llvm-6502/lib/Target/NVPTX/NVPTXInstrInfo.cpp
Chandler Carruth 0b8c9a80f2 Move all of the header files which are involved in modelling the LLVM IR
into their new header subdirectory: include/llvm/IR. This matches the
directory structure of lib, and begins to correct a long standing point
of file layout clutter in LLVM.

There are still more header files to move here, but I wanted to handle
them in separate commits to make tracking what files make sense at each
layer easier.

The only really questionable files here are the target intrinsic
tablegen files. But that's a battle I'd rather not fight today.

I've updated both CMake and Makefile build systems (I think, and my
tests think, but I may have missed something).

I've also re-sorted the includes throughout the project. I'll be
committing updates to Clang, DragonEgg, and Polly momentarily.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@171366 91177308-0d34-0410-b5e6-96231b3b80d8
2013-01-02 11:36:10 +00:00

327 lines
12 KiB
C++

//===- NVPTXInstrInfo.cpp - NVPTX Instruction Information -----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the NVPTX implementation of the TargetInstrInfo class.
//
//===----------------------------------------------------------------------===//
#include "NVPTX.h"
#include "NVPTXInstrInfo.h"
#include "NVPTXTargetMachine.h"
#define GET_INSTRINFO_CTOR
#include "NVPTXGenInstrInfo.inc"
#include "llvm/IR/Function.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include <cstdio>
using namespace llvm;
// FIXME: Add the subtarget support on this constructor.
NVPTXInstrInfo::NVPTXInstrInfo(NVPTXTargetMachine &tm)
: NVPTXGenInstrInfo(),
TM(tm),
RegInfo(*this, *TM.getSubtargetImpl()) {}
void NVPTXInstrInfo::copyPhysReg (MachineBasicBlock &MBB,
MachineBasicBlock::iterator I, DebugLoc DL,
unsigned DestReg, unsigned SrcReg,
bool KillSrc) const {
if (NVPTX::Int32RegsRegClass.contains(DestReg) &&
NVPTX::Int32RegsRegClass.contains(SrcReg))
BuildMI(MBB, I, DL, get(NVPTX::IMOV32rr), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
else if (NVPTX::Int8RegsRegClass.contains(DestReg) &&
NVPTX::Int8RegsRegClass.contains(SrcReg))
BuildMI(MBB, I, DL, get(NVPTX::IMOV8rr), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
else if (NVPTX::Int1RegsRegClass.contains(DestReg) &&
NVPTX::Int1RegsRegClass.contains(SrcReg))
BuildMI(MBB, I, DL, get(NVPTX::IMOV1rr), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
else if (NVPTX::Float32RegsRegClass.contains(DestReg) &&
NVPTX::Float32RegsRegClass.contains(SrcReg))
BuildMI(MBB, I, DL, get(NVPTX::FMOV32rr), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
else if (NVPTX::Int16RegsRegClass.contains(DestReg) &&
NVPTX::Int16RegsRegClass.contains(SrcReg))
BuildMI(MBB, I, DL, get(NVPTX::IMOV16rr), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
else if (NVPTX::Int64RegsRegClass.contains(DestReg) &&
NVPTX::Int64RegsRegClass.contains(SrcReg))
BuildMI(MBB, I, DL, get(NVPTX::IMOV64rr), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
else if (NVPTX::Float64RegsRegClass.contains(DestReg) &&
NVPTX::Float64RegsRegClass.contains(SrcReg))
BuildMI(MBB, I, DL, get(NVPTX::FMOV64rr), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
else if (NVPTX::V4F32RegsRegClass.contains(DestReg) &&
NVPTX::V4F32RegsRegClass.contains(SrcReg))
BuildMI(MBB, I, DL, get(NVPTX::V4f32Mov), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
else if (NVPTX::V4I32RegsRegClass.contains(DestReg) &&
NVPTX::V4I32RegsRegClass.contains(SrcReg))
BuildMI(MBB, I, DL, get(NVPTX::V4i32Mov), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
else if (NVPTX::V2F32RegsRegClass.contains(DestReg) &&
NVPTX::V2F32RegsRegClass.contains(SrcReg))
BuildMI(MBB, I, DL, get(NVPTX::V2f32Mov), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
else if (NVPTX::V2I32RegsRegClass.contains(DestReg) &&
NVPTX::V2I32RegsRegClass.contains(SrcReg))
BuildMI(MBB, I, DL, get(NVPTX::V2i32Mov), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
else if (NVPTX::V4I8RegsRegClass.contains(DestReg) &&
NVPTX::V4I8RegsRegClass.contains(SrcReg))
BuildMI(MBB, I, DL, get(NVPTX::V4i8Mov), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
else if (NVPTX::V2I8RegsRegClass.contains(DestReg) &&
NVPTX::V2I8RegsRegClass.contains(SrcReg))
BuildMI(MBB, I, DL, get(NVPTX::V2i8Mov), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
else if (NVPTX::V4I16RegsRegClass.contains(DestReg) &&
NVPTX::V4I16RegsRegClass.contains(SrcReg))
BuildMI(MBB, I, DL, get(NVPTX::V4i16Mov), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
else if (NVPTX::V2I16RegsRegClass.contains(DestReg) &&
NVPTX::V2I16RegsRegClass.contains(SrcReg))
BuildMI(MBB, I, DL, get(NVPTX::V2i16Mov), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
else if (NVPTX::V2I64RegsRegClass.contains(DestReg) &&
NVPTX::V2I64RegsRegClass.contains(SrcReg))
BuildMI(MBB, I, DL, get(NVPTX::V2i64Mov), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
else if (NVPTX::V2F64RegsRegClass.contains(DestReg) &&
NVPTX::V2F64RegsRegClass.contains(SrcReg))
BuildMI(MBB, I, DL, get(NVPTX::V2f64Mov), DestReg)
.addReg(SrcReg, getKillRegState(KillSrc));
else {
llvm_unreachable("Don't know how to copy a register");
}
}
bool NVPTXInstrInfo::isMoveInstr(const MachineInstr &MI,
unsigned &SrcReg,
unsigned &DestReg) const {
// Look for the appropriate part of TSFlags
bool isMove = false;
unsigned TSFlags = (MI.getDesc().TSFlags & NVPTX::SimpleMoveMask) >>
NVPTX::SimpleMoveShift;
isMove = (TSFlags == 1);
if (isMove) {
MachineOperand dest = MI.getOperand(0);
MachineOperand src = MI.getOperand(1);
assert(dest.isReg() && "dest of a movrr is not a reg");
assert(src.isReg() && "src of a movrr is not a reg");
SrcReg = src.getReg();
DestReg = dest.getReg();
return true;
}
return false;
}
bool NVPTXInstrInfo::isReadSpecialReg(MachineInstr &MI) const
{
switch (MI.getOpcode()) {
default: return false;
case NVPTX::INT_PTX_SREG_NTID_X:
case NVPTX::INT_PTX_SREG_NTID_Y:
case NVPTX::INT_PTX_SREG_NTID_Z:
case NVPTX::INT_PTX_SREG_TID_X:
case NVPTX::INT_PTX_SREG_TID_Y:
case NVPTX::INT_PTX_SREG_TID_Z:
case NVPTX::INT_PTX_SREG_CTAID_X:
case NVPTX::INT_PTX_SREG_CTAID_Y:
case NVPTX::INT_PTX_SREG_CTAID_Z:
case NVPTX::INT_PTX_SREG_NCTAID_X:
case NVPTX::INT_PTX_SREG_NCTAID_Y:
case NVPTX::INT_PTX_SREG_NCTAID_Z:
case NVPTX::INT_PTX_SREG_WARPSIZE:
return true;
}
}
bool NVPTXInstrInfo::isLoadInstr(const MachineInstr &MI,
unsigned &AddrSpace) const {
bool isLoad = false;
unsigned TSFlags = (MI.getDesc().TSFlags & NVPTX::isLoadMask) >>
NVPTX::isLoadShift;
isLoad = (TSFlags == 1);
if (isLoad)
AddrSpace = getLdStCodeAddrSpace(MI);
return isLoad;
}
bool NVPTXInstrInfo::isStoreInstr(const MachineInstr &MI,
unsigned &AddrSpace) const {
bool isStore = false;
unsigned TSFlags = (MI.getDesc().TSFlags & NVPTX::isStoreMask) >>
NVPTX::isStoreShift;
isStore = (TSFlags == 1);
if (isStore)
AddrSpace = getLdStCodeAddrSpace(MI);
return isStore;
}
bool NVPTXInstrInfo::CanTailMerge(const MachineInstr *MI) const {
unsigned addrspace = 0;
if (MI->getOpcode() == NVPTX::INT_CUDA_SYNCTHREADS)
return false;
if (isLoadInstr(*MI, addrspace))
if (addrspace == NVPTX::PTXLdStInstCode::SHARED)
return false;
if (isStoreInstr(*MI, addrspace))
if (addrspace == NVPTX::PTXLdStInstCode::SHARED)
return false;
return true;
}
/// AnalyzeBranch - Analyze the branching code at the end of MBB, returning
/// true if it cannot be understood (e.g. it's a switch dispatch or isn't
/// implemented for a target). Upon success, this returns false and returns
/// with the following information in various cases:
///
/// 1. If this block ends with no branches (it just falls through to its succ)
/// just return false, leaving TBB/FBB null.
/// 2. If this block ends with only an unconditional branch, it sets TBB to be
/// the destination block.
/// 3. If this block ends with an conditional branch and it falls through to
/// an successor block, it sets TBB to be the branch destination block and a
/// list of operands that evaluate the condition. These
/// operands can be passed to other TargetInstrInfo methods to create new
/// branches.
/// 4. If this block ends with an conditional branch and an unconditional
/// block, it returns the 'true' destination in TBB, the 'false' destination
/// in FBB, and a list of operands that evaluate the condition. These
/// operands can be passed to other TargetInstrInfo methods to create new
/// branches.
///
/// Note that RemoveBranch and InsertBranch must be implemented to support
/// cases where this method returns success.
///
bool NVPTXInstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify) const {
// If the block has no terminators, it just falls into the block after it.
MachineBasicBlock::iterator I = MBB.end();
if (I == MBB.begin() || !isUnpredicatedTerminator(--I))
return false;
// Get the last instruction in the block.
MachineInstr *LastInst = I;
// If there is only one terminator instruction, process it.
if (I == MBB.begin() || !isUnpredicatedTerminator(--I)) {
if (LastInst->getOpcode() == NVPTX::GOTO) {
TBB = LastInst->getOperand(0).getMBB();
return false;
} else if (LastInst->getOpcode() == NVPTX::CBranch) {
// Block ends with fall-through condbranch.
TBB = LastInst->getOperand(1).getMBB();
Cond.push_back(LastInst->getOperand(0));
return false;
}
// Otherwise, don't know what this is.
return true;
}
// Get the instruction before it if it's a terminator.
MachineInstr *SecondLastInst = I;
// If there are three terminators, we don't know what sort of block this is.
if (SecondLastInst && I != MBB.begin() &&
isUnpredicatedTerminator(--I))
return true;
// If the block ends with NVPTX::GOTO and NVPTX:CBranch, handle it.
if (SecondLastInst->getOpcode() == NVPTX::CBranch &&
LastInst->getOpcode() == NVPTX::GOTO) {
TBB = SecondLastInst->getOperand(1).getMBB();
Cond.push_back(SecondLastInst->getOperand(0));
FBB = LastInst->getOperand(0).getMBB();
return false;
}
// If the block ends with two NVPTX:GOTOs, handle it. The second one is not
// executed, so remove it.
if (SecondLastInst->getOpcode() == NVPTX::GOTO &&
LastInst->getOpcode() == NVPTX::GOTO) {
TBB = SecondLastInst->getOperand(0).getMBB();
I = LastInst;
if (AllowModify)
I->eraseFromParent();
return false;
}
// Otherwise, can't handle this.
return true;
}
unsigned NVPTXInstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
MachineBasicBlock::iterator I = MBB.end();
if (I == MBB.begin()) return 0;
--I;
if (I->getOpcode() != NVPTX::GOTO && I->getOpcode() != NVPTX::CBranch)
return 0;
// Remove the branch.
I->eraseFromParent();
I = MBB.end();
if (I == MBB.begin()) return 1;
--I;
if (I->getOpcode() != NVPTX::CBranch)
return 1;
// Remove the branch.
I->eraseFromParent();
return 2;
}
unsigned
NVPTXInstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
MachineBasicBlock *FBB,
const SmallVectorImpl<MachineOperand> &Cond,
DebugLoc DL) const {
// Shouldn't be a fall through.
assert(TBB && "InsertBranch must not be told to insert a fallthrough");
assert((Cond.size() == 1 || Cond.size() == 0) &&
"NVPTX branch conditions have two components!");
// One-way branch.
if (FBB == 0) {
if (Cond.empty()) // Unconditional branch
BuildMI(&MBB, DL, get(NVPTX::GOTO)).addMBB(TBB);
else // Conditional branch
BuildMI(&MBB, DL, get(NVPTX::CBranch))
.addReg(Cond[0].getReg()).addMBB(TBB);
return 1;
}
// Two-way Conditional Branch.
BuildMI(&MBB, DL, get(NVPTX::CBranch))
.addReg(Cond[0].getReg()).addMBB(TBB);
BuildMI(&MBB, DL, get(NVPTX::GOTO)).addMBB(FBB);
return 2;
}