() == ISD::INTRINSIC_VOID) {
unsigned NumBits = TLI.ComputeNumSignBitsForTargetNode(Op, Depth);
if (NumBits > 1) FirstAnswer = std::max(FirstAnswer, NumBits);
}
// Finally, if we can prove that the top bits of the result are 0's or 1's,
// use this information.
APInt KnownZero, KnownOne;
ComputeMaskedBits(Op, KnownZero, KnownOne, Depth);
APInt Mask;
if (KnownZero.isNegative()) { // sign bit is 0
Mask = KnownZero;
} else if (KnownOne.isNegative()) { // sign bit is 1;
Mask = KnownOne;
} else {
// Nothing known.
return FirstAnswer;
}
// Okay, we know that the sign bit in Mask is set. Use CLZ to determine
// the number of identical bits in the top of the input value.
Mask = ~Mask;
Mask <<= Mask.getBitWidth()-VTBits;
// Return # leading zeros. We use 'min' here in case Val was zero before
// shifting. We don't want to return '64' as for an i32 "0".
return std::max(FirstAnswer, std::min(VTBits, Mask.countLeadingZeros()));
}
/// isBaseWithConstantOffset - Return true if the specified operand is an
/// ISD::ADD with a ConstantSDNode on the right-hand side, or if it is an
/// ISD::OR with a ConstantSDNode that is guaranteed to have the same
/// semantics as an ADD. This handles the equivalence:
/// X|Cst == X+Cst iff X&Cst = 0.
bool SelectionDAG::isBaseWithConstantOffset(SDValue Op) const {
if ((Op.getOpcode() != ISD::ADD && Op.getOpcode() != ISD::OR) ||
!isa<ConstantSDNode>(Op.getOperand(1)))
return false;
if (Op.getOpcode() == ISD::OR &&
!MaskedValueIsZero(Op.getOperand(0),
cast<ConstantSDNode>(Op.getOperand(1))->getAPIntValue()))
return false;
return true;
}
bool SelectionDAG::isKnownNeverNaN(SDValue Op) const {
// If we're told that NaNs won't happen, assume they won't.
if (getTarget().Options.NoNaNsFPMath)
return true;
// If the value is a constant, we can obviously see if it is a NaN or not.
if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
return !C->getValueAPF().isNaN();
// TODO: Recognize more cases here.
return false;
}
bool SelectionDAG::isKnownNeverZero(SDValue Op) const {
// If the value is a constant, we can obviously see if it is a zero or not.
if (const ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Op))
return !C->isZero();
// TODO: Recognize more cases here.
switch (Op.getOpcode()) {
default: break;
case ISD::OR:
if (const ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op.getOperand(1)))
return !C->isNullValue();
break;
}
return false;
}
bool SelectionDAG::isEqualTo(SDValue A, SDValue B) const {
// Check the obvious case.
if (A == B) return true;
// For for negative and positive zero.
if (const ConstantFPSDNode *CA = dyn_cast<ConstantFPSDNode>(A))
if (const ConstantFPSDNode *CB = dyn_cast<ConstantFPSDNode>(B))
if (CA->isZero() && CB->isZero()) return true;
// Otherwise they may not be equal.
return false;
}
/// getNode - Gets or creates the specified node.
///
SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, getVTList(VT), 0, 0);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
SDNode *N = new (NodeAllocator) SDNode(Opcode, DL, getVTList(VT));
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
#ifndef NDEBUG
VerifySDNode(N);
#endif
return SDValue(N, 0);
}
SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
EVT VT, SDValue Operand) {
// Constant fold unary operations with an integer constant operand.
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Operand.getNode())) {
const APInt &Val = C->getAPIntValue();
switch (Opcode) {
default: break;
case ISD::SIGN_EXTEND:
return getConstant(Val.sextOrTrunc(VT.getSizeInBits()), VT);
case ISD::ANY_EXTEND:
case ISD::ZERO_EXTEND:
case ISD::TRUNCATE:
return getConstant(Val.zextOrTrunc(VT.getSizeInBits()), VT);
case ISD::UINT_TO_FP:
case ISD::SINT_TO_FP: {
APFloat apf(APInt::getNullValue(VT.getSizeInBits()));
(void)apf.convertFromAPInt(Val,
Opcode==ISD::SINT_TO_FP,
APFloat::rmNearestTiesToEven);
return getConstantFP(apf, VT);
}
case ISD::BITCAST:
if (VT == MVT::f32 && C->getValueType(0) == MVT::i32)
return getConstantFP(APFloat(Val), VT);
else if (VT == MVT::f64 && C->getValueType(0) == MVT::i64)
return getConstantFP(APFloat(Val), VT);
break;
case ISD::BSWAP:
return getConstant(Val.byteSwap(), VT);
case ISD::CTPOP:
return getConstant(Val.countPopulation(), VT);
case ISD::CTLZ:
case ISD::CTLZ_ZERO_UNDEF:
return getConstant(Val.countLeadingZeros(), VT);
case ISD::CTTZ:
case ISD::CTTZ_ZERO_UNDEF:
return getConstant(Val.countTrailingZeros(), VT);
}
}
// Constant fold unary operations with a floating point constant operand.
if (ConstantFPSDNode *C = dyn_cast<ConstantFPSDNode>(Operand.getNode())) {
APFloat V = C->getValueAPF(); // make copy
switch (Opcode) {
case ISD::FNEG:
V.changeSign();
return getConstantFP(V, VT);
case ISD::FABS:
V.clearSign();
return getConstantFP(V, VT);
case ISD::FCEIL: {
APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardPositive);
if (fs == APFloat::opOK || fs == APFloat::opInexact)
return getConstantFP(V, VT);
break;
}
case ISD::FTRUNC: {
APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardZero);
if (fs == APFloat::opOK || fs == APFloat::opInexact)
return getConstantFP(V, VT);
break;
}
case ISD::FFLOOR: {
APFloat::opStatus fs = V.roundToIntegral(APFloat::rmTowardNegative);
if (fs == APFloat::opOK || fs == APFloat::opInexact)
return getConstantFP(V, VT);
break;
}
case ISD::FP_EXTEND: {
bool ignored;
// This can return overflow, underflow, or inexact; we don't care.
// FIXME need to be more flexible about rounding mode.
(void)V.convert(*EVTToAPFloatSemantics(VT),
APFloat::rmNearestTiesToEven, &ignored);
return getConstantFP(V, VT);
}
case ISD::FP_TO_SINT:
case ISD::FP_TO_UINT: {
integerPart x[2];
bool ignored;
assert(integerPartWidth >= 64);
// FIXME need to be more flexible about rounding mode.
APFloat::opStatus s = V.convertToInteger(x, VT.getSizeInBits(),
Opcode==ISD::FP_TO_SINT,
APFloat::rmTowardZero, &ignored);
if (s==APFloat::opInvalidOp) // inexact is OK, in fact usual
break;
APInt api(VT.getSizeInBits(), x);
return getConstant(api, VT);
}
case ISD::BITCAST:
if (VT == MVT::i32 && C->getValueType(0) == MVT::f32)
return getConstant((uint32_t)V.bitcastToAPInt().getZExtValue(), VT);
else if (VT == MVT::i64 && C->getValueType(0) == MVT::f64)
return getConstant(V.bitcastToAPInt().getZExtValue(), VT);
break;
}
}
unsigned OpOpcode = Operand.getNode()->getOpcode();
switch (Opcode) {
case ISD::TokenFactor:
case ISD::MERGE_VALUES:
case ISD::CONCAT_VECTORS:
return Operand; // Factor, merge or concat of one node? No need.
case ISD::FP_ROUND: llvm_unreachable("Invalid method to make FP_ROUND node");
case ISD::FP_EXTEND:
assert(VT.isFloatingPoint() &&
Operand.getValueType().isFloatingPoint() && "Invalid FP cast!");
if (Operand.getValueType() == VT) return Operand; // noop conversion.
assert((!VT.isVector() ||
VT.getVectorNumElements() ==
Operand.getValueType().getVectorNumElements()) &&
"Vector element count mismatch!");
if (Operand.getOpcode() == ISD::UNDEF)
return getUNDEF(VT);
break;
case ISD::SIGN_EXTEND:
assert(VT.isInteger() && Operand.getValueType().isInteger() &&
"Invalid SIGN_EXTEND!");
if (Operand.getValueType() == VT) return Operand; // noop extension
assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
"Invalid sext node, dst < src!");
assert((!VT.isVector() ||
VT.getVectorNumElements() ==
Operand.getValueType().getVectorNumElements()) &&
"Vector element count mismatch!");
if (OpOpcode == ISD::SIGN_EXTEND || OpOpcode == ISD::ZERO_EXTEND)
return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
else if (OpOpcode == ISD::UNDEF)
// sext(undef) = 0, because the top bits will all be the same.
return getConstant(0, VT);
break;
case ISD::ZERO_EXTEND:
assert(VT.isInteger() && Operand.getValueType().isInteger() &&
"Invalid ZERO_EXTEND!");
if (Operand.getValueType() == VT) return Operand; // noop extension
assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
"Invalid zext node, dst < src!");
assert((!VT.isVector() ||
VT.getVectorNumElements() ==
Operand.getValueType().getVectorNumElements()) &&
"Vector element count mismatch!");
if (OpOpcode == ISD::ZERO_EXTEND) // (zext (zext x)) -> (zext x)
return getNode(ISD::ZERO_EXTEND, DL, VT,
Operand.getNode()->getOperand(0));
else if (OpOpcode == ISD::UNDEF)
// zext(undef) = 0, because the top bits will be zero.
return getConstant(0, VT);
break;
case ISD::ANY_EXTEND:
assert(VT.isInteger() && Operand.getValueType().isInteger() &&
"Invalid ANY_EXTEND!");
if (Operand.getValueType() == VT) return Operand; // noop extension
assert(Operand.getValueType().getScalarType().bitsLT(VT.getScalarType()) &&
"Invalid anyext node, dst < src!");
assert((!VT.isVector() ||
VT.getVectorNumElements() ==
Operand.getValueType().getVectorNumElements()) &&
"Vector element count mismatch!");
if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
OpOpcode == ISD::ANY_EXTEND)
// (ext (zext x)) -> (zext x) and (ext (sext x)) -> (sext x)
return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
else if (OpOpcode == ISD::UNDEF)
return getUNDEF(VT);
// (ext (trunx x)) -> x
if (OpOpcode == ISD::TRUNCATE) {
SDValue OpOp = Operand.getNode()->getOperand(0);
if (OpOp.getValueType() == VT)
return OpOp;
}
break;
case ISD::TRUNCATE:
assert(VT.isInteger() && Operand.getValueType().isInteger() &&
"Invalid TRUNCATE!");
if (Operand.getValueType() == VT) return Operand; // noop truncate
assert(Operand.getValueType().getScalarType().bitsGT(VT.getScalarType()) &&
"Invalid truncate node, src < dst!");
assert((!VT.isVector() ||
VT.getVectorNumElements() ==
Operand.getValueType().getVectorNumElements()) &&
"Vector element count mismatch!");
if (OpOpcode == ISD::TRUNCATE)
return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
if (OpOpcode == ISD::ZERO_EXTEND || OpOpcode == ISD::SIGN_EXTEND ||
OpOpcode == ISD::ANY_EXTEND) {
// If the source is smaller than the dest, we still need an extend.
if (Operand.getNode()->getOperand(0).getValueType().getScalarType()
.bitsLT(VT.getScalarType()))
return getNode(OpOpcode, DL, VT, Operand.getNode()->getOperand(0));
if (Operand.getNode()->getOperand(0).getValueType().bitsGT(VT))
return getNode(ISD::TRUNCATE, DL, VT, Operand.getNode()->getOperand(0));
return Operand.getNode()->getOperand(0);
}
if (OpOpcode == ISD::UNDEF)
return getUNDEF(VT);
break;
case ISD::BITCAST:
// Basic sanity checking.
assert(VT.getSizeInBits() == Operand.getValueType().getSizeInBits()
&& "Cannot BITCAST between types of different sizes!");
if (VT == Operand.getValueType()) return Operand; // noop conversion.
if (OpOpcode == ISD::BITCAST) // bitconv(bitconv(x)) -> bitconv(x)
return getNode(ISD::BITCAST, DL, VT, Operand.getOperand(0));
if (OpOpcode == ISD::UNDEF)
return getUNDEF(VT);
break;
case ISD::SCALAR_TO_VECTOR:
assert(VT.isVector() && !Operand.getValueType().isVector() &&
(VT.getVectorElementType() == Operand.getValueType() ||
(VT.getVectorElementType().isInteger() &&
Operand.getValueType().isInteger() &&
VT.getVectorElementType().bitsLE(Operand.getValueType()))) &&
"Illegal SCALAR_TO_VECTOR node!");
if (OpOpcode == ISD::UNDEF)
return getUNDEF(VT);
// scalar_to_vector(extract_vector_elt V, 0) -> V, top bits are undefined.
if (OpOpcode == ISD::EXTRACT_VECTOR_ELT &&
isa<ConstantSDNode>(Operand.getOperand(1)) &&
Operand.getConstantOperandVal(1) == 0 &&
Operand.getOperand(0).getValueType() == VT)
return Operand.getOperand(0);
break;
case ISD::FNEG:
// -(X-Y) -> (Y-X) is unsafe because when X==Y, -0.0 != +0.0
if (getTarget().Options.UnsafeFPMath && OpOpcode == ISD::FSUB)
return getNode(ISD::FSUB, DL, VT, Operand.getNode()->getOperand(1),
Operand.getNode()->getOperand(0));
if (OpOpcode == ISD::FNEG) // --X -> X
return Operand.getNode()->getOperand(0);
break;
case ISD::FABS:
if (OpOpcode == ISD::FNEG) // abs(-X) -> abs(X)
return getNode(ISD::FABS, DL, VT, Operand.getNode()->getOperand(0));
break;
}
SDNode *N;
SDVTList VTs = getVTList(VT);
if (VT != MVT::Glue) { // Don't CSE flag producing nodes
FoldingSetNodeID ID;
SDValue Ops[1] = { Operand };
AddNodeIDNode(ID, Opcode, VTs, Ops, 1);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
CSEMap.InsertNode(N, IP);
} else {
N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTs, Operand);
}
AllNodes.push_back(N);
#ifndef NDEBUG
VerifySDNode(N);
#endif
return SDValue(N, 0);
}
SDValue SelectionDAG::FoldConstantArithmetic(unsigned Opcode,
EVT VT,
ConstantSDNode *Cst1,
ConstantSDNode *Cst2) {
const APInt &C1 = Cst1->getAPIntValue(), &C2 = Cst2->getAPIntValue();
switch (Opcode) {
case ISD::ADD: return getConstant(C1 + C2, VT);
case ISD::SUB: return getConstant(C1 - C2, VT);
case ISD::MUL: return getConstant(C1 * C2, VT);
case ISD::UDIV:
if (C2.getBoolValue()) return getConstant(C1.udiv(C2), VT);
break;
case ISD::UREM:
if (C2.getBoolValue()) return getConstant(C1.urem(C2), VT);
break;
case ISD::SDIV:
if (C2.getBoolValue()) return getConstant(C1.sdiv(C2), VT);
break;
case ISD::SREM:
if (C2.getBoolValue()) return getConstant(C1.srem(C2), VT);
break;
case ISD::AND: return getConstant(C1 & C2, VT);
case ISD::OR: return getConstant(C1 | C2, VT);
case ISD::XOR: return getConstant(C1 ^ C2, VT);
case ISD::SHL: return getConstant(C1 << C2, VT);
case ISD::SRL: return getConstant(C1.lshr(C2), VT);
case ISD::SRA: return getConstant(C1.ashr(C2), VT);
case ISD::ROTL: return getConstant(C1.rotl(C2), VT);
case ISD::ROTR: return getConstant(C1.rotr(C2), VT);
default: break;
}
return SDValue();
}
SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
SDValue N1, SDValue N2) {
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
ConstantSDNode *N2C = dyn_cast<ConstantSDNode>(N2.getNode());
switch (Opcode) {
default: break;
case ISD::TokenFactor:
assert(VT == MVT::Other && N1.getValueType() == MVT::Other &&
N2.getValueType() == MVT::Other && "Invalid token factor!");
// Fold trivial token factors.
if (N1.getOpcode() == ISD::EntryToken) return N2;
if (N2.getOpcode() == ISD::EntryToken) return N1;
if (N1 == N2) return N1;
break;
case ISD::CONCAT_VECTORS:
// Concat of UNDEFs is UNDEF.
if (N1.getOpcode() == ISD::UNDEF &&
N2.getOpcode() == ISD::UNDEF)
return getUNDEF(VT);
// A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
// one big BUILD_VECTOR.
if (N1.getOpcode() == ISD::BUILD_VECTOR &&
N2.getOpcode() == ISD::BUILD_VECTOR) {
SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
N1.getNode()->op_end());
Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
}
break;
case ISD::AND:
assert(VT.isInteger() && "This operator does not apply to FP types!");
assert(N1.getValueType() == N2.getValueType() &&
N1.getValueType() == VT && "Binary operator types must match!");
// (X & 0) -> 0. This commonly occurs when legalizing i64 values, so it's
// worth handling here.
if (N2C && N2C->isNullValue())
return N2;
if (N2C && N2C->isAllOnesValue()) // X & -1 -> X
return N1;
break;
case ISD::OR:
case ISD::XOR:
case ISD::ADD:
case ISD::SUB:
assert(VT.isInteger() && "This operator does not apply to FP types!");
assert(N1.getValueType() == N2.getValueType() &&
N1.getValueType() == VT && "Binary operator types must match!");
// (X ^|+- 0) -> X. This commonly occurs when legalizing i64 values, so
// it's worth handling here.
if (N2C && N2C->isNullValue())
return N1;
break;
case ISD::UDIV:
case ISD::UREM:
case ISD::MULHU:
case ISD::MULHS:
case ISD::MUL:
case ISD::SDIV:
case ISD::SREM:
assert(VT.isInteger() && "This operator does not apply to FP types!");
assert(N1.getValueType() == N2.getValueType() &&
N1.getValueType() == VT && "Binary operator types must match!");
break;
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::FDIV:
case ISD::FREM:
if (getTarget().Options.UnsafeFPMath) {
if (Opcode == ISD::FADD) {
// 0+x --> x
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1))
if (CFP->getValueAPF().isZero())
return N2;
// x+0 --> x
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
if (CFP->getValueAPF().isZero())
return N1;
} else if (Opcode == ISD::FSUB) {
// x-0 --> x
if (ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N2))
if (CFP->getValueAPF().isZero())
return N1;
} else if (Opcode == ISD::FMUL) {
ConstantFPSDNode *CFP = dyn_cast<ConstantFPSDNode>(N1);
SDValue V = N2;
// If the first operand isn't the constant, try the second
if (!CFP) {
CFP = dyn_cast<ConstantFPSDNode>(N2);
V = N1;
}
if (CFP) {
// 0*x --> 0
if (CFP->isZero())
return SDValue(CFP,0);
// 1*x --> x
if (CFP->isExactlyValue(1.0))
return V;
}
}
}
assert(VT.isFloatingPoint() && "This operator only applies to FP types!");
assert(N1.getValueType() == N2.getValueType() &&
N1.getValueType() == VT && "Binary operator types must match!");
break;
case ISD::FCOPYSIGN: // N1 and result must match. N1/N2 need not match.
assert(N1.getValueType() == VT &&
N1.getValueType().isFloatingPoint() &&
N2.getValueType().isFloatingPoint() &&
"Invalid FCOPYSIGN!");
break;
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
case ISD::ROTL:
case ISD::ROTR:
assert(VT == N1.getValueType() &&
"Shift operators return type must be the same as their first arg");
assert(VT.isInteger() && N2.getValueType().isInteger() &&
"Shifts only work on integers");
// Verify that the shift amount VT is bit enough to hold valid shift
// amounts. This catches things like trying to shift an i1024 value by an
// i8, which is easy to fall into in generic code that uses
// TLI.getShiftAmount().
assert(N2.getValueType().getSizeInBits() >=
Log2_32_Ceil(N1.getValueType().getSizeInBits()) &&
"Invalid use of small shift amount with oversized value!");
// Always fold shifts of i1 values so the code generator doesn't need to
// handle them. Since we know the size of the shift has to be less than the
// size of the value, the shift/rotate count is guaranteed to be zero.
if (VT == MVT::i1)
return N1;
if (N2C && N2C->isNullValue())
return N1;
break;
case ISD::FP_ROUND_INREG: {
EVT EVT = cast<VTSDNode>(N2)->getVT();
assert(VT == N1.getValueType() && "Not an inreg round!");
assert(VT.isFloatingPoint() && EVT.isFloatingPoint() &&
"Cannot FP_ROUND_INREG integer types");
assert(EVT.isVector() == VT.isVector() &&
"FP_ROUND_INREG type should be vector iff the operand "
"type is vector!");
assert((!EVT.isVector() ||
EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
"Vector element counts must match in FP_ROUND_INREG");
assert(EVT.bitsLE(VT) && "Not rounding down!");
(void)EVT;
if (cast<VTSDNode>(N2)->getVT() == VT) return N1; // Not actually rounding.
break;
}
case ISD::FP_ROUND:
assert(VT.isFloatingPoint() &&
N1.getValueType().isFloatingPoint() &&
VT.bitsLE(N1.getValueType()) &&
isa<ConstantSDNode>(N2) && "Invalid FP_ROUND!");
if (N1.getValueType() == VT) return N1; // noop conversion.
break;
case ISD::AssertSext:
case ISD::AssertZext: {
EVT EVT = cast<VTSDNode>(N2)->getVT();
assert(VT == N1.getValueType() && "Not an inreg extend!");
assert(VT.isInteger() && EVT.isInteger() &&
"Cannot *_EXTEND_INREG FP types");
assert(!EVT.isVector() &&
"AssertSExt/AssertZExt type should be the vector element type "
"rather than the vector type!");
assert(EVT.bitsLE(VT) && "Not extending!");
if (VT == EVT) return N1; // noop assertion.
break;
}
case ISD::SIGN_EXTEND_INREG: {
EVT EVT = cast<VTSDNode>(N2)->getVT();
assert(VT == N1.getValueType() && "Not an inreg extend!");
assert(VT.isInteger() && EVT.isInteger() &&
"Cannot *_EXTEND_INREG FP types");
assert(EVT.isVector() == VT.isVector() &&
"SIGN_EXTEND_INREG type should be vector iff the operand "
"type is vector!");
assert((!EVT.isVector() ||
EVT.getVectorNumElements() == VT.getVectorNumElements()) &&
"Vector element counts must match in SIGN_EXTEND_INREG");
assert(EVT.bitsLE(VT) && "Not extending!");
if (EVT == VT) return N1; // Not actually extending
if (N1C) {
APInt Val = N1C->getAPIntValue();
unsigned FromBits = EVT.getScalarType().getSizeInBits();
Val <<= Val.getBitWidth()-FromBits;
Val = Val.ashr(Val.getBitWidth()-FromBits);
return getConstant(Val, VT);
}
break;
}
case ISD::EXTRACT_VECTOR_ELT:
// EXTRACT_VECTOR_ELT of an UNDEF is an UNDEF.
if (N1.getOpcode() == ISD::UNDEF)
return getUNDEF(VT);
// EXTRACT_VECTOR_ELT of CONCAT_VECTORS is often formed while lowering is
// expanding copies of large vectors from registers.
if (N2C &&
N1.getOpcode() == ISD::CONCAT_VECTORS &&
N1.getNumOperands() > 0) {
unsigned Factor =
N1.getOperand(0).getValueType().getVectorNumElements();
return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT,
N1.getOperand(N2C->getZExtValue() / Factor),
getConstant(N2C->getZExtValue() % Factor,
N2.getValueType()));
}
// EXTRACT_VECTOR_ELT of BUILD_VECTOR is often formed while lowering is
// expanding large vector constants.
if (N2C && N1.getOpcode() == ISD::BUILD_VECTOR) {
SDValue Elt = N1.getOperand(N2C->getZExtValue());
if (VT != Elt.getValueType())
// If the vector element type is not legal, the BUILD_VECTOR operands
// are promoted and implicitly truncated, and the result implicitly
// extended. Make that explicit here.
Elt = getAnyExtOrTrunc(Elt, DL, VT);
return Elt;
}
// EXTRACT_VECTOR_ELT of INSERT_VECTOR_ELT is often formed when vector
// operations are lowered to scalars.
if (N1.getOpcode() == ISD::INSERT_VECTOR_ELT) {
// If the indices are the same, return the inserted element else
// if the indices are known different, extract the element from
// the original vector.
SDValue N1Op2 = N1.getOperand(2);
ConstantSDNode *N1Op2C = dyn_cast<ConstantSDNode>(N1Op2.getNode());
if (N1Op2C && N2C) {
if (N1Op2C->getZExtValue() == N2C->getZExtValue()) {
if (VT == N1.getOperand(1).getValueType())
return N1.getOperand(1);
else
return getSExtOrTrunc(N1.getOperand(1), DL, VT);
}
return getNode(ISD::EXTRACT_VECTOR_ELT, DL, VT, N1.getOperand(0), N2);
}
}
break;
case ISD::EXTRACT_ELEMENT:
assert(N2C && (unsigned)N2C->getZExtValue() < 2 && "Bad EXTRACT_ELEMENT!");
assert(!N1.getValueType().isVector() && !VT.isVector() &&
(N1.getValueType().isInteger() == VT.isInteger()) &&
N1.getValueType() != VT &&
"Wrong types for EXTRACT_ELEMENT!");
// EXTRACT_ELEMENT of BUILD_PAIR is often formed while legalize is expanding
// 64-bit integers into 32-bit parts. Instead of building the extract of
// the BUILD_PAIR, only to have legalize rip it apart, just do it now.
if (N1.getOpcode() == ISD::BUILD_PAIR)
return N1.getOperand(N2C->getZExtValue());
// EXTRACT_ELEMENT of a constant int is also very common.
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(N1)) {
unsigned ElementSize = VT.getSizeInBits();
unsigned Shift = ElementSize * N2C->getZExtValue();
APInt ShiftedVal = C->getAPIntValue().lshr(Shift);
return getConstant(ShiftedVal.trunc(ElementSize), VT);
}
break;
case ISD::EXTRACT_SUBVECTOR: {
SDValue Index = N2;
if (VT.isSimple() && N1.getValueType().isSimple()) {
assert(VT.isVector() && N1.getValueType().isVector() &&
"Extract subvector VTs must be a vectors!");
assert(VT.getVectorElementType() == N1.getValueType().getVectorElementType() &&
"Extract subvector VTs must have the same element type!");
assert(VT.getSimpleVT() <= N1.getValueType().getSimpleVT() &&
"Extract subvector must be from larger vector to smaller vector!");
if (isa<ConstantSDNode>(Index.getNode())) {
assert((VT.getVectorNumElements() +
cast<ConstantSDNode>(Index.getNode())->getZExtValue()
<= N1.getValueType().getVectorNumElements())
&& "Extract subvector overflow!");
}
// Trivial extraction.
if (VT.getSimpleVT() == N1.getValueType().getSimpleVT())
return N1;
}
break;
}
}
if (N1C) {
if (N2C) {
SDValue SV = FoldConstantArithmetic(Opcode, VT, N1C, N2C);
if (SV.getNode()) return SV;
} else { // Cannonicalize constant to RHS if commutative
if (isCommutativeBinOp(Opcode)) {
std::swap(N1C, N2C);
std::swap(N1, N2);
}
}
}
// Constant fold FP operations.
ConstantFPSDNode *N1CFP = dyn_cast<ConstantFPSDNode>(N1.getNode());
ConstantFPSDNode *N2CFP = dyn_cast<ConstantFPSDNode>(N2.getNode());
if (N1CFP) {
if (!N2CFP && isCommutativeBinOp(Opcode)) {
// Cannonicalize constant to RHS if commutative
std::swap(N1CFP, N2CFP);
std::swap(N1, N2);
} else if (N2CFP) {
APFloat V1 = N1CFP->getValueAPF(), V2 = N2CFP->getValueAPF();
APFloat::opStatus s;
switch (Opcode) {
case ISD::FADD:
s = V1.add(V2, APFloat::rmNearestTiesToEven);
if (s != APFloat::opInvalidOp)
return getConstantFP(V1, VT);
break;
case ISD::FSUB:
s = V1.subtract(V2, APFloat::rmNearestTiesToEven);
if (s!=APFloat::opInvalidOp)
return getConstantFP(V1, VT);
break;
case ISD::FMUL:
s = V1.multiply(V2, APFloat::rmNearestTiesToEven);
if (s!=APFloat::opInvalidOp)
return getConstantFP(V1, VT);
break;
case ISD::FDIV:
s = V1.divide(V2, APFloat::rmNearestTiesToEven);
if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
return getConstantFP(V1, VT);
break;
case ISD::FREM :
s = V1.mod(V2, APFloat::rmNearestTiesToEven);
if (s!=APFloat::opInvalidOp && s!=APFloat::opDivByZero)
return getConstantFP(V1, VT);
break;
case ISD::FCOPYSIGN:
V1.copySign(V2);
return getConstantFP(V1, VT);
default: break;
}
}
if (Opcode == ISD::FP_ROUND) {
APFloat V = N1CFP->getValueAPF(); // make copy
bool ignored;
// This can return overflow, underflow, or inexact; we don't care.
// FIXME need to be more flexible about rounding mode.
(void)V.convert(*EVTToAPFloatSemantics(VT),
APFloat::rmNearestTiesToEven, &ignored);
return getConstantFP(V, VT);
}
}
// Canonicalize an UNDEF to the RHS, even over a constant.
if (N1.getOpcode() == ISD::UNDEF) {
if (isCommutativeBinOp(Opcode)) {
std::swap(N1, N2);
} else {
switch (Opcode) {
case ISD::FP_ROUND_INREG:
case ISD::SIGN_EXTEND_INREG:
case ISD::SUB:
case ISD::FSUB:
case ISD::FDIV:
case ISD::FREM:
case ISD::SRA:
return N1; // fold op(undef, arg2) -> undef
case ISD::UDIV:
case ISD::SDIV:
case ISD::UREM:
case ISD::SREM:
case ISD::SRL:
case ISD::SHL:
if (!VT.isVector())
return getConstant(0, VT); // fold op(undef, arg2) -> 0
// For vectors, we can't easily build an all zero vector, just return
// the LHS.
return N2;
}
}
}
// Fold a bunch of operators when the RHS is undef.
if (N2.getOpcode() == ISD::UNDEF) {
switch (Opcode) {
case ISD::XOR:
if (N1.getOpcode() == ISD::UNDEF)
// Handle undef ^ undef -> 0 special case. This is a common
// idiom (misuse).
return getConstant(0, VT);
// fallthrough
case ISD::ADD:
case ISD::ADDC:
case ISD::ADDE:
case ISD::SUB:
case ISD::UDIV:
case ISD::SDIV:
case ISD::UREM:
case ISD::SREM:
return N2; // fold op(arg1, undef) -> undef
case ISD::FADD:
case ISD::FSUB:
case ISD::FMUL:
case ISD::FDIV:
case ISD::FREM:
if (getTarget().Options.UnsafeFPMath)
return N2;
break;
case ISD::MUL:
case ISD::AND:
case ISD::SRL:
case ISD::SHL:
if (!VT.isVector())
return getConstant(0, VT); // fold op(arg1, undef) -> 0
// For vectors, we can't easily build an all zero vector, just return
// the LHS.
return N1;
case ISD::OR:
if (!VT.isVector())
return getConstant(APInt::getAllOnesValue(VT.getSizeInBits()), VT);
// For vectors, we can't easily build an all one vector, just return
// the LHS.
return N1;
case ISD::SRA:
return N1;
}
}
// Memoize this node if possible.
SDNode *N;
SDVTList VTs = getVTList(VT);
if (VT != MVT::Glue) {
SDValue Ops[] = { N1, N2 };
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
CSEMap.InsertNode(N, IP);
} else {
N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTs, N1, N2);
}
AllNodes.push_back(N);
#ifndef NDEBUG
VerifySDNode(N);
#endif
return SDValue(N, 0);
}
SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
SDValue N1, SDValue N2, SDValue N3) {
// Perform various simplifications.
ConstantSDNode *N1C = dyn_cast<ConstantSDNode>(N1.getNode());
switch (Opcode) {
case ISD::CONCAT_VECTORS:
// A CONCAT_VECTOR with all operands BUILD_VECTOR can be simplified to
// one big BUILD_VECTOR.
if (N1.getOpcode() == ISD::BUILD_VECTOR &&
N2.getOpcode() == ISD::BUILD_VECTOR &&
N3.getOpcode() == ISD::BUILD_VECTOR) {
SmallVector<SDValue, 16> Elts(N1.getNode()->op_begin(),
N1.getNode()->op_end());
Elts.append(N2.getNode()->op_begin(), N2.getNode()->op_end());
Elts.append(N3.getNode()->op_begin(), N3.getNode()->op_end());
return getNode(ISD::BUILD_VECTOR, DL, VT, &Elts[0], Elts.size());
}
break;
case ISD::SETCC: {
// Use FoldSetCC to simplify SETCC's.
SDValue Simp = FoldSetCC(VT, N1, N2, cast<CondCodeSDNode>(N3)->get(), DL);
if (Simp.getNode()) return Simp;
break;
}
case ISD::SELECT:
if (N1C) {
if (N1C->getZExtValue())
return N2; // select true, X, Y -> X
return N3; // select false, X, Y -> Y
}
if (N2 == N3) return N2; // select C, X, X -> X
break;
case ISD::VECTOR_SHUFFLE:
llvm_unreachable("should use getVectorShuffle constructor!");
case ISD::INSERT_SUBVECTOR: {
SDValue Index = N3;
if (VT.isSimple() && N1.getValueType().isSimple()
&& N2.getValueType().isSimple()) {
assert(VT.isVector() && N1.getValueType().isVector() &&
N2.getValueType().isVector() &&
"Insert subvector VTs must be a vectors");
assert(VT == N1.getValueType() &&
"Dest and insert subvector source types must match!");
assert(N2.getValueType().getSimpleVT() <= N1.getValueType().getSimpleVT() &&
"Insert subvector must be from smaller vector to larger vector!");
if (isa<ConstantSDNode>(Index.getNode())) {
assert((N2.getValueType().getVectorNumElements() +
cast<ConstantSDNode>(Index.getNode())->getZExtValue()
<= VT.getVectorNumElements())
&& "Insert subvector overflow!");
}
// Trivial insertion.
if (VT.getSimpleVT() == N2.getValueType().getSimpleVT())
return N2;
}
break;
}
case ISD::BITCAST:
// Fold bit_convert nodes from a type to themselves.
if (N1.getValueType() == VT)
return N1;
break;
}
// Memoize node if it doesn't produce a flag.
SDNode *N;
SDVTList VTs = getVTList(VT);
if (VT != MVT::Glue) {
SDValue Ops[] = { N1, N2, N3 };
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
CSEMap.InsertNode(N, IP);
} else {
N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTs, N1, N2, N3);
}
AllNodes.push_back(N);
#ifndef NDEBUG
VerifySDNode(N);
#endif
return SDValue(N, 0);
}
SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
SDValue N1, SDValue N2, SDValue N3,
SDValue N4) {
SDValue Ops[] = { N1, N2, N3, N4 };
return getNode(Opcode, DL, VT, Ops, 4);
}
SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
SDValue N1, SDValue N2, SDValue N3,
SDValue N4, SDValue N5) {
SDValue Ops[] = { N1, N2, N3, N4, N5 };
return getNode(Opcode, DL, VT, Ops, 5);
}
/// getStackArgumentTokenFactor - Compute a TokenFactor to force all
/// the incoming stack arguments to be loaded from the stack.
SDValue SelectionDAG::getStackArgumentTokenFactor(SDValue Chain) {
SmallVector<SDValue, 8> ArgChains;
// Include the original chain at the beginning of the list. When this is
// used by target LowerCall hooks, this helps legalize find the
// CALLSEQ_BEGIN node.
ArgChains.push_back(Chain);
// Add a chain value for each stack argument.
for (SDNode::use_iterator U = getEntryNode().getNode()->use_begin(),
UE = getEntryNode().getNode()->use_end(); U != UE; ++U)
if (LoadSDNode *L = dyn_cast<LoadSDNode>(*U))
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(L->getBasePtr()))
if (FI->getIndex() < 0)
ArgChains.push_back(SDValue(L, 1));
// Build a tokenfactor for all the chains.
return getNode(ISD::TokenFactor, Chain.getDebugLoc(), MVT::Other,
&ArgChains[0], ArgChains.size());
}
/// SplatByte - Distribute ByteVal over NumBits bits.
static APInt SplatByte(unsigned NumBits, uint8_t ByteVal) {
APInt Val = APInt(NumBits, ByteVal);
unsigned Shift = 8;
for (unsigned i = NumBits; i > 8; i >>= 1) {
Val = (Val << Shift) | Val;
Shift <<= 1;
}
return Val;
}
/// getMemsetValue - Vectorized representation of the memset value
/// operand.
static SDValue getMemsetValue(SDValue Value, EVT VT, SelectionDAG &DAG,
DebugLoc dl) {
assert(Value.getOpcode() != ISD::UNDEF);
unsigned NumBits = VT.getScalarType().getSizeInBits();
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Value)) {
APInt Val = SplatByte(NumBits, C->getZExtValue() & 255);
if (VT.isInteger())
return DAG.getConstant(Val, VT);
return DAG.getConstantFP(APFloat(Val), VT);
}
Value = DAG.getNode(ISD::ZERO_EXTEND, dl, VT, Value);
if (NumBits > 8) {
// Use a multiplication with 0x010101... to extend the input to the
// required length.
APInt Magic = SplatByte(NumBits, 0x01);
Value = DAG.getNode(ISD::MUL, dl, VT, Value, DAG.getConstant(Magic, VT));
}
return Value;
}
/// getMemsetStringVal - Similar to getMemsetValue. Except this is only
/// used when a memcpy is turned into a memset when the source is a constant
/// string ptr.
static SDValue getMemsetStringVal(EVT VT, DebugLoc dl, SelectionDAG &DAG,
const TargetLowering &TLI, StringRef Str) {
// Handle vector with all elements zero.
if (Str.empty()) {
if (VT.isInteger())
return DAG.getConstant(0, VT);
else if (VT == MVT::f32 || VT == MVT::f64)
return DAG.getConstantFP(0.0, VT);
else if (VT.isVector()) {
unsigned NumElts = VT.getVectorNumElements();
MVT EltVT = (VT.getVectorElementType() == MVT::f32) ? MVT::i32 : MVT::i64;
return DAG.getNode(ISD::BITCAST, dl, VT,
DAG.getConstant(0, EVT::getVectorVT(*DAG.getContext(),
EltVT, NumElts)));
} else
llvm_unreachable("Expected type!");
}
assert(!VT.isVector() && "Can't handle vector type here!");
unsigned NumVTBytes = VT.getSizeInBits() / 8;
unsigned NumBytes = std::min(NumVTBytes, unsigned(Str.size()));
APInt Val(NumBytes*8, 0);
if (TLI.isLittleEndian()) {
for (unsigned i = 0; i != NumBytes; ++i)
Val |= (uint64_t)(unsigned char)Str[i] << i*8;
} else {
for (unsigned i = 0; i != NumBytes; ++i)
Val |= (uint64_t)(unsigned char)Str[i] << (NumVTBytes-i-1)*8;
}
// If the "cost" of materializing the integer immediate is 1 or free, then
// it is cost effective to turn the load into the immediate.
if (DAG.getTarget().getScalarTargetTransformInfo()->
getIntImmCost(Val, VT.getTypeForEVT(*DAG.getContext())) < 2)
return DAG.getConstant(Val, VT);
return SDValue(0, 0);
}
/// getMemBasePlusOffset - Returns base and offset node for the
///
static SDValue getMemBasePlusOffset(SDValue Base, unsigned Offset,
SelectionDAG &DAG) {
EVT VT = Base.getValueType();
return DAG.getNode(ISD::ADD, Base.getDebugLoc(),
VT, Base, DAG.getConstant(Offset, VT));
}
/// isMemSrcFromString - Returns true if memcpy source is a string constant.
///
static bool isMemSrcFromString(SDValue Src, StringRef &Str) {
unsigned SrcDelta = 0;
GlobalAddressSDNode *G = NULL;
if (Src.getOpcode() == ISD::GlobalAddress)
G = cast<GlobalAddressSDNode>(Src);
else if (Src.getOpcode() == ISD::ADD &&
Src.getOperand(0).getOpcode() == ISD::GlobalAddress &&
Src.getOperand(1).getOpcode() == ISD::Constant) {
G = cast<GlobalAddressSDNode>(Src.getOperand(0));
SrcDelta = cast<ConstantSDNode>(Src.getOperand(1))->getZExtValue();
}
if (!G)
return false;
return getConstantStringInfo(G->getGlobal(), Str, SrcDelta, false);
}
/// FindOptimalMemOpLowering - Determines the optimial series memory ops
/// to replace the memset / memcpy. Return true if the number of memory ops
/// is below the threshold. It returns the types of the sequence of
/// memory ops to perform memset / memcpy by reference.
static bool FindOptimalMemOpLowering(std::vector<EVT> &MemOps,
unsigned Limit, uint64_t Size,
unsigned DstAlign, unsigned SrcAlign,
bool IsMemset,
bool ZeroMemset,
bool MemcpyStrSrc,
bool AllowOverlap,
SelectionDAG &DAG,
const TargetLowering &TLI) {
assert((SrcAlign == 0 || SrcAlign >= DstAlign) &&
"Expecting memcpy / memset source to meet alignment requirement!");
// If 'SrcAlign' is zero, that means the memory operation does not need to
// load the value, i.e. memset or memcpy from constant string. Otherwise,
// it's the inferred alignment of the source. 'DstAlign', on the other hand,
// is the specified alignment of the memory operation. If it is zero, that
// means it's possible to change the alignment of the destination.
// 'MemcpyStrSrc' indicates whether the memcpy source is constant so it does
// not need to be loaded.
EVT VT = TLI.getOptimalMemOpType(Size, DstAlign, SrcAlign,
IsMemset, ZeroMemset, MemcpyStrSrc,
DAG.getMachineFunction());
if (VT == MVT::Other) {
if (DstAlign >= TLI.getDataLayout()->getPointerPrefAlignment() ||
TLI.allowsUnalignedMemoryAccesses(VT)) {
VT = TLI.getPointerTy();
} else {
switch (DstAlign & 7) {
case 0: VT = MVT::i64; break;
case 4: VT = MVT::i32; break;
case 2: VT = MVT::i16; break;
default: VT = MVT::i8; break;
}
}
MVT LVT = MVT::i64;
while (!TLI.isTypeLegal(LVT))
LVT = (MVT::SimpleValueType)(LVT.SimpleTy - 1);
assert(LVT.isInteger());
if (VT.bitsGT(LVT))
VT = LVT;
}
unsigned NumMemOps = 0;
while (Size != 0) {
unsigned VTSize = VT.getSizeInBits() / 8;
while (VTSize > Size) {
// For now, only use non-vector load / store's for the left-over pieces.
EVT NewVT = VT;
unsigned NewVTSize;
bool Found = false;
if (VT.isVector() || VT.isFloatingPoint()) {
NewVT = (VT.getSizeInBits() > 64) ? MVT::i64 : MVT::i32;
if (TLI.isOperationLegalOrCustom(ISD::STORE, NewVT) &&
TLI.isSafeMemOpType(NewVT.getSimpleVT()))
Found = true;
else if (NewVT == MVT::i64 &&
TLI.isOperationLegalOrCustom(ISD::STORE, MVT::f64) &&
TLI.isSafeMemOpType(MVT::f64)) {
// i64 is usually not legal on 32-bit targets, but f64 may be.
NewVT = MVT::f64;
Found = true;
}
}
if (!Found) {
do {
NewVT = (MVT::SimpleValueType)(NewVT.getSimpleVT().SimpleTy - 1);
if (NewVT == MVT::i8)
break;
} while (!TLI.isSafeMemOpType(NewVT.getSimpleVT()));
}
NewVTSize = NewVT.getSizeInBits() / 8;
// If the new VT cannot cover all of the remaining bits, then consider
// issuing a (or a pair of) unaligned and overlapping load / store.
// FIXME: Only does this for 64-bit or more since we don't have proper
// cost model for unaligned load / store.
bool Fast;
if (NumMemOps && AllowOverlap &&
VTSize >= 8 && NewVTSize < Size &&
TLI.allowsUnalignedMemoryAccesses(VT, &Fast) && Fast)
VTSize = Size;
else {
VT = NewVT;
VTSize = NewVTSize;
}
}
if (++NumMemOps > Limit)
return false;
MemOps.push_back(VT);
Size -= VTSize;
}
return true;
}
static SDValue getMemcpyLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
SDValue Chain, SDValue Dst,
SDValue Src, uint64_t Size,
unsigned Align, bool isVol,
bool AlwaysInline,
MachinePointerInfo DstPtrInfo,
MachinePointerInfo SrcPtrInfo) {
// Turn a memcpy of undef to nop.
if (Src.getOpcode() == ISD::UNDEF)
return Chain;
// Expand memcpy to a series of load and store ops if the size operand falls
// below a certain threshold.
// TODO: In the AlwaysInline case, if the size is big then generate a loop
// rather than maybe a humongous number of loads and stores.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
std::vector<EVT> MemOps;
bool DstAlignCanChange = false;
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
bool OptSize =
MF.getFunction()->getAttributes().
hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
DstAlignCanChange = true;
unsigned SrcAlign = DAG.InferPtrAlignment(Src);
if (Align > SrcAlign)
SrcAlign = Align;
StringRef Str;
bool CopyFromStr = isMemSrcFromString(Src, Str);
bool isZeroStr = CopyFromStr && Str.empty();
unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemcpy(OptSize);
if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
(DstAlignCanChange ? 0 : Align),
(isZeroStr ? 0 : SrcAlign),
false, false, CopyFromStr, true, DAG, TLI))
return SDValue();
if (DstAlignCanChange) {
Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
unsigned NewAlign = (unsigned) TLI.getDataLayout()->getABITypeAlignment(Ty);
if (NewAlign > Align) {
// Give the stack frame object a larger alignment if needed.
if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
MFI->setObjectAlignment(FI->getIndex(), NewAlign);
Align = NewAlign;
}
}
SmallVector<SDValue, 8> OutChains;
unsigned NumMemOps = MemOps.size();
uint64_t SrcOff = 0, DstOff = 0;
for (unsigned i = 0; i != NumMemOps; ++i) {
EVT VT = MemOps[i];
unsigned VTSize = VT.getSizeInBits() / 8;
SDValue Value, Store;
if (VTSize > Size) {
// Issuing an unaligned load / store pair that overlaps with the previous
// pair. Adjust the offset accordingly.
assert(i == NumMemOps-1 && i != 0);
SrcOff -= VTSize - Size;
DstOff -= VTSize - Size;
}
if (CopyFromStr &&
(isZeroStr || (VT.isInteger() && !VT.isVector()))) {
// It's unlikely a store of a vector immediate can be done in a single
// instruction. It would require a load from a constantpool first.
// We only handle zero vectors here.
// FIXME: Handle other cases where store of vector immediate is done in
// a single instruction.
Value = getMemsetStringVal(VT, dl, DAG, TLI, Str.substr(SrcOff));
if (Value.getNode())
Store = DAG.getStore(Chain, dl, Value,
getMemBasePlusOffset(Dst, DstOff, DAG),
DstPtrInfo.getWithOffset(DstOff), isVol,
false, Align);
}
if (!Store.getNode()) {
// The type might not be legal for the target. This should only happen
// if the type is smaller than a legal type, as on PPC, so the right
// thing to do is generate a LoadExt/StoreTrunc pair. These simplify
// to Load/Store if NVT==VT.
// FIXME does the case above also need this?
EVT NVT = TLI.getTypeToTransformTo(*DAG.getContext(), VT);
assert(NVT.bitsGE(VT));
Value = DAG.getExtLoad(ISD::EXTLOAD, dl, NVT, Chain,
getMemBasePlusOffset(Src, SrcOff, DAG),
SrcPtrInfo.getWithOffset(SrcOff), VT, isVol, false,
MinAlign(SrcAlign, SrcOff));
Store = DAG.getTruncStore(Chain, dl, Value,
getMemBasePlusOffset(Dst, DstOff, DAG),
DstPtrInfo.getWithOffset(DstOff), VT, isVol,
false, Align);
}
OutChains.push_back(Store);
SrcOff += VTSize;
DstOff += VTSize;
Size -= VTSize;
}
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&OutChains[0], OutChains.size());
}
static SDValue getMemmoveLoadsAndStores(SelectionDAG &DAG, DebugLoc dl,
SDValue Chain, SDValue Dst,
SDValue Src, uint64_t Size,
unsigned Align, bool isVol,
bool AlwaysInline,
MachinePointerInfo DstPtrInfo,
MachinePointerInfo SrcPtrInfo) {
// Turn a memmove of undef to nop.
if (Src.getOpcode() == ISD::UNDEF)
return Chain;
// Expand memmove to a series of load and store ops if the size operand falls
// below a certain threshold.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
std::vector<EVT> MemOps;
bool DstAlignCanChange = false;
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
bool OptSize = MF.getFunction()->getAttributes().
hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
DstAlignCanChange = true;
unsigned SrcAlign = DAG.InferPtrAlignment(Src);
if (Align > SrcAlign)
SrcAlign = Align;
unsigned Limit = AlwaysInline ? ~0U : TLI.getMaxStoresPerMemmove(OptSize);
if (!FindOptimalMemOpLowering(MemOps, Limit, Size,
(DstAlignCanChange ? 0 : Align), SrcAlign,
false, false, false, false, DAG, TLI))
return SDValue();
if (DstAlignCanChange) {
Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
unsigned NewAlign = (unsigned) TLI.getDataLayout()->getABITypeAlignment(Ty);
if (NewAlign > Align) {
// Give the stack frame object a larger alignment if needed.
if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
MFI->setObjectAlignment(FI->getIndex(), NewAlign);
Align = NewAlign;
}
}
uint64_t SrcOff = 0, DstOff = 0;
SmallVector<SDValue, 8> LoadValues;
SmallVector<SDValue, 8> LoadChains;
SmallVector<SDValue, 8> OutChains;
unsigned NumMemOps = MemOps.size();
for (unsigned i = 0; i < NumMemOps; i++) {
EVT VT = MemOps[i];
unsigned VTSize = VT.getSizeInBits() / 8;
SDValue Value, Store;
Value = DAG.getLoad(VT, dl, Chain,
getMemBasePlusOffset(Src, SrcOff, DAG),
SrcPtrInfo.getWithOffset(SrcOff), isVol,
false, false, SrcAlign);
LoadValues.push_back(Value);
LoadChains.push_back(Value.getValue(1));
SrcOff += VTSize;
}
Chain = DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&LoadChains[0], LoadChains.size());
OutChains.clear();
for (unsigned i = 0; i < NumMemOps; i++) {
EVT VT = MemOps[i];
unsigned VTSize = VT.getSizeInBits() / 8;
SDValue Value, Store;
Store = DAG.getStore(Chain, dl, LoadValues[i],
getMemBasePlusOffset(Dst, DstOff, DAG),
DstPtrInfo.getWithOffset(DstOff), isVol, false, Align);
OutChains.push_back(Store);
DstOff += VTSize;
}
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&OutChains[0], OutChains.size());
}
static SDValue getMemsetStores(SelectionDAG &DAG, DebugLoc dl,
SDValue Chain, SDValue Dst,
SDValue Src, uint64_t Size,
unsigned Align, bool isVol,
MachinePointerInfo DstPtrInfo) {
// Turn a memset of undef to nop.
if (Src.getOpcode() == ISD::UNDEF)
return Chain;
// Expand memset to a series of load/store ops if the size operand
// falls below a certain threshold.
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
std::vector<EVT> MemOps;
bool DstAlignCanChange = false;
MachineFunction &MF = DAG.getMachineFunction();
MachineFrameInfo *MFI = MF.getFrameInfo();
bool OptSize = MF.getFunction()->getAttributes().
hasAttribute(AttributeSet::FunctionIndex, Attribute::OptimizeForSize);
FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Dst);
if (FI && !MFI->isFixedObjectIndex(FI->getIndex()))
DstAlignCanChange = true;
bool IsZeroVal =
isa<ConstantSDNode>(Src) && cast<ConstantSDNode>(Src)->isNullValue();
if (!FindOptimalMemOpLowering(MemOps, TLI.getMaxStoresPerMemset(OptSize),
Size, (DstAlignCanChange ? 0 : Align), 0,
true, IsZeroVal, false, true, DAG, TLI))
return SDValue();
if (DstAlignCanChange) {
Type *Ty = MemOps[0].getTypeForEVT(*DAG.getContext());
unsigned NewAlign = (unsigned) TLI.getDataLayout()->getABITypeAlignment(Ty);
if (NewAlign > Align) {
// Give the stack frame object a larger alignment if needed.
if (MFI->getObjectAlignment(FI->getIndex()) < NewAlign)
MFI->setObjectAlignment(FI->getIndex(), NewAlign);
Align = NewAlign;
}
}
SmallVector<SDValue, 8> OutChains;
uint64_t DstOff = 0;
unsigned NumMemOps = MemOps.size();
// Find the largest store and generate the bit pattern for it.
EVT LargestVT = MemOps[0];
for (unsigned i = 1; i < NumMemOps; i++)
if (MemOps[i].bitsGT(LargestVT))
LargestVT = MemOps[i];
SDValue MemSetValue = getMemsetValue(Src, LargestVT, DAG, dl);
for (unsigned i = 0; i < NumMemOps; i++) {
EVT VT = MemOps[i];
unsigned VTSize = VT.getSizeInBits() / 8;
if (VTSize > Size) {
// Issuing an unaligned load / store pair that overlaps with the previous
// pair. Adjust the offset accordingly.
assert(i == NumMemOps-1 && i != 0);
DstOff -= VTSize - Size;
}
// If this store is smaller than the largest store see whether we can get
// the smaller value for free with a truncate.
SDValue Value = MemSetValue;
if (VT.bitsLT(LargestVT)) {
if (!LargestVT.isVector() && !VT.isVector() &&
TLI.isTruncateFree(LargestVT, VT))
Value = DAG.getNode(ISD::TRUNCATE, dl, VT, MemSetValue);
else
Value = getMemsetValue(Src, VT, DAG, dl);
}
assert(Value.getValueType() == VT && "Value with wrong type.");
SDValue Store = DAG.getStore(Chain, dl, Value,
getMemBasePlusOffset(Dst, DstOff, DAG),
DstPtrInfo.getWithOffset(DstOff),
isVol, false, Align);
OutChains.push_back(Store);
DstOff += VT.getSizeInBits() / 8;
Size -= VTSize;
}
return DAG.getNode(ISD::TokenFactor, dl, MVT::Other,
&OutChains[0], OutChains.size());
}
SDValue SelectionDAG::getMemcpy(SDValue Chain, DebugLoc dl, SDValue Dst,
SDValue Src, SDValue Size,
unsigned Align, bool isVol, bool AlwaysInline,
MachinePointerInfo DstPtrInfo,
MachinePointerInfo SrcPtrInfo) {
// Check to see if we should lower the memcpy to loads and stores first.
// For cases within the target-specified limits, this is the best choice.
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
if (ConstantSize) {
// Memcpy with size zero? Just return the original chain.
if (ConstantSize->isNullValue())
return Chain;
SDValue Result = getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
ConstantSize->getZExtValue(),Align,
isVol, false, DstPtrInfo, SrcPtrInfo);
if (Result.getNode())
return Result;
}
// Then check to see if we should lower the memcpy with target-specific
// code. If the target chooses to do this, this is the next best.
SDValue Result =
TSI.EmitTargetCodeForMemcpy(*this, dl, Chain, Dst, Src, Size, Align,
isVol, AlwaysInline,
DstPtrInfo, SrcPtrInfo);
if (Result.getNode())
return Result;
// If we really need inline code and the target declined to provide it,
// use a (potentially long) sequence of loads and stores.
if (AlwaysInline) {
assert(ConstantSize && "AlwaysInline requires a constant size!");
return getMemcpyLoadsAndStores(*this, dl, Chain, Dst, Src,
ConstantSize->getZExtValue(), Align, isVol,
true, DstPtrInfo, SrcPtrInfo);
}
// FIXME: If the memcpy is volatile (isVol), lowering it to a plain libc
// memcpy is not guaranteed to be safe. libc memcpys aren't required to
// respect volatile, so they may do things like read or write memory
// beyond the given memory regions. But fixing this isn't easy, and most
// people don't care.
// Emit a library call.
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Ty = TLI.getDataLayout()->getIntPtrType(*getContext());
Entry.Node = Dst; Args.push_back(Entry);
Entry.Node = Src; Args.push_back(Entry);
Entry.Node = Size; Args.push_back(Entry);
// FIXME: pass in DebugLoc
TargetLowering::
CallLoweringInfo CLI(Chain, Type::getVoidTy(*getContext()),
false, false, false, false, 0,
TLI.getLibcallCallingConv(RTLIB::MEMCPY),
/*isTailCall=*/false,
/*doesNotReturn=*/false, /*isReturnValueUsed=*/false,
getExternalSymbol(TLI.getLibcallName(RTLIB::MEMCPY),
TLI.getPointerTy()),
Args, *this, dl);
std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI);
return CallResult.second;
}
SDValue SelectionDAG::getMemmove(SDValue Chain, DebugLoc dl, SDValue Dst,
SDValue Src, SDValue Size,
unsigned Align, bool isVol,
MachinePointerInfo DstPtrInfo,
MachinePointerInfo SrcPtrInfo) {
// Check to see if we should lower the memmove to loads and stores first.
// For cases within the target-specified limits, this is the best choice.
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
if (ConstantSize) {
// Memmove with size zero? Just return the original chain.
if (ConstantSize->isNullValue())
return Chain;
SDValue Result =
getMemmoveLoadsAndStores(*this, dl, Chain, Dst, Src,
ConstantSize->getZExtValue(), Align, isVol,
false, DstPtrInfo, SrcPtrInfo);
if (Result.getNode())
return Result;
}
// Then check to see if we should lower the memmove with target-specific
// code. If the target chooses to do this, this is the next best.
SDValue Result =
TSI.EmitTargetCodeForMemmove(*this, dl, Chain, Dst, Src, Size, Align, isVol,
DstPtrInfo, SrcPtrInfo);
if (Result.getNode())
return Result;
// FIXME: If the memmove is volatile, lowering it to plain libc memmove may
// not be safe. See memcpy above for more details.
// Emit a library call.
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Ty = TLI.getDataLayout()->getIntPtrType(*getContext());
Entry.Node = Dst; Args.push_back(Entry);
Entry.Node = Src; Args.push_back(Entry);
Entry.Node = Size; Args.push_back(Entry);
// FIXME: pass in DebugLoc
TargetLowering::
CallLoweringInfo CLI(Chain, Type::getVoidTy(*getContext()),
false, false, false, false, 0,
TLI.getLibcallCallingConv(RTLIB::MEMMOVE),
/*isTailCall=*/false,
/*doesNotReturn=*/false, /*isReturnValueUsed=*/false,
getExternalSymbol(TLI.getLibcallName(RTLIB::MEMMOVE),
TLI.getPointerTy()),
Args, *this, dl);
std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI);
return CallResult.second;
}
SDValue SelectionDAG::getMemset(SDValue Chain, DebugLoc dl, SDValue Dst,
SDValue Src, SDValue Size,
unsigned Align, bool isVol,
MachinePointerInfo DstPtrInfo) {
// Check to see if we should lower the memset to stores first.
// For cases within the target-specified limits, this is the best choice.
ConstantSDNode *ConstantSize = dyn_cast<ConstantSDNode>(Size);
if (ConstantSize) {
// Memset with size zero? Just return the original chain.
if (ConstantSize->isNullValue())
return Chain;
SDValue Result =
getMemsetStores(*this, dl, Chain, Dst, Src, ConstantSize->getZExtValue(),
Align, isVol, DstPtrInfo);
if (Result.getNode())
return Result;
}
// Then check to see if we should lower the memset with target-specific
// code. If the target chooses to do this, this is the next best.
SDValue Result =
TSI.EmitTargetCodeForMemset(*this, dl, Chain, Dst, Src, Size, Align, isVol,
DstPtrInfo);
if (Result.getNode())
return Result;
// Emit a library call.
Type *IntPtrTy = TLI.getDataLayout()->getIntPtrType(*getContext());
TargetLowering::ArgListTy Args;
TargetLowering::ArgListEntry Entry;
Entry.Node = Dst; Entry.Ty = IntPtrTy;
Args.push_back(Entry);
// Extend or truncate the argument to be an i32 value for the call.
if (Src.getValueType().bitsGT(MVT::i32))
Src = getNode(ISD::TRUNCATE, dl, MVT::i32, Src);
else
Src = getNode(ISD::ZERO_EXTEND, dl, MVT::i32, Src);
Entry.Node = Src;
Entry.Ty = Type::getInt32Ty(*getContext());
Entry.isSExt = true;
Args.push_back(Entry);
Entry.Node = Size;
Entry.Ty = IntPtrTy;
Entry.isSExt = false;
Args.push_back(Entry);
// FIXME: pass in DebugLoc
TargetLowering::
CallLoweringInfo CLI(Chain, Type::getVoidTy(*getContext()),
false, false, false, false, 0,
TLI.getLibcallCallingConv(RTLIB::MEMSET),
/*isTailCall=*/false,
/*doesNotReturn*/false, /*isReturnValueUsed=*/false,
getExternalSymbol(TLI.getLibcallName(RTLIB::MEMSET),
TLI.getPointerTy()),
Args, *this, dl);
std::pair<SDValue,SDValue> CallResult = TLI.LowerCallTo(CLI);
return CallResult.second;
}
SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
SDValue Chain, SDValue Ptr, SDValue Cmp,
SDValue Swp, MachinePointerInfo PtrInfo,
unsigned Alignment,
AtomicOrdering Ordering,
SynchronizationScope SynchScope) {
if (Alignment == 0) // Ensure that codegen never sees alignment 0
Alignment = getEVTAlignment(MemVT);
MachineFunction &MF = getMachineFunction();
// All atomics are load and store, except for ATMOIC_LOAD and ATOMIC_STORE.
// For now, atomics are considered to be volatile always.
// FIXME: Volatile isn't really correct; we should keep track of atomic
// orderings in the memoperand.
unsigned Flags = MachineMemOperand::MOVolatile;
if (Opcode != ISD::ATOMIC_STORE)
Flags |= MachineMemOperand::MOLoad;
if (Opcode != ISD::ATOMIC_LOAD)
Flags |= MachineMemOperand::MOStore;
MachineMemOperand *MMO =
MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment);
return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Cmp, Swp, MMO,
Ordering, SynchScope);
}
SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
SDValue Chain,
SDValue Ptr, SDValue Cmp,
SDValue Swp, MachineMemOperand *MMO,
AtomicOrdering Ordering,
SynchronizationScope SynchScope) {
assert(Opcode == ISD::ATOMIC_CMP_SWAP && "Invalid Atomic Op");
assert(Cmp.getValueType() == Swp.getValueType() && "Invalid Atomic Op Types");
EVT VT = Cmp.getValueType();
SDVTList VTs = getVTList(VT, MVT::Other);
FoldingSetNodeID ID;
ID.AddInteger(MemVT.getRawBits());
SDValue Ops[] = {Chain, Ptr, Cmp, Swp};
AddNodeIDNode(ID, Opcode, VTs, Ops, 4);
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
void* IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
cast<AtomicSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
Ptr, Cmp, Swp, MMO, Ordering,
SynchScope);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
SDValue Chain,
SDValue Ptr, SDValue Val,
const Value* PtrVal,
unsigned Alignment,
AtomicOrdering Ordering,
SynchronizationScope SynchScope) {
if (Alignment == 0) // Ensure that codegen never sees alignment 0
Alignment = getEVTAlignment(MemVT);
MachineFunction &MF = getMachineFunction();
// An atomic store does not load. An atomic load does not store.
// (An atomicrmw obviously both loads and stores.)
// For now, atomics are considered to be volatile always, and they are
// chained as such.
// FIXME: Volatile isn't really correct; we should keep track of atomic
// orderings in the memoperand.
unsigned Flags = MachineMemOperand::MOVolatile;
if (Opcode != ISD::ATOMIC_STORE)
Flags |= MachineMemOperand::MOLoad;
if (Opcode != ISD::ATOMIC_LOAD)
Flags |= MachineMemOperand::MOStore;
MachineMemOperand *MMO =
MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
MemVT.getStoreSize(), Alignment);
return getAtomic(Opcode, dl, MemVT, Chain, Ptr, Val, MMO,
Ordering, SynchScope);
}
SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
SDValue Chain,
SDValue Ptr, SDValue Val,
MachineMemOperand *MMO,
AtomicOrdering Ordering,
SynchronizationScope SynchScope) {
assert((Opcode == ISD::ATOMIC_LOAD_ADD ||
Opcode == ISD::ATOMIC_LOAD_SUB ||
Opcode == ISD::ATOMIC_LOAD_AND ||
Opcode == ISD::ATOMIC_LOAD_OR ||
Opcode == ISD::ATOMIC_LOAD_XOR ||
Opcode == ISD::ATOMIC_LOAD_NAND ||
Opcode == ISD::ATOMIC_LOAD_MIN ||
Opcode == ISD::ATOMIC_LOAD_MAX ||
Opcode == ISD::ATOMIC_LOAD_UMIN ||
Opcode == ISD::ATOMIC_LOAD_UMAX ||
Opcode == ISD::ATOMIC_SWAP ||
Opcode == ISD::ATOMIC_STORE) &&
"Invalid Atomic Op");
EVT VT = Val.getValueType();
SDVTList VTs = Opcode == ISD::ATOMIC_STORE ? getVTList(MVT::Other) :
getVTList(VT, MVT::Other);
FoldingSetNodeID ID;
ID.AddInteger(MemVT.getRawBits());
SDValue Ops[] = {Chain, Ptr, Val};
AddNodeIDNode(ID, Opcode, VTs, Ops, 3);
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
void* IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
cast<AtomicSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
Ptr, Val, MMO,
Ordering, SynchScope);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
EVT VT, SDValue Chain,
SDValue Ptr,
const Value* PtrVal,
unsigned Alignment,
AtomicOrdering Ordering,
SynchronizationScope SynchScope) {
if (Alignment == 0) // Ensure that codegen never sees alignment 0
Alignment = getEVTAlignment(MemVT);
MachineFunction &MF = getMachineFunction();
// An atomic store does not load. An atomic load does not store.
// (An atomicrmw obviously both loads and stores.)
// For now, atomics are considered to be volatile always, and they are
// chained as such.
// FIXME: Volatile isn't really correct; we should keep track of atomic
// orderings in the memoperand.
unsigned Flags = MachineMemOperand::MOVolatile;
if (Opcode != ISD::ATOMIC_STORE)
Flags |= MachineMemOperand::MOLoad;
if (Opcode != ISD::ATOMIC_LOAD)
Flags |= MachineMemOperand::MOStore;
MachineMemOperand *MMO =
MF.getMachineMemOperand(MachinePointerInfo(PtrVal), Flags,
MemVT.getStoreSize(), Alignment);
return getAtomic(Opcode, dl, MemVT, VT, Chain, Ptr, MMO,
Ordering, SynchScope);
}
SDValue SelectionDAG::getAtomic(unsigned Opcode, DebugLoc dl, EVT MemVT,
EVT VT, SDValue Chain,
SDValue Ptr,
MachineMemOperand *MMO,
AtomicOrdering Ordering,
SynchronizationScope SynchScope) {
assert(Opcode == ISD::ATOMIC_LOAD && "Invalid Atomic Op");
SDVTList VTs = getVTList(VT, MVT::Other);
FoldingSetNodeID ID;
ID.AddInteger(MemVT.getRawBits());
SDValue Ops[] = {Chain, Ptr};
AddNodeIDNode(ID, Opcode, VTs, Ops, 2);
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
void* IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
cast<AtomicSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
SDNode *N = new (NodeAllocator) AtomicSDNode(Opcode, dl, VTs, MemVT, Chain,
Ptr, MMO, Ordering, SynchScope);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDValue(N, 0);
}
/// getMergeValues - Create a MERGE_VALUES node from the given operands.
SDValue SelectionDAG::getMergeValues(const SDValue *Ops, unsigned NumOps,
DebugLoc dl) {
if (NumOps == 1)
return Ops[0];
SmallVector<EVT, 4> VTs;
VTs.reserve(NumOps);
for (unsigned i = 0; i < NumOps; ++i)
VTs.push_back(Ops[i].getValueType());
return getNode(ISD::MERGE_VALUES, dl, getVTList(&VTs[0], NumOps),
Ops, NumOps);
}
SDValue
SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl,
const EVT *VTs, unsigned NumVTs,
const SDValue *Ops, unsigned NumOps,
EVT MemVT, MachinePointerInfo PtrInfo,
unsigned Align, bool Vol,
bool ReadMem, bool WriteMem) {
return getMemIntrinsicNode(Opcode, dl, makeVTList(VTs, NumVTs), Ops, NumOps,
MemVT, PtrInfo, Align, Vol,
ReadMem, WriteMem);
}
SDValue
SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
const SDValue *Ops, unsigned NumOps,
EVT MemVT, MachinePointerInfo PtrInfo,
unsigned Align, bool Vol,
bool ReadMem, bool WriteMem) {
if (Align == 0) // Ensure that codegen never sees alignment 0
Align = getEVTAlignment(MemVT);
MachineFunction &MF = getMachineFunction();
unsigned Flags = 0;
if (WriteMem)
Flags |= MachineMemOperand::MOStore;
if (ReadMem)
Flags |= MachineMemOperand::MOLoad;
if (Vol)
Flags |= MachineMemOperand::MOVolatile;
MachineMemOperand *MMO =
MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Align);
return getMemIntrinsicNode(Opcode, dl, VTList, Ops, NumOps, MemVT, MMO);
}
SDValue
SelectionDAG::getMemIntrinsicNode(unsigned Opcode, DebugLoc dl, SDVTList VTList,
const SDValue *Ops, unsigned NumOps,
EVT MemVT, MachineMemOperand *MMO) {
assert((Opcode == ISD::INTRINSIC_VOID ||
Opcode == ISD::INTRINSIC_W_CHAIN ||
Opcode == ISD::PREFETCH ||
Opcode == ISD::LIFETIME_START ||
Opcode == ISD::LIFETIME_END ||
(Opcode <= INT_MAX &&
(int)Opcode >= ISD::FIRST_TARGET_MEMORY_OPCODE)) &&
"Opcode is not a memory-accessing opcode!");
// Memoize the node unless it returns a flag.
MemIntrinsicSDNode *N;
if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
cast<MemIntrinsicSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
MemVT, MMO);
CSEMap.InsertNode(N, IP);
} else {
N = new (NodeAllocator) MemIntrinsicSDNode(Opcode, dl, VTList, Ops, NumOps,
MemVT, MMO);
}
AllNodes.push_back(N);
return SDValue(N, 0);
}
/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
/// MachinePointerInfo record from it. This is particularly useful because the
/// code generator has many cases where it doesn't bother passing in a
/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
static MachinePointerInfo InferPointerInfo(SDValue Ptr, int64_t Offset = 0) {
// If this is FI+Offset, we can model it.
if (const FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr))
return MachinePointerInfo::getFixedStack(FI->getIndex(), Offset);
// If this is (FI+Offset1)+Offset2, we can model it.
if (Ptr.getOpcode() != ISD::ADD ||
!isa<ConstantSDNode>(Ptr.getOperand(1)) ||
!isa<FrameIndexSDNode>(Ptr.getOperand(0)))
return MachinePointerInfo();
int FI = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
return MachinePointerInfo::getFixedStack(FI, Offset+
cast<ConstantSDNode>(Ptr.getOperand(1))->getSExtValue());
}
/// InferPointerInfo - If the specified ptr/offset is a frame index, infer a
/// MachinePointerInfo record from it. This is particularly useful because the
/// code generator has many cases where it doesn't bother passing in a
/// MachinePointerInfo to getLoad or getStore when it has "FI+Cst".
static MachinePointerInfo InferPointerInfo(SDValue Ptr, SDValue OffsetOp) {
// If the 'Offset' value isn't a constant, we can't handle this.
if (ConstantSDNode *OffsetNode = dyn_cast<ConstantSDNode>(OffsetOp))
return InferPointerInfo(Ptr, OffsetNode->getSExtValue());
if (OffsetOp.getOpcode() == ISD::UNDEF)
return InferPointerInfo(Ptr);
return MachinePointerInfo();
}
SDValue
SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
EVT VT, DebugLoc dl, SDValue Chain,
SDValue Ptr, SDValue Offset,
MachinePointerInfo PtrInfo, EVT MemVT,
bool isVolatile, bool isNonTemporal, bool isInvariant,
unsigned Alignment, const MDNode *TBAAInfo,
const MDNode *Ranges) {
assert(Chain.getValueType() == MVT::Other &&
"Invalid chain type");
if (Alignment == 0) // Ensure that codegen never sees alignment 0
Alignment = getEVTAlignment(VT);
unsigned Flags = MachineMemOperand::MOLoad;
if (isVolatile)
Flags |= MachineMemOperand::MOVolatile;
if (isNonTemporal)
Flags |= MachineMemOperand::MONonTemporal;
if (isInvariant)
Flags |= MachineMemOperand::MOInvariant;
// If we don't have a PtrInfo, infer the trivial frame index case to simplify
// clients.
if (PtrInfo.V == 0)
PtrInfo = InferPointerInfo(Ptr, Offset);
MachineFunction &MF = getMachineFunction();
MachineMemOperand *MMO =
MF.getMachineMemOperand(PtrInfo, Flags, MemVT.getStoreSize(), Alignment,
TBAAInfo, Ranges);
return getLoad(AM, ExtType, VT, dl, Chain, Ptr, Offset, MemVT, MMO);
}
SDValue
SelectionDAG::getLoad(ISD::MemIndexedMode AM, ISD::LoadExtType ExtType,
EVT VT, DebugLoc dl, SDValue Chain,
SDValue Ptr, SDValue Offset, EVT MemVT,
MachineMemOperand *MMO) {
if (VT == MemVT) {
ExtType = ISD::NON_EXTLOAD;
} else if (ExtType == ISD::NON_EXTLOAD) {
assert(VT == MemVT && "Non-extending load from different memory type!");
} else {
// Extending load.
assert(MemVT.getScalarType().bitsLT(VT.getScalarType()) &&
"Should only be an extending load, not truncating!");
assert(VT.isInteger() == MemVT.isInteger() &&
"Cannot convert from FP to Int or Int -> FP!");
assert(VT.isVector() == MemVT.isVector() &&
"Cannot use trunc store to convert to or from a vector!");
assert((!VT.isVector() ||
VT.getVectorNumElements() == MemVT.getVectorNumElements()) &&
"Cannot use trunc store to change the number of vector elements!");
}
bool Indexed = AM != ISD::UNINDEXED;
assert((Indexed || Offset.getOpcode() == ISD::UNDEF) &&
"Unindexed load with an offset!");
SDVTList VTs = Indexed ?
getVTList(VT, Ptr.getValueType(), MVT::Other) : getVTList(VT, MVT::Other);
SDValue Ops[] = { Chain, Ptr, Offset };
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::LOAD, VTs, Ops, 3);
ID.AddInteger(MemVT.getRawBits());
ID.AddInteger(encodeMemSDNodeFlags(ExtType, AM, MMO->isVolatile(),
MMO->isNonTemporal(),
MMO->isInvariant()));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
cast<LoadSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
SDNode *N = new (NodeAllocator) LoadSDNode(Ops, dl, VTs, AM, ExtType,
MemVT, MMO);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getLoad(EVT VT, DebugLoc dl,
SDValue Chain, SDValue Ptr,
MachinePointerInfo PtrInfo,
bool isVolatile, bool isNonTemporal,
bool isInvariant, unsigned Alignment,
const MDNode *TBAAInfo,
const MDNode *Ranges) {
SDValue Undef = getUNDEF(Ptr.getValueType());
return getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD, VT, dl, Chain, Ptr, Undef,
PtrInfo, VT, isVolatile, isNonTemporal, isInvariant, Alignment,
TBAAInfo, Ranges);
}
SDValue SelectionDAG::getExtLoad(ISD::LoadExtType ExtType, DebugLoc dl, EVT VT,
SDValue Chain, SDValue Ptr,
MachinePointerInfo PtrInfo, EVT MemVT,
bool isVolatile, bool isNonTemporal,
unsigned Alignment, const MDNode *TBAAInfo) {
SDValue Undef = getUNDEF(Ptr.getValueType());
return getLoad(ISD::UNINDEXED, ExtType, VT, dl, Chain, Ptr, Undef,
PtrInfo, MemVT, isVolatile, isNonTemporal, false, Alignment,
TBAAInfo);
}
SDValue
SelectionDAG::getIndexedLoad(SDValue OrigLoad, DebugLoc dl, SDValue Base,
SDValue Offset, ISD::MemIndexedMode AM) {
LoadSDNode *LD = cast<LoadSDNode>(OrigLoad);
assert(LD->getOffset().getOpcode() == ISD::UNDEF &&
"Load is already a indexed load!");
return getLoad(AM, LD->getExtensionType(), OrigLoad.getValueType(), dl,
LD->getChain(), Base, Offset, LD->getPointerInfo(),
LD->getMemoryVT(), LD->isVolatile(), LD->isNonTemporal(),
false, LD->getAlignment());
}
SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
SDValue Ptr, MachinePointerInfo PtrInfo,
bool isVolatile, bool isNonTemporal,
unsigned Alignment, const MDNode *TBAAInfo) {
assert(Chain.getValueType() == MVT::Other &&
"Invalid chain type");
if (Alignment == 0) // Ensure that codegen never sees alignment 0
Alignment = getEVTAlignment(Val.getValueType());
unsigned Flags = MachineMemOperand::MOStore;
if (isVolatile)
Flags |= MachineMemOperand::MOVolatile;
if (isNonTemporal)
Flags |= MachineMemOperand::MONonTemporal;
if (PtrInfo.V == 0)
PtrInfo = InferPointerInfo(Ptr);
MachineFunction &MF = getMachineFunction();
MachineMemOperand *MMO =
MF.getMachineMemOperand(PtrInfo, Flags,
Val.getValueType().getStoreSize(), Alignment,
TBAAInfo);
return getStore(Chain, dl, Val, Ptr, MMO);
}
SDValue SelectionDAG::getStore(SDValue Chain, DebugLoc dl, SDValue Val,
SDValue Ptr, MachineMemOperand *MMO) {
assert(Chain.getValueType() == MVT::Other &&
"Invalid chain type");
EVT VT = Val.getValueType();
SDVTList VTs = getVTList(MVT::Other);
SDValue Undef = getUNDEF(Ptr.getValueType());
SDValue Ops[] = { Chain, Val, Ptr, Undef };
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
ID.AddInteger(VT.getRawBits());
ID.AddInteger(encodeMemSDNodeFlags(false, ISD::UNINDEXED, MMO->isVolatile(),
MMO->isNonTemporal(), MMO->isInvariant()));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
cast<StoreSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
false, VT, MMO);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
SDValue Ptr, MachinePointerInfo PtrInfo,
EVT SVT,bool isVolatile, bool isNonTemporal,
unsigned Alignment,
const MDNode *TBAAInfo) {
assert(Chain.getValueType() == MVT::Other &&
"Invalid chain type");
if (Alignment == 0) // Ensure that codegen never sees alignment 0
Alignment = getEVTAlignment(SVT);
unsigned Flags = MachineMemOperand::MOStore;
if (isVolatile)
Flags |= MachineMemOperand::MOVolatile;
if (isNonTemporal)
Flags |= MachineMemOperand::MONonTemporal;
if (PtrInfo.V == 0)
PtrInfo = InferPointerInfo(Ptr);
MachineFunction &MF = getMachineFunction();
MachineMemOperand *MMO =
MF.getMachineMemOperand(PtrInfo, Flags, SVT.getStoreSize(), Alignment,
TBAAInfo);
return getTruncStore(Chain, dl, Val, Ptr, SVT, MMO);
}
SDValue SelectionDAG::getTruncStore(SDValue Chain, DebugLoc dl, SDValue Val,
SDValue Ptr, EVT SVT,
MachineMemOperand *MMO) {
EVT VT = Val.getValueType();
assert(Chain.getValueType() == MVT::Other &&
"Invalid chain type");
if (VT == SVT)
return getStore(Chain, dl, Val, Ptr, MMO);
assert(SVT.getScalarType().bitsLT(VT.getScalarType()) &&
"Should only be a truncating store, not extending!");
assert(VT.isInteger() == SVT.isInteger() &&
"Can't do FP-INT conversion!");
assert(VT.isVector() == SVT.isVector() &&
"Cannot use trunc store to convert to or from a vector!");
assert((!VT.isVector() ||
VT.getVectorNumElements() == SVT.getVectorNumElements()) &&
"Cannot use trunc store to change the number of vector elements!");
SDVTList VTs = getVTList(MVT::Other);
SDValue Undef = getUNDEF(Ptr.getValueType());
SDValue Ops[] = { Chain, Val, Ptr, Undef };
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
ID.AddInteger(SVT.getRawBits());
ID.AddInteger(encodeMemSDNodeFlags(true, ISD::UNINDEXED, MMO->isVolatile(),
MMO->isNonTemporal(), MMO->isInvariant()));
ID.AddInteger(MMO->getPointerInfo().getAddrSpace());
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
cast<StoreSDNode>(E)->refineAlignment(MMO);
return SDValue(E, 0);
}
SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, ISD::UNINDEXED,
true, SVT, MMO);
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDValue(N, 0);
}
SDValue
SelectionDAG::getIndexedStore(SDValue OrigStore, DebugLoc dl, SDValue Base,
SDValue Offset, ISD::MemIndexedMode AM) {
StoreSDNode *ST = cast<StoreSDNode>(OrigStore);
assert(ST->getOffset().getOpcode() == ISD::UNDEF &&
"Store is already a indexed store!");
SDVTList VTs = getVTList(Base.getValueType(), MVT::Other);
SDValue Ops[] = { ST->getChain(), ST->getValue(), Base, Offset };
FoldingSetNodeID ID;
AddNodeIDNode(ID, ISD::STORE, VTs, Ops, 4);
ID.AddInteger(ST->getMemoryVT().getRawBits());
ID.AddInteger(ST->getRawSubclassData());
ID.AddInteger(ST->getPointerInfo().getAddrSpace());
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
SDNode *N = new (NodeAllocator) StoreSDNode(Ops, dl, VTs, AM,
ST->isTruncatingStore(),
ST->getMemoryVT(),
ST->getMemOperand());
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
return SDValue(N, 0);
}
SDValue SelectionDAG::getVAArg(EVT VT, DebugLoc dl,
SDValue Chain, SDValue Ptr,
SDValue SV,
unsigned Align) {
SDValue Ops[] = { Chain, Ptr, SV, getTargetConstant(Align, MVT::i32) };
return getNode(ISD::VAARG, dl, getVTList(VT, MVT::Other), Ops, 4);
}
SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
const SDUse *Ops, unsigned NumOps) {
switch (NumOps) {
case 0: return getNode(Opcode, DL, VT);
case 1: return getNode(Opcode, DL, VT, Ops[0]);
case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
default: break;
}
// Copy from an SDUse array into an SDValue array for use with
// the regular getNode logic.
SmallVector<SDValue, 8> NewOps(Ops, Ops + NumOps);
return getNode(Opcode, DL, VT, &NewOps[0], NumOps);
}
SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, EVT VT,
const SDValue *Ops, unsigned NumOps) {
switch (NumOps) {
case 0: return getNode(Opcode, DL, VT);
case 1: return getNode(Opcode, DL, VT, Ops[0]);
case 2: return getNode(Opcode, DL, VT, Ops[0], Ops[1]);
case 3: return getNode(Opcode, DL, VT, Ops[0], Ops[1], Ops[2]);
default: break;
}
switch (Opcode) {
default: break;
case ISD::SELECT_CC: {
assert(NumOps == 5 && "SELECT_CC takes 5 operands!");
assert(Ops[0].getValueType() == Ops[1].getValueType() &&
"LHS and RHS of condition must have same type!");
assert(Ops[2].getValueType() == Ops[3].getValueType() &&
"True and False arms of SelectCC must have same type!");
assert(Ops[2].getValueType() == VT &&
"select_cc node must be of same type as true and false value!");
break;
}
case ISD::BR_CC: {
assert(NumOps == 5 && "BR_CC takes 5 operands!");
assert(Ops[2].getValueType() == Ops[3].getValueType() &&
"LHS/RHS of comparison should match types!");
break;
}
}
// Memoize nodes.
SDNode *N;
SDVTList VTs = getVTList(VT);
if (VT != MVT::Glue) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTs, Ops, NumOps);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
CSEMap.InsertNode(N, IP);
} else {
N = new (NodeAllocator) SDNode(Opcode, DL, VTs, Ops, NumOps);
}
AllNodes.push_back(N);
#ifndef NDEBUG
VerifySDNode(N);
#endif
return SDValue(N, 0);
}
SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
const std::vector<EVT> &ResultTys,
const SDValue *Ops, unsigned NumOps) {
return getNode(Opcode, DL, getVTList(&ResultTys[0], ResultTys.size()),
Ops, NumOps);
}
SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL,
const EVT *VTs, unsigned NumVTs,
const SDValue *Ops, unsigned NumOps) {
if (NumVTs == 1)
return getNode(Opcode, DL, VTs[0], Ops, NumOps);
return getNode(Opcode, DL, makeVTList(VTs, NumVTs), Ops, NumOps);
}
SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
const SDValue *Ops, unsigned NumOps) {
if (VTList.NumVTs == 1)
return getNode(Opcode, DL, VTList.VTs[0], Ops, NumOps);
#if 0
switch (Opcode) {
// FIXME: figure out how to safely handle things like
// int foo(int x) { return 1 << (x & 255); }
// int bar() { return foo(256); }
case ISD::SRA_PARTS:
case ISD::SRL_PARTS:
case ISD::SHL_PARTS:
if (N3.getOpcode() == ISD::SIGN_EXTEND_INREG &&
cast<VTSDNode>(N3.getOperand(1))->getVT() != MVT::i1)
return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
else if (N3.getOpcode() == ISD::AND)
if (ConstantSDNode *AndRHS = dyn_cast<ConstantSDNode>(N3.getOperand(1))) {
// If the and is only masking out bits that cannot effect the shift,
// eliminate the and.
unsigned NumBits = VT.getScalarType().getSizeInBits()*2;
if ((AndRHS->getValue() & (NumBits-1)) == NumBits-1)
return getNode(Opcode, DL, VT, N1, N2, N3.getOperand(0));
}
break;
}
#endif
// Memoize the node unless it returns a flag.
SDNode *N;
if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return SDValue(E, 0);
if (NumOps == 1) {
N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
} else if (NumOps == 2) {
N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
} else if (NumOps == 3) {
N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
Ops[2]);
} else {
N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
}
CSEMap.InsertNode(N, IP);
} else {
if (NumOps == 1) {
N = new (NodeAllocator) UnarySDNode(Opcode, DL, VTList, Ops[0]);
} else if (NumOps == 2) {
N = new (NodeAllocator) BinarySDNode(Opcode, DL, VTList, Ops[0], Ops[1]);
} else if (NumOps == 3) {
N = new (NodeAllocator) TernarySDNode(Opcode, DL, VTList, Ops[0], Ops[1],
Ops[2]);
} else {
N = new (NodeAllocator) SDNode(Opcode, DL, VTList, Ops, NumOps);
}
}
AllNodes.push_back(N);
#ifndef NDEBUG
VerifySDNode(N);
#endif
return SDValue(N, 0);
}
SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList) {
return getNode(Opcode, DL, VTList, 0, 0);
}
SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
SDValue N1) {
SDValue Ops[] = { N1 };
return getNode(Opcode, DL, VTList, Ops, 1);
}
SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
SDValue N1, SDValue N2) {
SDValue Ops[] = { N1, N2 };
return getNode(Opcode, DL, VTList, Ops, 2);
}
SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
SDValue N1, SDValue N2, SDValue N3) {
SDValue Ops[] = { N1, N2, N3 };
return getNode(Opcode, DL, VTList, Ops, 3);
}
SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
SDValue N1, SDValue N2, SDValue N3,
SDValue N4) {
SDValue Ops[] = { N1, N2, N3, N4 };
return getNode(Opcode, DL, VTList, Ops, 4);
}
SDValue SelectionDAG::getNode(unsigned Opcode, DebugLoc DL, SDVTList VTList,
SDValue N1, SDValue N2, SDValue N3,
SDValue N4, SDValue N5) {
SDValue Ops[] = { N1, N2, N3, N4, N5 };
return getNode(Opcode, DL, VTList, Ops, 5);
}
SDVTList SelectionDAG::getVTList(EVT VT) {
return makeVTList(SDNode::getValueTypeList(VT), 1);
}
SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2) {
for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
E = VTList.rend(); I != E; ++I)
if (I->NumVTs == 2 && I->VTs[0] == VT1 && I->VTs[1] == VT2)
return *I;
EVT *Array = Allocator.Allocate<EVT>(2);
Array[0] = VT1;
Array[1] = VT2;
SDVTList Result = makeVTList(Array, 2);
VTList.push_back(Result);
return Result;
}
SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3) {
for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
E = VTList.rend(); I != E; ++I)
if (I->NumVTs == 3 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
I->VTs[2] == VT3)
return *I;
EVT *Array = Allocator.Allocate<EVT>(3);
Array[0] = VT1;
Array[1] = VT2;
Array[2] = VT3;
SDVTList Result = makeVTList(Array, 3);
VTList.push_back(Result);
return Result;
}
SDVTList SelectionDAG::getVTList(EVT VT1, EVT VT2, EVT VT3, EVT VT4) {
for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
E = VTList.rend(); I != E; ++I)
if (I->NumVTs == 4 && I->VTs[0] == VT1 && I->VTs[1] == VT2 &&
I->VTs[2] == VT3 && I->VTs[3] == VT4)
return *I;
EVT *Array = Allocator.Allocate<EVT>(4);
Array[0] = VT1;
Array[1] = VT2;
Array[2] = VT3;
Array[3] = VT4;
SDVTList Result = makeVTList(Array, 4);
VTList.push_back(Result);
return Result;
}
SDVTList SelectionDAG::getVTList(const EVT *VTs, unsigned NumVTs) {
switch (NumVTs) {
case 0: llvm_unreachable("Cannot have nodes without results!");
case 1: return getVTList(VTs[0]);
case 2: return getVTList(VTs[0], VTs[1]);
case 3: return getVTList(VTs[0], VTs[1], VTs[2]);
case 4: return getVTList(VTs[0], VTs[1], VTs[2], VTs[3]);
default: break;
}
for (std::vector<SDVTList>::reverse_iterator I = VTList.rbegin(),
E = VTList.rend(); I != E; ++I) {
if (I->NumVTs != NumVTs || VTs[0] != I->VTs[0] || VTs[1] != I->VTs[1])
continue;
if (std::equal(&VTs[2], &VTs[NumVTs], &I->VTs[2]))
return *I;
}
EVT *Array = Allocator.Allocate<EVT>(NumVTs);
std::copy(VTs, VTs+NumVTs, Array);
SDVTList Result = makeVTList(Array, NumVTs);
VTList.push_back(Result);
return Result;
}
/// UpdateNodeOperands - *Mutate* the specified node in-place to have the
/// specified operands. If the resultant node already exists in the DAG,
/// this does not modify the specified node, instead it returns the node that
/// already exists. If the resultant node does not exist in the DAG, the
/// input node is returned. As a degenerate case, if you specify the same
/// input operands as the node already has, the input node is returned.
SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op) {
assert(N->getNumOperands() == 1 && "Update with wrong number of operands");
// Check to see if there is no change.
if (Op == N->getOperand(0)) return N;
// See if the modified node already exists.
void *InsertPos = 0;
if (SDNode *Existing = FindModifiedNodeSlot(N, Op, InsertPos))
return Existing;
// Nope it doesn't. Remove the node from its current place in the maps.
if (InsertPos)
if (!RemoveNodeFromCSEMaps(N))
InsertPos = 0;
// Now we update the operands.
N->OperandList[0].set(Op);
// If this gets put into a CSE map, add it.
if (InsertPos) CSEMap.InsertNode(N, InsertPos);
return N;
}
SDNode *SelectionDAG::UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2) {
assert(N->getNumOperands() == 2 && "Update with wrong number of operands");
// Check to see if there is no change.
if (Op1 == N->getOperand(0) && Op2 == N->getOperand(1))
return N; // No operands changed, just return the input node.
// See if the modified node already exists.
void *InsertPos = 0;
if (SDNode *Existing = FindModifiedNodeSlot(N, Op1, Op2, InsertPos))
return Existing;
// Nope it doesn't. Remove the node from its current place in the maps.
if (InsertPos)
if (!RemoveNodeFromCSEMaps(N))
InsertPos = 0;
// Now we update the operands.
if (N->OperandList[0] != Op1)
N->OperandList[0].set(Op1);
if (N->OperandList[1] != Op2)
N->OperandList[1].set(Op2);
// If this gets put into a CSE map, add it.
if (InsertPos) CSEMap.InsertNode(N, InsertPos);
return N;
}
SDNode *SelectionDAG::
UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2, SDValue Op3) {
SDValue Ops[] = { Op1, Op2, Op3 };
return UpdateNodeOperands(N, Ops, 3);
}
SDNode *SelectionDAG::
UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
SDValue Op3, SDValue Op4) {
SDValue Ops[] = { Op1, Op2, Op3, Op4 };
return UpdateNodeOperands(N, Ops, 4);
}
SDNode *SelectionDAG::
UpdateNodeOperands(SDNode *N, SDValue Op1, SDValue Op2,
SDValue Op3, SDValue Op4, SDValue Op5) {
SDValue Ops[] = { Op1, Op2, Op3, Op4, Op5 };
return UpdateNodeOperands(N, Ops, 5);
}
SDNode *SelectionDAG::
UpdateNodeOperands(SDNode *N, const SDValue *Ops, unsigned NumOps) {
assert(N->getNumOperands() == NumOps &&
"Update with wrong number of operands");
// Check to see if there is no change.
bool AnyChange = false;
for (unsigned i = 0; i != NumOps; ++i) {
if (Ops[i] != N->getOperand(i)) {
AnyChange = true;
break;
}
}
// No operands changed, just return the input node.
if (!AnyChange) return N;
// See if the modified node already exists.
void *InsertPos = 0;
if (SDNode *Existing = FindModifiedNodeSlot(N, Ops, NumOps, InsertPos))
return Existing;
// Nope it doesn't. Remove the node from its current place in the maps.
if (InsertPos)
if (!RemoveNodeFromCSEMaps(N))
InsertPos = 0;
// Now we update the operands.
for (unsigned i = 0; i != NumOps; ++i)
if (N->OperandList[i] != Ops[i])
N->OperandList[i].set(Ops[i]);
// If this gets put into a CSE map, add it.
if (InsertPos) CSEMap.InsertNode(N, InsertPos);
return N;
}
/// DropOperands - Release the operands and set this node to have
/// zero operands.
void SDNode::DropOperands() {
// Unlike the code in MorphNodeTo that does this, we don't need to
// watch for dead nodes here.
for (op_iterator I = op_begin(), E = op_end(); I != E; ) {
SDUse &Use = *I++;
Use.set(SDValue());
}
}
/// SelectNodeTo - These are wrappers around MorphNodeTo that accept a
/// machine opcode.
///
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT) {
SDVTList VTs = getVTList(VT);
return SelectNodeTo(N, MachineOpc, VTs, 0, 0);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT, SDValue Op1) {
SDVTList VTs = getVTList(VT);
SDValue Ops[] = { Op1 };
return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT, SDValue Op1,
SDValue Op2) {
SDVTList VTs = getVTList(VT);
SDValue Ops[] = { Op1, Op2 };
return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT, SDValue Op1,
SDValue Op2, SDValue Op3) {
SDVTList VTs = getVTList(VT);
SDValue Ops[] = { Op1, Op2, Op3 };
return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT, const SDValue *Ops,
unsigned NumOps) {
SDVTList VTs = getVTList(VT);
return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT1, EVT VT2, const SDValue *Ops,
unsigned NumOps) {
SDVTList VTs = getVTList(VT1, VT2);
return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT1, EVT VT2) {
SDVTList VTs = getVTList(VT1, VT2);
return SelectNodeTo(N, MachineOpc, VTs, (SDValue *)0, 0);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT1, EVT VT2, EVT VT3,
const SDValue *Ops, unsigned NumOps) {
SDVTList VTs = getVTList(VT1, VT2, VT3);
return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT1, EVT VT2, EVT VT3, EVT VT4,
const SDValue *Ops, unsigned NumOps) {
SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
return SelectNodeTo(N, MachineOpc, VTs, Ops, NumOps);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT1, EVT VT2,
SDValue Op1) {
SDVTList VTs = getVTList(VT1, VT2);
SDValue Ops[] = { Op1 };
return SelectNodeTo(N, MachineOpc, VTs, Ops, 1);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT1, EVT VT2,
SDValue Op1, SDValue Op2) {
SDVTList VTs = getVTList(VT1, VT2);
SDValue Ops[] = { Op1, Op2 };
return SelectNodeTo(N, MachineOpc, VTs, Ops, 2);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT1, EVT VT2,
SDValue Op1, SDValue Op2,
SDValue Op3) {
SDVTList VTs = getVTList(VT1, VT2);
SDValue Ops[] = { Op1, Op2, Op3 };
return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
EVT VT1, EVT VT2, EVT VT3,
SDValue Op1, SDValue Op2,
SDValue Op3) {
SDVTList VTs = getVTList(VT1, VT2, VT3);
SDValue Ops[] = { Op1, Op2, Op3 };
return SelectNodeTo(N, MachineOpc, VTs, Ops, 3);
}
SDNode *SelectionDAG::SelectNodeTo(SDNode *N, unsigned MachineOpc,
SDVTList VTs, const SDValue *Ops,
unsigned NumOps) {
N = MorphNodeTo(N, ~MachineOpc, VTs, Ops, NumOps);
// Reset the NodeID to -1.
N->setNodeId(-1);
return N;
}
/// UpdadeDebugLocOnMergedSDNode - If the opt level is -O0 then it throws away
/// the line number information on the merged node since it is not possible to
/// preserve the information that operation is associated with multiple lines.
/// This will make the debugger working better at -O0, were there is a higher
/// probability having other instructions associated with that line.
///
SDNode *SelectionDAG::UpdadeDebugLocOnMergedSDNode(SDNode *N, DebugLoc OLoc) {
DebugLoc NLoc = N->getDebugLoc();
if (!(NLoc.isUnknown()) && (OptLevel == CodeGenOpt::None) && (OLoc != NLoc)) {
N->setDebugLoc(DebugLoc());
}
return N;
}
/// MorphNodeTo - This *mutates* the specified node to have the specified
/// return type, opcode, and operands.
///
/// Note that MorphNodeTo returns the resultant node. If there is already a
/// node of the specified opcode and operands, it returns that node instead of
/// the current one. Note that the DebugLoc need not be the same.
///
/// Using MorphNodeTo is faster than creating a new node and swapping it in
/// with ReplaceAllUsesWith both because it often avoids allocating a new
/// node, and because it doesn't require CSE recalculation for any of
/// the node's users.
///
SDNode *SelectionDAG::MorphNodeTo(SDNode *N, unsigned Opc,
SDVTList VTs, const SDValue *Ops,
unsigned NumOps) {
// If an identical node already exists, use it.
void *IP = 0;
if (VTs.VTs[VTs.NumVTs-1] != MVT::Glue) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opc, VTs, Ops, NumOps);
if (SDNode *ON = CSEMap.FindNodeOrInsertPos(ID, IP))
return UpdadeDebugLocOnMergedSDNode(ON, N->getDebugLoc());
}
if (!RemoveNodeFromCSEMaps(N))
IP = 0;
// Start the morphing.
N->NodeType = Opc;
N->ValueList = VTs.VTs;
N->NumValues = VTs.NumVTs;
// Clear the operands list, updating used nodes to remove this from their
// use list. Keep track of any operands that become dead as a result.
SmallPtrSet<SDNode*, 16> DeadNodeSet;
for (SDNode::op_iterator I = N->op_begin(), E = N->op_end(); I != E; ) {
SDUse &Use = *I++;
SDNode *Used = Use.getNode();
Use.set(SDValue());
if (Used->use_empty())
DeadNodeSet.insert(Used);
}
if (MachineSDNode *MN = dyn_cast<MachineSDNode>(N)) {
// Initialize the memory references information.
MN->setMemRefs(0, 0);
// If NumOps is larger than the # of operands we can have in a
// MachineSDNode, reallocate the operand list.
if (NumOps > MN->NumOperands || !MN->OperandsNeedDelete) {
if (MN->OperandsNeedDelete)
delete[] MN->OperandList;
if (NumOps > array_lengthof(MN->LocalOperands))
// We're creating a final node that will live unmorphed for the
// remainder of the current SelectionDAG iteration, so we can allocate
// the operands directly out of a pool with no recycling metadata.
MN->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
Ops, NumOps);
else
MN->InitOperands(MN->LocalOperands, Ops, NumOps);
MN->OperandsNeedDelete = false;
} else
MN->InitOperands(MN->OperandList, Ops, NumOps);
} else {
// If NumOps is larger than the # of operands we currently have, reallocate
// the operand list.
if (NumOps > N->NumOperands) {
if (N->OperandsNeedDelete)
delete[] N->OperandList;
N->InitOperands(new SDUse[NumOps], Ops, NumOps);
N->OperandsNeedDelete = true;
} else
N->InitOperands(N->OperandList, Ops, NumOps);
}
// Delete any nodes that are still dead after adding the uses for the
// new operands.
if (!DeadNodeSet.empty()) {
SmallVector<SDNode *, 16> DeadNodes;
for (SmallPtrSet<SDNode *, 16>::iterator I = DeadNodeSet.begin(),
E = DeadNodeSet.end(); I != E; ++I)
if ((*I)->use_empty())
DeadNodes.push_back(*I);
RemoveDeadNodes(DeadNodes);
}
if (IP)
CSEMap.InsertNode(N, IP); // Memoize the new node.
return N;
}
/// getMachineNode - These are used for target selectors to create a new node
/// with specified return type(s), MachineInstr opcode, and operands.
///
/// Note that getMachineNode returns the resultant node. If there is already a
/// node of the specified opcode and operands, it returns that node instead of
/// the current one.
MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT) {
SDVTList VTs = getVTList(VT);
return getMachineNode(Opcode, dl, VTs, 0, 0);
}
MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT, SDValue Op1) {
SDVTList VTs = getVTList(VT);
SDValue Ops[] = { Op1 };
return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
}
MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
SDValue Op1, SDValue Op2) {
SDVTList VTs = getVTList(VT);
SDValue Ops[] = { Op1, Op2 };
return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
}
MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
SDValue Op1, SDValue Op2, SDValue Op3) {
SDVTList VTs = getVTList(VT);
SDValue Ops[] = { Op1, Op2, Op3 };
return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
}
MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT,
const SDValue *Ops, unsigned NumOps) {
SDVTList VTs = getVTList(VT);
return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
}
MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1, EVT VT2) {
SDVTList VTs = getVTList(VT1, VT2);
return getMachineNode(Opcode, dl, VTs, 0, 0);
}
MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
EVT VT1, EVT VT2, SDValue Op1) {
SDVTList VTs = getVTList(VT1, VT2);
SDValue Ops[] = { Op1 };
return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
}
MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
EVT VT1, EVT VT2, SDValue Op1, SDValue Op2) {
SDVTList VTs = getVTList(VT1, VT2);
SDValue Ops[] = { Op1, Op2 };
return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
}
MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
EVT VT1, EVT VT2, SDValue Op1,
SDValue Op2, SDValue Op3) {
SDVTList VTs = getVTList(VT1, VT2);
SDValue Ops[] = { Op1, Op2, Op3 };
return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
}
MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
EVT VT1, EVT VT2,
const SDValue *Ops, unsigned NumOps) {
SDVTList VTs = getVTList(VT1, VT2);
return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
}
MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
EVT VT1, EVT VT2, EVT VT3,
SDValue Op1, SDValue Op2) {
SDVTList VTs = getVTList(VT1, VT2, VT3);
SDValue Ops[] = { Op1, Op2 };
return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
}
MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
EVT VT1, EVT VT2, EVT VT3,
SDValue Op1, SDValue Op2, SDValue Op3) {
SDVTList VTs = getVTList(VT1, VT2, VT3);
SDValue Ops[] = { Op1, Op2, Op3 };
return getMachineNode(Opcode, dl, VTs, Ops, array_lengthof(Ops));
}
MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
EVT VT1, EVT VT2, EVT VT3,
const SDValue *Ops, unsigned NumOps) {
SDVTList VTs = getVTList(VT1, VT2, VT3);
return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
}
MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl, EVT VT1,
EVT VT2, EVT VT3, EVT VT4,
const SDValue *Ops, unsigned NumOps) {
SDVTList VTs = getVTList(VT1, VT2, VT3, VT4);
return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
}
MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc dl,
const std::vector<EVT> &ResultTys,
const SDValue *Ops, unsigned NumOps) {
SDVTList VTs = getVTList(&ResultTys[0], ResultTys.size());
return getMachineNode(Opcode, dl, VTs, Ops, NumOps);
}
MachineSDNode *
SelectionDAG::getMachineNode(unsigned Opcode, DebugLoc DL, SDVTList VTs,
const SDValue *Ops, unsigned NumOps) {
bool DoCSE = VTs.VTs[VTs.NumVTs-1] != MVT::Glue;
MachineSDNode *N;
void *IP = 0;
if (DoCSE) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, ~Opcode, VTs, Ops, NumOps);
IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP)) {
return cast<MachineSDNode>(UpdadeDebugLocOnMergedSDNode(E, DL));
}
}
// Allocate a new MachineSDNode.
N = new (NodeAllocator) MachineSDNode(~Opcode, DL, VTs);
// Initialize the operands list.
if (NumOps > array_lengthof(N->LocalOperands))
// We're creating a final node that will live unmorphed for the
// remainder of the current SelectionDAG iteration, so we can allocate
// the operands directly out of a pool with no recycling metadata.
N->InitOperands(OperandAllocator.Allocate<SDUse>(NumOps),
Ops, NumOps);
else
N->InitOperands(N->LocalOperands, Ops, NumOps);
N->OperandsNeedDelete = false;
if (DoCSE)
CSEMap.InsertNode(N, IP);
AllNodes.push_back(N);
#ifndef NDEBUG
VerifyMachineNode(N);
#endif
return N;
}
/// getTargetExtractSubreg - A convenience function for creating
/// TargetOpcode::EXTRACT_SUBREG nodes.
SDValue
SelectionDAG::getTargetExtractSubreg(int SRIdx, DebugLoc DL, EVT VT,
SDValue Operand) {
SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
SDNode *Subreg = getMachineNode(TargetOpcode::EXTRACT_SUBREG, DL,
VT, Operand, SRIdxVal);
return SDValue(Subreg, 0);
}
/// getTargetInsertSubreg - A convenience function for creating
/// TargetOpcode::INSERT_SUBREG nodes.
SDValue
SelectionDAG::getTargetInsertSubreg(int SRIdx, DebugLoc DL, EVT VT,
SDValue Operand, SDValue Subreg) {
SDValue SRIdxVal = getTargetConstant(SRIdx, MVT::i32);
SDNode *Result = getMachineNode(TargetOpcode::INSERT_SUBREG, DL,
VT, Operand, Subreg, SRIdxVal);
return SDValue(Result, 0);
}
/// getNodeIfExists - Get the specified node if it's already available, or
/// else return NULL.
SDNode *SelectionDAG::getNodeIfExists(unsigned Opcode, SDVTList VTList,
const SDValue *Ops, unsigned NumOps) {
if (VTList.VTs[VTList.NumVTs-1] != MVT::Glue) {
FoldingSetNodeID ID;
AddNodeIDNode(ID, Opcode, VTList, Ops, NumOps);
void *IP = 0;
if (SDNode *E = CSEMap.FindNodeOrInsertPos(ID, IP))
return E;
}
return NULL;
}
/// getDbgValue - Creates a SDDbgValue node.
///
SDDbgValue *
SelectionDAG::getDbgValue(MDNode *MDPtr, SDNode *N, unsigned R, uint64_t Off,
DebugLoc DL, unsigned O) {
return new (Allocator) SDDbgValue(MDPtr, N, R, Off, DL, O);
}
SDDbgValue *
SelectionDAG::getDbgValue(MDNode *MDPtr, const Value *C, uint64_t Off,
DebugLoc DL, unsigned O) {
return new (Allocator) SDDbgValue(MDPtr, C, Off, DL, O);
}
SDDbgValue *
SelectionDAG::getDbgValue(MDNode *MDPtr, unsigned FI, uint64_t Off,
DebugLoc DL, unsigned O) {
return new (Allocator) SDDbgValue(MDPtr, FI, Off, DL, O);
}
namespace {
/// RAUWUpdateListener - Helper for ReplaceAllUsesWith - When the node
/// pointed to by a use iterator is deleted, increment the use iterator
/// so that it doesn't dangle.
///
class RAUWUpdateListener : public SelectionDAG::DAGUpdateListener {
SDNode::use_iterator &UI;
SDNode::use_iterator &UE;
virtual void NodeDeleted(SDNode *N, SDNode *E) {
// Increment the iterator as needed.
while (UI != UE && N == *UI)
++UI;
}
public:
RAUWUpdateListener(SelectionDAG &d,
SDNode::use_iterator &ui,
SDNode::use_iterator &ue)
: SelectionDAG::DAGUpdateListener(d), UI(ui), UE(ue) {}
};
}
/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
/// This can cause recursive merging of nodes in the DAG.
///
/// This version assumes From has a single result value.
///
void SelectionDAG::ReplaceAllUsesWith(SDValue FromN, SDValue To) {
SDNode *From = FromN.getNode();
assert(From->getNumValues() == 1 && FromN.getResNo() == 0 &&
"Cannot replace with this method!");
assert(From != To.getNode() && "Cannot replace uses of with self");
// Iterate over all the existing uses of From. New uses will be added
// to the beginning of the use list, which we avoid visiting.
// This specifically avoids visiting uses of From that arise while the
// replacement is happening, because any such uses would be the result
// of CSE: If an existing node looks like From after one of its operands
// is replaced by To, we don't want to replace of all its users with To
// too. See PR3018 for more info.
SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
RAUWUpdateListener Listener(*this, UI, UE);
while (UI != UE) {
SDNode *User = *UI;
// This node is about to morph, remove its old self from the CSE maps.
RemoveNodeFromCSEMaps(User);
// A user can appear in a use list multiple times, and when this
// happens the uses are usually next to each other in the list.
// To help reduce the number of CSE recomputations, process all
// the uses of this user that we can find this way.
do {
SDUse &Use = UI.getUse();
++UI;
Use.set(To);
} while (UI != UE && *UI == User);
// Now that we have modified User, add it back to the CSE maps. If it
// already exists there, recursively merge the results together.
AddModifiedNodeToCSEMaps(User);
}
// If we just RAUW'd the root, take note.
if (FromN == getRoot())
setRoot(To);
}
/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
/// This can cause recursive merging of nodes in the DAG.
///
/// This version assumes that for each value of From, there is a
/// corresponding value in To in the same position with the same type.
///
void SelectionDAG::ReplaceAllUsesWith(SDNode *From, SDNode *To) {
#ifndef NDEBUG
for (unsigned i = 0, e = From->getNumValues(); i != e; ++i)
assert((!From->hasAnyUseOfValue(i) ||
From->getValueType(i) == To->getValueType(i)) &&
"Cannot use this version of ReplaceAllUsesWith!");
#endif
// Handle the trivial case.
if (From == To)
return;
// Iterate over just the existing users of From. See the comments in
// the ReplaceAllUsesWith above.
SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
RAUWUpdateListener Listener(*this, UI, UE);
while (UI != UE) {
SDNode *User = *UI;
// This node is about to morph, remove its old self from the CSE maps.
RemoveNodeFromCSEMaps(User);
// A user can appear in a use list multiple times, and when this
// happens the uses are usually next to each other in the list.
// To help reduce the number of CSE recomputations, process all
// the uses of this user that we can find this way.
do {
SDUse &Use = UI.getUse();
++UI;
Use.setNode(To);
} while (UI != UE && *UI == User);
// Now that we have modified User, add it back to the CSE maps. If it
// already exists there, recursively merge the results together.
AddModifiedNodeToCSEMaps(User);
}
// If we just RAUW'd the root, take note.
if (From == getRoot().getNode())
setRoot(SDValue(To, getRoot().getResNo()));
}
/// ReplaceAllUsesWith - Modify anything using 'From' to use 'To' instead.
/// This can cause recursive merging of nodes in the DAG.
///
/// This version can replace From with any result values. To must match the
/// number and types of values returned by From.
void SelectionDAG::ReplaceAllUsesWith(SDNode *From, const SDValue *To) {
if (From->getNumValues() == 1) // Handle the simple case efficiently.
return ReplaceAllUsesWith(SDValue(From, 0), To[0]);
// Iterate over just the existing users of From. See the comments in
// the ReplaceAllUsesWith above.
SDNode::use_iterator UI = From->use_begin(), UE = From->use_end();
RAUWUpdateListener Listener(*this, UI, UE);
while (UI != UE) {
SDNode *User = *UI;
// This node is about to morph, remove its old self from the CSE maps.
RemoveNodeFromCSEMaps(User);
// A user can appear in a use list multiple times, and when this
// happens the uses are usually next to each other in the list.
// To help reduce the number of CSE recomputations, process all
// the uses of this user that we can find this way.
do {
SDUse &Use = UI.getUse();
const SDValue &ToOp = To[Use.getResNo()];
++UI;
Use.set(ToOp);
} while (UI != UE && *UI == User);
// Now that we have modified User, add it back to the CSE maps. If it
// already exists there, recursively merge the results together.
AddModifiedNodeToCSEMaps(User);
}
// If we just RAUW'd the root, take note.
if (From == getRoot().getNode())
setRoot(SDValue(To[getRoot().getResNo()]));
}
/// ReplaceAllUsesOfValueWith - Replace any uses of From with To, leaving
/// uses of other values produced by From.getNode() alone. The Deleted
/// vector is handled the same way as for ReplaceAllUsesWith.
void SelectionDAG::ReplaceAllUsesOfValueWith(SDValue From, SDValue To){
// Handle the really simple, really trivial case efficiently.
if (From == To) return;
// Handle the simple, trivial, case efficiently.
if (From.getNode()->getNumValues() == 1) {
ReplaceAllUsesWith(From, To);
return;
}
// Iterate over just the existing users of From. See the comments in
// the ReplaceAllUsesWith above.
SDNode::use_iterator UI = From.getNode()->use_begin(),
UE = From.getNode()->use_end();
RAUWUpdateListener Listener(*this, UI, UE);
while (UI != UE) {
SDNode *User = *UI;
bool UserRemovedFromCSEMaps = false;
// A user can appear in a use list multiple times, and when this
// happens the uses are usually next to each other in the list.
// To help reduce the number of CSE recomputations, process all
// the uses of this user that we can find this way.
do {
SDUse &Use = UI.getUse();
// Skip uses of different values from the same node.
if (Use.getResNo() != From.getResNo()) {
++UI;
continue;
}
// If this node hasn't been modified yet, it's still in the CSE maps,
// so remove its old self from the CSE maps.
if (!UserRemovedFromCSEMaps) {
RemoveNodeFromCSEMaps(User);
UserRemovedFromCSEMaps = true;
}
++UI;
Use.set(To);
} while (UI != UE && *UI == User);
// We are iterating over all uses of the From node, so if a use
// doesn't use the specific value, no changes are made.
if (!UserRemovedFromCSEMaps)
continue;
// Now that we have modified User, add it back to the CSE maps. If it
// already exists there, recursively merge the results together.
AddModifiedNodeToCSEMaps(User);
}
// If we just RAUW'd the root, take note.
if (From == getRoot())
setRoot(To);
}
namespace {
/// UseMemo - This class is used by SelectionDAG::ReplaceAllUsesOfValuesWith
/// to record information about a use.
struct UseMemo {
SDNode *User;
unsigned Index;
SDUse *Use;
};
/// operator< - Sort Memos by User.
bool operator<(const UseMemo &L, const UseMemo &R) {
return (intptr_t)L.User < (intptr_t)R.User;
}
}
/// ReplaceAllUsesOfValuesWith - Replace any uses of From with To, leaving
/// uses of other values produced by From.getNode() alone. The same value
/// may appear in both the From and To list. The Deleted vector is
/// handled the same way as for ReplaceAllUsesWith.
void SelectionDAG::ReplaceAllUsesOfValuesWith(const SDValue *From,
const SDValue *To,
unsigned Num){
// Handle the simple, trivial case efficiently.
if (Num == 1)
return ReplaceAllUsesOfValueWith(*From, *To);
// Read up all the uses and make records of them. This helps
// processing new uses that are introduced during the
// replacement process.
SmallVector<UseMemo, 4> Uses;
for (unsigned i = 0; i != Num; ++i) {
unsigned FromResNo = From[i].getResNo();
SDNode *FromNode = From[i].getNode();
for (SDNode::use_iterator UI = FromNode->use_begin(),
E = FromNode->use_end(); UI != E; ++UI) {
SDUse &Use = UI.getUse();
if (Use.getResNo() == FromResNo) {
UseMemo Memo = { *UI, i, &Use };
Uses.push_back(Memo);
}
}
}
// Sort the uses, so that all the uses from a given User are together.
std::sort(Uses.begin(), Uses.end());
for (unsigned UseIndex = 0, UseIndexEnd = Uses.size();
UseIndex != UseIndexEnd; ) {
// We know that this user uses some value of From. If it is the right
// value, update it.
SDNode *User = Uses[UseIndex].User;
// This node is about to morph, remove its old self from the CSE maps.
RemoveNodeFromCSEMaps(User);
// The Uses array is sorted, so all the uses for a given User
// are next to each other in the list.
// To help reduce the number of CSE recomputations, process all
// the uses of this user that we can find this way.
do {
unsigned i = Uses[UseIndex].Index;
SDUse &Use = *Uses[UseIndex].Use;
++UseIndex;
Use.set(To[i]);
} while (UseIndex != UseIndexEnd && Uses[UseIndex].User == User);
// Now that we have modified User, add it back to the CSE maps. If it
// already exists there, recursively merge the results together.
AddModifiedNodeToCSEMaps(User);
}
}
/// AssignTopologicalOrder - Assign a unique node id for each node in the DAG
/// based on their topological order. It returns the maximum id and a vector
/// of the SDNodes* in assigned order by reference.
unsigned SelectionDAG::AssignTopologicalOrder() {
unsigned DAGSize = 0;
// SortedPos tracks the progress of the algorithm. Nodes before it are
// sorted, nodes after it are unsorted. When the algorithm completes
// it is at the end of the list.
allnodes_iterator SortedPos = allnodes_begin();
// Visit all the nodes. Move nodes with no operands to the front of
// the list immediately. Annotate nodes that do have operands with their
// operand count. Before we do this, the Node Id fields of the nodes
// may contain arbitrary values. After, the Node Id fields for nodes
// before SortedPos will contain the topological sort index, and the
// Node Id fields for nodes At SortedPos and after will contain the
// count of outstanding operands.
for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ) {
SDNode *N = I++;
checkForCycles(N);
unsigned Degree = N->getNumOperands();
if (Degree == 0) {
// A node with no uses, add it to the result array immediately.
N->setNodeId(DAGSize++);
allnodes_iterator Q = N;
if (Q != SortedPos)
SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(Q));
assert(SortedPos != AllNodes.end() && "Overran node list");
++SortedPos;
} else {
// Temporarily use the Node Id as scratch space for the degree count.
N->setNodeId(Degree);
}
}
// Visit all the nodes. As we iterate, move nodes into sorted order,
// such that by the time the end is reached all nodes will be sorted.
for (allnodes_iterator I = allnodes_begin(),E = allnodes_end(); I != E; ++I) {
SDNode *N = I;
checkForCycles(N);
// N is in sorted position, so all its uses have one less operand
// that needs to be sorted.
for (SDNode::use_iterator UI = N->use_begin(), UE = N->use_end();
UI != UE; ++UI) {
SDNode *P = *UI;
unsigned Degree = P->getNodeId();
assert(Degree != 0 && "Invalid node degree");
--Degree;
if (Degree == 0) {
// All of P's operands are sorted, so P may sorted now.
P->setNodeId(DAGSize++);
if (P != SortedPos)
SortedPos = AllNodes.insert(SortedPos, AllNodes.remove(P));
assert(SortedPos != AllNodes.end() && "Overran node list");
++SortedPos;
} else {
// Update P's outstanding operand count.
P->setNodeId(Degree);
}
}
if (I == SortedPos) {
#ifndef NDEBUG
SDNode *S = ++I;
dbgs() << "Overran sorted position:\n";
S->dumprFull();
#endif
llvm_unreachable(0);
}
}
assert(SortedPos == AllNodes.end() &&
"Topological sort incomplete!");
assert(AllNodes.front().getOpcode() == ISD::EntryToken &&
"First node in topological sort is not the entry token!");
assert(AllNodes.front().getNodeId() == 0 &&
"First node in topological sort has non-zero id!");
assert(AllNodes.front().getNumOperands() == 0 &&
"First node in topological sort has operands!");
assert(AllNodes.back().getNodeId() == (int)DAGSize-1 &&
"Last node in topologic sort has unexpected id!");
assert(AllNodes.back().use_empty() &&
"Last node in topologic sort has users!");
assert(DAGSize == allnodes_size() && "Node count mismatch!");
return DAGSize;
}
/// AssignOrdering - Assign an order to the SDNode.
void SelectionDAG::AssignOrdering(const SDNode *SD, unsigned Order) {
assert(SD && "Trying to assign an order to a null node!");
Ordering->add(SD, Order);
}
/// GetOrdering - Get the order for the SDNode.
unsigned SelectionDAG::GetOrdering(const SDNode *SD) const {
assert(SD && "Trying to get the order of a null node!");
return Ordering->getOrder(SD);
}
/// AddDbgValue - Add a dbg_value SDNode. If SD is non-null that means the
/// value is produced by SD.
void SelectionDAG::AddDbgValue(SDDbgValue *DB, SDNode *SD, bool isParameter) {
DbgInfo->add(DB, SD, isParameter);
if (SD)
SD->setHasDebugValue(true);
}
/// TransferDbgValues - Transfer SDDbgValues.
void SelectionDAG::TransferDbgValues(SDValue From, SDValue To) {
if (From == To || !From.getNode()->getHasDebugValue())
return;
SDNode *FromNode = From.getNode();
SDNode *ToNode = To.getNode();
ArrayRef<SDDbgValue *> DVs = GetDbgValues(FromNode);
SmallVector<SDDbgValue *, 2> ClonedDVs;
for (ArrayRef<SDDbgValue *>::iterator I = DVs.begin(), E = DVs.end();
I != E; ++I) {
SDDbgValue *Dbg = *I;
if (Dbg->getKind() == SDDbgValue::SDNODE) {
SDDbgValue *Clone = getDbgValue(Dbg->getMDPtr(), ToNode, To.getResNo(),
Dbg->getOffset(), Dbg->getDebugLoc(),
Dbg->getOrder());
ClonedDVs.push_back(Clone);
}
}
for (SmallVector<SDDbgValue *, 2>::iterator I = ClonedDVs.begin(),
E = ClonedDVs.end(); I != E; ++I)
AddDbgValue(*I, ToNode, false);
}
//===----------------------------------------------------------------------===//
// SDNode Class
//===----------------------------------------------------------------------===//
HandleSDNode::~HandleSDNode() {
DropOperands();
}
GlobalAddressSDNode::GlobalAddressSDNode(unsigned Opc, DebugLoc DL,
const GlobalValue *GA,
EVT VT, int64_t o, unsigned char TF)
: SDNode(Opc, DL, getSDVTList(VT)), Offset(o), TargetFlags(TF) {
TheGlobal = GA;
}
MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs, EVT memvt,
MachineMemOperand *mmo)
: SDNode(Opc, dl, VTs), MemoryVT(memvt), MMO(mmo) {
SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
MMO->isNonTemporal(), MMO->isInvariant());
assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
assert(isNonTemporal() == MMO->isNonTemporal() &&
"Non-temporal encoding error!");
assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
}
MemSDNode::MemSDNode(unsigned Opc, DebugLoc dl, SDVTList VTs,
const SDValue *Ops, unsigned NumOps, EVT memvt,
MachineMemOperand *mmo)
: SDNode(Opc, dl, VTs, Ops, NumOps),
MemoryVT(memvt), MMO(mmo) {
SubclassData = encodeMemSDNodeFlags(0, ISD::UNINDEXED, MMO->isVolatile(),
MMO->isNonTemporal(), MMO->isInvariant());
assert(isVolatile() == MMO->isVolatile() && "Volatile encoding error!");
assert(memvt.getStoreSize() == MMO->getSize() && "Size mismatch!");
}
/// Profile - Gather unique data for the node.
///
void SDNode::Profile(FoldingSetNodeID &ID) const {
AddNodeIDNode(ID, this);
}
namespace {
struct EVTArray {
std::vector<EVT> VTs;
EVTArray() {
VTs.reserve(MVT::LAST_VALUETYPE);
for (unsigned i = 0; i < MVT::LAST_VALUETYPE; ++i)
VTs.push_back(MVT((MVT::SimpleValueType)i));
}
};
}
static ManagedStatic<std::set<EVT, EVT::compareRawBits> > EVTs;
static ManagedStatic<EVTArray> SimpleVTArray;
static ManagedStatic<sys::SmartMutex<true> > VTMutex;
/// getValueTypeList - Return a pointer to the specified value type.
///
const EVT *SDNode::getValueTypeList(EVT VT) {
if (VT.isExtended()) {
sys::SmartScopedLock<true> Lock(*VTMutex);
return &(*EVTs->insert(VT).first);
} else {
assert(VT.getSimpleVT() < MVT::LAST_VALUETYPE &&
"Value type out of range!");
return &SimpleVTArray->VTs[VT.getSimpleVT().SimpleTy];
}
}
/// hasNUsesOfValue - Return true if there are exactly NUSES uses of the
/// indicated value. This method ignores uses of other values defined by this
/// operation.
bool SDNode::hasNUsesOfValue(unsigned NUses, unsigned Value) const {
assert(Value < getNumValues() && "Bad value!");
// TODO: Only iterate over uses of a given value of the node
for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI) {
if (UI.getUse().getResNo() == Value) {
if (NUses == 0)
return false;
--NUses;
}
}
// Found exactly the right number of uses?
return NUses == 0;
}
/// hasAnyUseOfValue - Return true if there are any use of the indicated
/// value. This method ignores uses of other values defined by this operation.
bool SDNode::hasAnyUseOfValue(unsigned Value) const {
assert(Value < getNumValues() && "Bad value!");
for (SDNode::use_iterator UI = use_begin(), E = use_end(); UI != E; ++UI)
if (UI.getUse().getResNo() == Value)
return true;
return false;
}
/// isOnlyUserOf - Return true if this node is the only use of N.
///
bool SDNode::isOnlyUserOf(SDNode *N) const {
bool Seen = false;
for (SDNode::use_iterator I = N->use_begin(), E = N->use_end(); I != E; ++I) {
SDNode *User = *I;
if (User == this)
Seen = true;
else
return false;
}
return Seen;
}
/// isOperand - Return true if this node is an operand of N.
///
bool SDValue::isOperandOf(SDNode *N) const {
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
if (*this == N->getOperand(i))
return true;
return false;
}
bool SDNode::isOperandOf(SDNode *N) const {
for (unsigned i = 0, e = N->NumOperands; i != e; ++i)
if (this == N->OperandList[i].getNode())
return true;
return false;
}
/// reachesChainWithoutSideEffects - Return true if this operand (which must
/// be a chain) reaches the specified operand without crossing any
/// side-effecting instructions on any chain path. In practice, this looks
/// through token factors and non-volatile loads. In order to remain efficient,
/// this only looks a couple of nodes in, it does not do an exhaustive search.
bool SDValue::reachesChainWithoutSideEffects(SDValue Dest,
unsigned Depth) const {
if (*this == Dest) return true;
// Don't search too deeply, we just want to be able to see through
// TokenFactor's etc.
if (Depth == 0) return false;
// If this is a token factor, all inputs to the TF happen in parallel. If any
// of the operands of the TF does not reach dest, then we cannot do the xform.
if (getOpcode() == ISD::TokenFactor) {
for (unsigned i = 0, e = getNumOperands(); i != e; ++i)
if (!getOperand(i).reachesChainWithoutSideEffects(Dest, Depth-1))
return false;
return true;
}
// Loads don't have side effects, look through them.
if (LoadSDNode *Ld = dyn_cast<LoadSDNode>(*this)) {
if (!Ld->isVolatile())
return Ld->getChain().reachesChainWithoutSideEffects(Dest, Depth-1);
}
return false;
}
/// hasPredecessor - Return true if N is a predecessor of this node.
/// N is either an operand of this node, or can be reached by recursively
/// traversing up the operands.
/// NOTE: This is an expensive method. Use it carefully.
bool SDNode::hasPredecessor(const SDNode *N) const {
SmallPtrSet<const SDNode *, 32> Visited;
SmallVector<const SDNode *, 16> Worklist;
return hasPredecessorHelper(N, Visited, Worklist);
}
bool SDNode::hasPredecessorHelper(const SDNode *N,
SmallPtrSet<const SDNode *, 32> &Visited,
SmallVector<const SDNode *, 16> &Worklist) const {
if (Visited.empty()) {
Worklist.push_back(this);
} else {
// Take a look in the visited set. If we've already encountered this node
// we needn't search further.
if (Visited.count(N))
return true;
}
// Haven't visited N yet. Continue the search.
while (!Worklist.empty()) {
const SDNode *M = Worklist.pop_back_val();
for (unsigned i = 0, e = M->getNumOperands(); i != e; ++i) {
SDNode *Op = M->getOperand(i).getNode();
if (Visited.insert(Op))
Worklist.push_back(Op);
if (Op == N)
return true;
}
}
return false;
}
uint64_t SDNode::getConstantOperandVal(unsigned Num) const {
assert(Num < NumOperands && "Invalid child # of SDNode!");
return cast<ConstantSDNode>(OperandList[Num])->getZExtValue();
}
SDValue SelectionDAG::UnrollVectorOp(SDNode *N, unsigned ResNE) {
assert(N->getNumValues() == 1 &&
"Can't unroll a vector with multiple results!");
EVT VT = N->getValueType(0);
unsigned NE = VT.getVectorNumElements();
EVT EltVT = VT.getVectorElementType();
DebugLoc dl = N->getDebugLoc();
SmallVector<SDValue, 8> Scalars;
SmallVector<SDValue, 4> Operands(N->getNumOperands());
// If ResNE is 0, fully unroll the vector op.
if (ResNE == 0)
ResNE = NE;
else if (NE > ResNE)
NE = ResNE;
unsigned i;
for (i= 0; i != NE; ++i) {
for (unsigned j = 0, e = N->getNumOperands(); j != e; ++j) {
SDValue Operand = N->getOperand(j);
EVT OperandVT = Operand.getValueType();
if (OperandVT.isVector()) {
// A vector operand; extract a single element.
EVT OperandEltVT = OperandVT.getVectorElementType();
Operands[j] = getNode(ISD::EXTRACT_VECTOR_ELT, dl,
OperandEltVT,
Operand,
getConstant(i, TLI.getPointerTy()));
} else {
// A scalar operand; just use it as is.
Operands[j] = Operand;
}
}
switch (N->getOpcode()) {
default:
Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
&Operands[0], Operands.size()));
break;
case ISD::VSELECT:
Scalars.push_back(getNode(ISD::SELECT, dl, EltVT,
&Operands[0], Operands.size()));
break;
case ISD::SHL:
case ISD::SRA:
case ISD::SRL:
case ISD::ROTL:
case ISD::ROTR:
Scalars.push_back(getNode(N->getOpcode(), dl, EltVT, Operands[0],
getShiftAmountOperand(Operands[0].getValueType(),
Operands[1])));
break;
case ISD::SIGN_EXTEND_INREG:
case ISD::FP_ROUND_INREG: {
EVT ExtVT = cast<VTSDNode>(Operands[1])->getVT().getVectorElementType();
Scalars.push_back(getNode(N->getOpcode(), dl, EltVT,
Operands[0],
getValueType(ExtVT)));
}
}
}
for (; i < ResNE; ++i)
Scalars.push_back(getUNDEF(EltVT));
return getNode(ISD::BUILD_VECTOR, dl,
EVT::getVectorVT(*getContext(), EltVT, ResNE),
&Scalars[0], Scalars.size());
}
/// isConsecutiveLoad - Return true if LD is loading 'Bytes' bytes from a
/// location that is 'Dist' units away from the location that the 'Base' load
/// is loading from.
bool SelectionDAG::isConsecutiveLoad(LoadSDNode *LD, LoadSDNode *Base,
unsigned Bytes, int Dist) const {
if (LD->getChain() != Base->getChain())
return false;
EVT VT = LD->getValueType(0);
if (VT.getSizeInBits() / 8 != Bytes)
return false;
SDValue Loc = LD->getOperand(1);
SDValue BaseLoc = Base->getOperand(1);
if (Loc.getOpcode() == ISD::FrameIndex) {
if (BaseLoc.getOpcode() != ISD::FrameIndex)
return false;
const MachineFrameInfo *MFI = getMachineFunction().getFrameInfo();
int FI = cast<FrameIndexSDNode>(Loc)->getIndex();
int BFI = cast<FrameIndexSDNode>(BaseLoc)->getIndex();
int FS = MFI->getObjectSize(FI);
int BFS = MFI->getObjectSize(BFI);
if (FS != BFS || FS != (int)Bytes) return false;
return MFI->getObjectOffset(FI) == (MFI->getObjectOffset(BFI) + Dist*Bytes);
}
// Handle X+C
if (isBaseWithConstantOffset(Loc) && Loc.getOperand(0) == BaseLoc &&
cast<ConstantSDNode>(Loc.getOperand(1))->getSExtValue() == Dist*Bytes)
return true;
const GlobalValue *GV1 = NULL;
const GlobalValue *GV2 = NULL;
int64_t Offset1 = 0;
int64_t Offset2 = 0;
bool isGA1 = TLI.isGAPlusOffset(Loc.getNode(), GV1, Offset1);
bool isGA2 = TLI.isGAPlusOffset(BaseLoc.getNode(), GV2, Offset2);
if (isGA1 && isGA2 && GV1 == GV2)
return Offset1 == (Offset2 + Dist*Bytes);
return false;
}
/// InferPtrAlignment - Infer alignment of a load / store address. Return 0 if
/// it cannot be inferred.
unsigned SelectionDAG::InferPtrAlignment(SDValue Ptr) const {
// If this is a GlobalAddress + cst, return the alignment.
const GlobalValue *GV;
int64_t GVOffset = 0;
if (TLI.isGAPlusOffset(Ptr.getNode(), GV, GVOffset)) {
unsigned PtrWidth = TLI.getPointerTy().getSizeInBits();
APInt KnownZero(PtrWidth, 0), KnownOne(PtrWidth, 0);
llvm::ComputeMaskedBits(const_cast<GlobalValue*>(GV), KnownZero, KnownOne,
TLI.getDataLayout());
unsigned AlignBits = KnownZero.countTrailingOnes();
unsigned Align = AlignBits ? 1 << std::min(31U, AlignBits) : 0;
if (Align)
return MinAlign(Align, GVOffset);
}
// If this is a direct reference to a stack slot, use information about the
// stack slot's alignment.
int FrameIdx = 1 << 31;
int64_t FrameOffset = 0;
if (FrameIndexSDNode *FI = dyn_cast<FrameIndexSDNode>(Ptr)) {
FrameIdx = FI->getIndex();
} else if (isBaseWithConstantOffset(Ptr) &&
isa<FrameIndexSDNode>(Ptr.getOperand(0))) {
// Handle FI+Cst
FrameIdx = cast<FrameIndexSDNode>(Ptr.getOperand(0))->getIndex();
FrameOffset = Ptr.getConstantOperandVal(1);
}
if (FrameIdx != (1 << 31)) {
const MachineFrameInfo &MFI = *getMachineFunction().getFrameInfo();
unsigned FIInfoAlign = MinAlign(MFI.getObjectAlignment(FrameIdx),
FrameOffset);
return FIInfoAlign;
}
return 0;
}
// getAddressSpace - Return the address space this GlobalAddress belongs to.
unsigned GlobalAddressSDNode::getAddressSpace() const {
return getGlobal()->getType()->getAddressSpace();
}
Type *ConstantPoolSDNode::getType() const {
if (isMachineConstantPoolEntry())
return Val.MachineCPVal->getType();
return Val.ConstVal->getType();
}
bool BuildVectorSDNode::isConstantSplat(APInt &SplatValue,
APInt &SplatUndef,
unsigned &SplatBitSize,
bool &HasAnyUndefs,
unsigned MinSplatBits,
bool isBigEndian) {
EVT VT = getValueType(0);
assert(VT.isVector() && "Expected a vector type");
unsigned sz = VT.getSizeInBits();
if (MinSplatBits > sz)
return false;
SplatValue = APInt(sz, 0);
SplatUndef = APInt(sz, 0);
// Get the bits. Bits with undefined values (when the corresponding element
// of the vector is an ISD::UNDEF value) are set in SplatUndef and cleared
// in SplatValue. If any of the values are not constant, give up and return
// false.
unsigned int nOps = getNumOperands();
assert(nOps > 0 && "isConstantSplat has 0-size build vector");
unsigned EltBitSize = VT.getVectorElementType().getSizeInBits();
for (unsigned j = 0; j < nOps; ++j) {
unsigned i = isBigEndian ? nOps-1-j : j;
SDValue OpVal = getOperand(i);
unsigned BitPos = j * EltBitSize;
if (OpVal.getOpcode() == ISD::UNDEF)
SplatUndef |= APInt::getBitsSet(sz, BitPos, BitPos + EltBitSize);
else if (ConstantSDNode *CN = dyn_cast<ConstantSDNode>(OpVal))
SplatValue |= CN->getAPIntValue().zextOrTrunc(EltBitSize).
zextOrTrunc(sz) << BitPos;
else if (ConstantFPSDNode *CN = dyn_cast<ConstantFPSDNode>(OpVal))
SplatValue |= CN->getValueAPF().bitcastToAPInt().zextOrTrunc(sz) <<BitPos;
else
return false;
}
// The build_vector is all constants or undefs. Find the smallest element
// size that splats the vector.
HasAnyUndefs = (SplatUndef != 0);
while (sz > 8) {
unsigned HalfSize = sz / 2;
APInt HighValue = SplatValue.lshr(HalfSize).trunc(HalfSize);
APInt LowValue = SplatValue.trunc(HalfSize);
APInt HighUndef = SplatUndef.lshr(HalfSize).trunc(HalfSize);
APInt LowUndef = SplatUndef.trunc(HalfSize);
// If the two halves do not match (ignoring undef bits), stop here.
if ((HighValue & ~LowUndef) != (LowValue & ~HighUndef) ||
MinSplatBits > HalfSize)
break;
SplatValue = HighValue | LowValue;
SplatUndef = HighUndef & LowUndef;
sz = HalfSize;
}
SplatBitSize = sz;
return true;
}
bool ShuffleVectorSDNode::isSplatMask(const int *Mask, EVT VT) {
// Find the first non-undef value in the shuffle mask.
unsigned i, e;
for (i = 0, e = VT.getVectorNumElements(); i != e && Mask[i] < 0; ++i)
/* search */;
assert(i != e && "VECTOR_SHUFFLE node with all undef indices!");
// Make sure all remaining elements are either undef or the same as the first
// non-undef value.
for (int Idx = Mask[i]; i != e; ++i)
if (Mask[i] >= 0 && Mask[i] != Idx)
return false;
return true;
}
#ifdef XDEBUG
static void checkForCyclesHelper(const SDNode *N,
SmallPtrSet<const SDNode*, 32> &Visited,
SmallPtrSet<const SDNode*, 32> &Checked) {
// If this node has already been checked, don't check it again.
if (Checked.count(N))
return;
// If a node has already been visited on this depth-first walk, reject it as
// a cycle.
if (!Visited.insert(N)) {
dbgs() << "Offending node:\n";
N->dumprFull();
errs() << "Detected cycle in SelectionDAG\n";
abort();
}
for(unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
checkForCyclesHelper(N->getOperand(i).getNode(), Visited, Checked);
Checked.insert(N);
Visited.erase(N);
}
#endif
void llvm::checkForCycles(const llvm::SDNode *N) {
#ifdef XDEBUG
assert(N && "Checking nonexistant SDNode");
SmallPtrSet<const SDNode*, 32> visited;
SmallPtrSet<const SDNode*, 32> checked;
checkForCyclesHelper(N, visited, checked);
#endif
}
void llvm::checkForCycles(const llvm::SelectionDAG *DAG) {
checkForCycles(DAG->getRoot().getNode());
}