mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-12 02:33:33 +00:00
07cd0ff298
Make LSR ignore GEP's that have loop variant base values, as we currently cannot codegen them git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@22576 91177308-0d34-0410-b5e6-96231b3b80d8
669 lines
26 KiB
C++
669 lines
26 KiB
C++
//===- LoopStrengthReduce.cpp - Strength Reduce GEPs in Loops -------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file was developed by Nate Begeman and is distributed under the
|
|
// University of Illinois Open Source License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass performs a strength reduction on array references inside loops that
|
|
// have as one or more of their components the loop induction variable. This is
|
|
// accomplished by creating a new Value to hold the initial value of the array
|
|
// access for the first iteration, and then creating a new GEP instruction in
|
|
// the loop to increment the value by the appropriate amount.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Scalar.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/Instructions.h"
|
|
#include "llvm/Type.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/Analysis/Dominators.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Support/GetElementPtrTypeIterator.h"
|
|
#include "llvm/Transforms/Utils/Local.h"
|
|
#include "llvm/Target/TargetData.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include <algorithm>
|
|
#include <set>
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
Statistic<> NumReduced ("loop-reduce", "Number of GEPs strength reduced");
|
|
|
|
class GEPCache {
|
|
public:
|
|
GEPCache() : CachedPHINode(0), Map() {}
|
|
|
|
GEPCache *get(Value *v) {
|
|
std::map<Value *, GEPCache>::iterator I = Map.find(v);
|
|
if (I == Map.end())
|
|
I = Map.insert(std::pair<Value *, GEPCache>(v, GEPCache())).first;
|
|
return &I->second;
|
|
}
|
|
|
|
PHINode *CachedPHINode;
|
|
std::map<Value *, GEPCache> Map;
|
|
};
|
|
|
|
struct IVUse {
|
|
/// Users - Keep track of all of the users of this stride as well as the
|
|
/// initial value.
|
|
std::vector<std::pair<SCEVHandle, Instruction*> > Users;
|
|
std::vector<Instruction *> UserOperands;
|
|
|
|
void addUser(SCEVHandle &SH, Instruction *U, Instruction *V) {
|
|
Users.push_back(std::make_pair(SH, U));
|
|
UserOperands.push_back(V);
|
|
}
|
|
};
|
|
|
|
|
|
class LoopStrengthReduce : public FunctionPass {
|
|
LoopInfo *LI;
|
|
DominatorSet *DS;
|
|
ScalarEvolution *SE;
|
|
const TargetData *TD;
|
|
const Type *UIntPtrTy;
|
|
bool Changed;
|
|
unsigned MaxTargetAMSize;
|
|
|
|
/// IVUsesByStride - Keep track of all uses of induction variables that we
|
|
/// are interested in. The key of the map is the stride of the access.
|
|
std::map<Value*, IVUse> IVUsesByStride;
|
|
|
|
/// CastedBasePointers - As we need to lower getelementptr instructions, we
|
|
/// cast the pointer input to uintptr_t. This keeps track of the casted
|
|
/// values for the pointers we have processed so far.
|
|
std::map<Value*, Value*> CastedBasePointers;
|
|
|
|
/// DeadInsts - Keep track of instructions we may have made dead, so that
|
|
/// we can remove them after we are done working.
|
|
std::set<Instruction*> DeadInsts;
|
|
public:
|
|
LoopStrengthReduce(unsigned MTAMS = 1)
|
|
: MaxTargetAMSize(MTAMS) {
|
|
}
|
|
|
|
virtual bool runOnFunction(Function &) {
|
|
LI = &getAnalysis<LoopInfo>();
|
|
DS = &getAnalysis<DominatorSet>();
|
|
SE = &getAnalysis<ScalarEvolution>();
|
|
TD = &getAnalysis<TargetData>();
|
|
UIntPtrTy = TD->getIntPtrType();
|
|
Changed = false;
|
|
|
|
for (LoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I)
|
|
runOnLoop(*I);
|
|
return Changed;
|
|
}
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesCFG();
|
|
AU.addRequiredID(LoopSimplifyID);
|
|
AU.addRequired<LoopInfo>();
|
|
AU.addRequired<DominatorSet>();
|
|
AU.addRequired<TargetData>();
|
|
AU.addRequired<ScalarEvolution>();
|
|
}
|
|
private:
|
|
void runOnLoop(Loop *L);
|
|
bool AddUsersIfInteresting(Instruction *I, Loop *L);
|
|
void AnalyzeGetElementPtrUsers(GetElementPtrInst *GEP, Instruction *I,
|
|
Loop *L);
|
|
|
|
void StrengthReduceStridedIVUsers(Value *Stride, IVUse &Uses, Loop *L,
|
|
bool isOnlyStride);
|
|
|
|
void strengthReduceGEP(GetElementPtrInst *GEPI, Loop *L,
|
|
GEPCache* GEPCache,
|
|
Instruction *InsertBefore,
|
|
std::set<Instruction*> &DeadInsts);
|
|
void DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts);
|
|
};
|
|
RegisterOpt<LoopStrengthReduce> X("loop-reduce",
|
|
"Strength Reduce GEP Uses of Ind. Vars");
|
|
}
|
|
|
|
FunctionPass *llvm::createLoopStrengthReducePass(unsigned MaxTargetAMSize) {
|
|
return new LoopStrengthReduce(MaxTargetAMSize);
|
|
}
|
|
|
|
/// DeleteTriviallyDeadInstructions - If any of the instructions is the
|
|
/// specified set are trivially dead, delete them and see if this makes any of
|
|
/// their operands subsequently dead.
|
|
void LoopStrengthReduce::
|
|
DeleteTriviallyDeadInstructions(std::set<Instruction*> &Insts) {
|
|
while (!Insts.empty()) {
|
|
Instruction *I = *Insts.begin();
|
|
Insts.erase(Insts.begin());
|
|
if (isInstructionTriviallyDead(I)) {
|
|
for (unsigned i = 0, e = I->getNumOperands(); i != e; ++i)
|
|
if (Instruction *U = dyn_cast<Instruction>(I->getOperand(i)))
|
|
Insts.insert(U);
|
|
I->getParent()->getInstList().erase(I);
|
|
Changed = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
/// CanReduceSCEV - Return true if we can strength reduce this scalar evolution
|
|
/// in the specified loop.
|
|
static bool CanReduceSCEV(const SCEVHandle &SH, Loop *L) {
|
|
SCEVAddRecExpr *AddRec = dyn_cast<SCEVAddRecExpr>(SH);
|
|
if (!AddRec || AddRec->getLoop() != L) return false;
|
|
|
|
// FIXME: Generalize to non-affine IV's.
|
|
if (!AddRec->isAffine()) return false;
|
|
|
|
// FIXME: generalize to IV's with more complex strides (must emit stride
|
|
// expression outside of loop!)
|
|
if (isa<SCEVConstant>(AddRec->getOperand(1)))
|
|
return true;
|
|
|
|
// We handle steps by unsigned values, because we know we won't have to insert
|
|
// a cast for them.
|
|
if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(AddRec->getOperand(1)))
|
|
if (SU->getValue()->getType()->isUnsigned())
|
|
return true;
|
|
|
|
// Otherwise, no, we can't handle it yet.
|
|
return false;
|
|
}
|
|
|
|
|
|
/// GetAdjustedIndex - Adjust the specified GEP sequential type index to match
|
|
/// the size of the pointer type, and scale it by the type size.
|
|
static SCEVHandle GetAdjustedIndex(const SCEVHandle &Idx, uint64_t TySize,
|
|
const Type *UIntPtrTy) {
|
|
SCEVHandle Result = Idx;
|
|
if (Result->getType()->getUnsignedVersion() != UIntPtrTy) {
|
|
if (UIntPtrTy->getPrimitiveSize() < Result->getType()->getPrimitiveSize())
|
|
Result = SCEVTruncateExpr::get(Result, UIntPtrTy);
|
|
else
|
|
Result = SCEVZeroExtendExpr::get(Result, UIntPtrTy);
|
|
}
|
|
|
|
// This index is scaled by the type size being indexed.
|
|
if (TySize != 1)
|
|
Result = SCEVMulExpr::get(Result,
|
|
SCEVConstant::get(ConstantUInt::get(UIntPtrTy,
|
|
TySize)));
|
|
return Result;
|
|
}
|
|
|
|
/// AnalyzeGetElementPtrUsers - Analyze all of the users of the specified
|
|
/// getelementptr instruction, adding them to the IVUsesByStride table. Note
|
|
/// that we only want to analyze a getelementptr instruction once, and it can
|
|
/// have multiple operands that are uses of the indvar (e.g. A[i][i]). Because
|
|
/// of this, we only process a GEP instruction if its first recurrent operand is
|
|
/// "op", otherwise we will either have already processed it or we will sometime
|
|
/// later.
|
|
void LoopStrengthReduce::AnalyzeGetElementPtrUsers(GetElementPtrInst *GEP,
|
|
Instruction *Op, Loop *L) {
|
|
// Analyze all of the subscripts of this getelementptr instruction, looking
|
|
// for uses that are determined by the trip count of L. First, skip all
|
|
// operands the are not dependent on the IV.
|
|
|
|
// Build up the base expression. Insert an LLVM cast of the pointer to
|
|
// uintptr_t first.
|
|
Value *BasePtr;
|
|
if (Constant *CB = dyn_cast<Constant>(GEP->getOperand(0)))
|
|
BasePtr = ConstantExpr::getCast(CB, UIntPtrTy);
|
|
else {
|
|
Value *&BP = CastedBasePointers[GEP->getOperand(0)];
|
|
if (BP == 0) {
|
|
BasicBlock::iterator InsertPt;
|
|
if (isa<Argument>(GEP->getOperand(0))) {
|
|
InsertPt = GEP->getParent()->getParent()->begin()->begin();
|
|
} else {
|
|
InsertPt = cast<Instruction>(GEP->getOperand(0));
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(GEP->getOperand(0)))
|
|
InsertPt = II->getNormalDest()->begin();
|
|
else
|
|
++InsertPt;
|
|
}
|
|
BP = new CastInst(GEP->getOperand(0), UIntPtrTy,
|
|
GEP->getOperand(0)->getName(), InsertPt);
|
|
}
|
|
BasePtr = BP;
|
|
}
|
|
|
|
SCEVHandle Base = SCEVUnknown::get(BasePtr);
|
|
|
|
gep_type_iterator GTI = gep_type_begin(GEP);
|
|
unsigned i = 1;
|
|
for (; GEP->getOperand(i) != Op; ++i, ++GTI) {
|
|
// If this is a use of a recurrence that we can analyze, and it comes before
|
|
// Op does in the GEP operand list, we will handle this when we process this
|
|
// operand.
|
|
if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
|
|
const StructLayout *SL = TD->getStructLayout(STy);
|
|
unsigned Idx = cast<ConstantUInt>(GEP->getOperand(i))->getValue();
|
|
uint64_t Offset = SL->MemberOffsets[Idx];
|
|
Base = SCEVAddExpr::get(Base, SCEVUnknown::getIntegerSCEV(Offset,
|
|
UIntPtrTy));
|
|
} else {
|
|
SCEVHandle Idx = SE->getSCEV(GEP->getOperand(i));
|
|
|
|
// If this operand is reducible, and it's not the one we are looking at
|
|
// currently, do not process the GEP at this time.
|
|
if (CanReduceSCEV(Idx, L))
|
|
return;
|
|
Base = SCEVAddExpr::get(Base, GetAdjustedIndex(Idx,
|
|
TD->getTypeSize(GTI.getIndexedType()), UIntPtrTy));
|
|
}
|
|
}
|
|
|
|
// Get the index, convert it to intptr_t.
|
|
SCEVHandle GEPIndexExpr =
|
|
GetAdjustedIndex(SE->getSCEV(Op), TD->getTypeSize(GTI.getIndexedType()),
|
|
UIntPtrTy);
|
|
|
|
// Process all remaining subscripts in the GEP instruction.
|
|
for (++i, ++GTI; i != GEP->getNumOperands(); ++i, ++GTI)
|
|
if (const StructType *STy = dyn_cast<StructType>(*GTI)) {
|
|
const StructLayout *SL = TD->getStructLayout(STy);
|
|
unsigned Idx = cast<ConstantUInt>(GEP->getOperand(i))->getValue();
|
|
uint64_t Offset = SL->MemberOffsets[Idx];
|
|
Base = SCEVAddExpr::get(Base, SCEVUnknown::getIntegerSCEV(Offset,
|
|
UIntPtrTy));
|
|
} else {
|
|
SCEVHandle Idx = SE->getSCEV(GEP->getOperand(i));
|
|
if (CanReduceSCEV(Idx, L)) { // Another IV subscript
|
|
GEPIndexExpr = SCEVAddExpr::get(GEPIndexExpr,
|
|
GetAdjustedIndex(Idx, TD->getTypeSize(GTI.getIndexedType()),
|
|
UIntPtrTy));
|
|
assert(CanReduceSCEV(GEPIndexExpr, L) &&
|
|
"Cannot reduce the sum of two reducible SCEV's??");
|
|
} else {
|
|
Base = SCEVAddExpr::get(Base, GetAdjustedIndex(Idx,
|
|
TD->getTypeSize(GTI.getIndexedType()), UIntPtrTy));
|
|
}
|
|
}
|
|
|
|
assert(CanReduceSCEV(GEPIndexExpr, L) && "Non reducible idx??");
|
|
|
|
// FIXME: If the base is not loop invariant, we currently cannot emit this.
|
|
if (!Base->isLoopInvariant(L)) {
|
|
DEBUG(std::cerr << "IGNORING GEP due to non-invaiant base: "
|
|
<< *Base << "\n");
|
|
return;
|
|
}
|
|
|
|
Base = SCEVAddExpr::get(Base, cast<SCEVAddRecExpr>(GEPIndexExpr)->getStart());
|
|
SCEVHandle Stride = cast<SCEVAddRecExpr>(GEPIndexExpr)->getOperand(1);
|
|
|
|
DEBUG(std::cerr << "GEP BASE : " << *Base << "\n");
|
|
DEBUG(std::cerr << "GEP STRIDE: " << *Stride << "\n");
|
|
|
|
Value *Step = 0; // Step of ISE.
|
|
if (SCEVConstant *SC = dyn_cast<SCEVConstant>(Stride))
|
|
/// Always get the step value as an unsigned value.
|
|
Step = ConstantExpr::getCast(SC->getValue(),
|
|
SC->getValue()->getType()->getUnsignedVersion());
|
|
else
|
|
Step = cast<SCEVUnknown>(Stride)->getValue();
|
|
assert(Step->getType()->isUnsigned() && "Bad step value!");
|
|
|
|
|
|
// Now that we know the base and stride contributed by the GEP instruction,
|
|
// process all users.
|
|
for (Value::use_iterator UI = GEP->use_begin(), E = GEP->use_end();
|
|
UI != E; ++UI) {
|
|
Instruction *User = cast<Instruction>(*UI);
|
|
|
|
// Do not infinitely recurse on PHI nodes.
|
|
if (isa<PHINode>(User) && User->getParent() == L->getHeader())
|
|
continue;
|
|
|
|
// If this is an instruction defined in a nested loop, or outside this loop,
|
|
// don't mess with it.
|
|
if (LI->getLoopFor(User->getParent()) != L)
|
|
continue;
|
|
|
|
DEBUG(std::cerr << "FOUND USER: " << *User
|
|
<< " OF STRIDE: " << *Step << " BASE = " << *Base << "\n");
|
|
|
|
|
|
// Okay, we found a user that we cannot reduce. Analyze the instruction
|
|
// and decide what to do with it.
|
|
IVUsesByStride[Step].addUser(Base, User, GEP);
|
|
}
|
|
}
|
|
|
|
/// AddUsersIfInteresting - Inspect the specified instruction. If it is a
|
|
/// reducible SCEV, recursively add its users to the IVUsesByStride set and
|
|
/// return true. Otherwise, return false.
|
|
bool LoopStrengthReduce::AddUsersIfInteresting(Instruction *I, Loop *L) {
|
|
if (I->getType() == Type::VoidTy) return false;
|
|
SCEVHandle ISE = SE->getSCEV(I);
|
|
if (!CanReduceSCEV(ISE, L)) return false;
|
|
|
|
SCEVAddRecExpr *AR = cast<SCEVAddRecExpr>(ISE);
|
|
SCEVHandle Start = AR->getStart();
|
|
|
|
// Get the step value, canonicalizing to an unsigned integer type so that
|
|
// lookups in the map will match.
|
|
Value *Step = 0; // Step of ISE.
|
|
if (SCEVConstant *SC = dyn_cast<SCEVConstant>(AR->getOperand(1)))
|
|
/// Always get the step value as an unsigned value.
|
|
Step = ConstantExpr::getCast(SC->getValue(),
|
|
SC->getValue()->getType()->getUnsignedVersion());
|
|
else
|
|
Step = cast<SCEVUnknown>(AR->getOperand(1))->getValue();
|
|
assert(Step->getType()->isUnsigned() && "Bad step value!");
|
|
|
|
std::set<GetElementPtrInst*> AnalyzedGEPs;
|
|
|
|
for (Value::use_iterator UI = I->use_begin(), E = I->use_end(); UI != E;++UI){
|
|
Instruction *User = cast<Instruction>(*UI);
|
|
|
|
// Do not infinitely recurse on PHI nodes.
|
|
if (isa<PHINode>(User) && User->getParent() == L->getHeader())
|
|
continue;
|
|
|
|
// If this is an instruction defined in a nested loop, or outside this loop,
|
|
// don't mess with it.
|
|
if (LI->getLoopFor(User->getParent()) != L)
|
|
continue;
|
|
|
|
// Next, see if this user is analyzable itself!
|
|
if (!AddUsersIfInteresting(User, L)) {
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(User)) {
|
|
// If this is a getelementptr instruction, figure out what linear
|
|
// expression of induction variable is actually being used.
|
|
//
|
|
if (AnalyzedGEPs.insert(GEP).second) // Not already analyzed?
|
|
AnalyzeGetElementPtrUsers(GEP, I, L);
|
|
} else {
|
|
DEBUG(std::cerr << "FOUND USER: " << *User
|
|
<< " OF SCEV: " << *ISE << "\n");
|
|
|
|
// Okay, we found a user that we cannot reduce. Analyze the instruction
|
|
// and decide what to do with it.
|
|
IVUsesByStride[Step].addUser(Start, User, I);
|
|
}
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
namespace {
|
|
/// BasedUser - For a particular base value, keep information about how we've
|
|
/// partitioned the expression so far.
|
|
struct BasedUser {
|
|
/// Inst - The instruction using the induction variable.
|
|
Instruction *Inst;
|
|
|
|
/// Op - The value to replace with the EmittedBase.
|
|
Value *Op;
|
|
|
|
/// Imm - The immediate value that should be added to the base immediately
|
|
/// before Inst, because it will be folded into the imm field of the
|
|
/// instruction.
|
|
SCEVHandle Imm;
|
|
|
|
/// EmittedBase - The actual value* to use for the base value of this
|
|
/// operation. This is null if we should just use zero so far.
|
|
Value *EmittedBase;
|
|
|
|
BasedUser(Instruction *I, Value *V, const SCEVHandle &IMM)
|
|
: Inst(I), Op(V), Imm(IMM), EmittedBase(0) {}
|
|
|
|
|
|
// No need to compare these.
|
|
bool operator<(const BasedUser &BU) const { return 0; }
|
|
|
|
void dump() const;
|
|
};
|
|
}
|
|
|
|
void BasedUser::dump() const {
|
|
std::cerr << " Imm=" << *Imm;
|
|
if (EmittedBase)
|
|
std::cerr << " EB=" << *EmittedBase;
|
|
|
|
std::cerr << " Inst: " << *Inst;
|
|
}
|
|
|
|
/// isTargetConstant - Return true if the following can be referenced by the
|
|
/// immediate field of a target instruction.
|
|
static bool isTargetConstant(const SCEVHandle &V) {
|
|
|
|
// FIXME: Look at the target to decide if &GV is a legal constant immediate.
|
|
if (isa<SCEVConstant>(V)) return true;
|
|
|
|
return false; // ENABLE this for x86
|
|
|
|
if (SCEVUnknown *SU = dyn_cast<SCEVUnknown>(V))
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(SU->getValue()))
|
|
if (CE->getOpcode() == Instruction::Cast)
|
|
if (isa<GlobalValue>(CE->getOperand(0)))
|
|
// FIXME: should check to see that the dest is uintptr_t!
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// GetImmediateValues - Look at Val, and pull out any additions of constants
|
|
/// that can fit into the immediate field of instructions in the target.
|
|
static SCEVHandle GetImmediateValues(SCEVHandle Val, bool isAddress) {
|
|
if (!isAddress)
|
|
return SCEVUnknown::getIntegerSCEV(0, Val->getType());
|
|
if (isTargetConstant(Val))
|
|
return Val;
|
|
|
|
SCEVAddExpr *SAE = dyn_cast<SCEVAddExpr>(Val);
|
|
if (SAE) {
|
|
unsigned i = 0;
|
|
for (; i != SAE->getNumOperands(); ++i)
|
|
if (isTargetConstant(SAE->getOperand(i))) {
|
|
SCEVHandle ImmVal = SAE->getOperand(i);
|
|
|
|
// If there are any other immediates that we can handle here, pull them
|
|
// out too.
|
|
for (++i; i != SAE->getNumOperands(); ++i)
|
|
if (isTargetConstant(SAE->getOperand(i)))
|
|
ImmVal = SCEVAddExpr::get(ImmVal, SAE->getOperand(i));
|
|
return ImmVal;
|
|
}
|
|
}
|
|
|
|
return SCEVUnknown::getIntegerSCEV(0, Val->getType());
|
|
}
|
|
|
|
/// StrengthReduceStridedIVUsers - Strength reduce all of the users of a single
|
|
/// stride of IV. All of the users may have different starting values, and this
|
|
/// may not be the only stride (we know it is if isOnlyStride is true).
|
|
void LoopStrengthReduce::StrengthReduceStridedIVUsers(Value *Stride,
|
|
IVUse &Uses, Loop *L,
|
|
bool isOnlyStride) {
|
|
// Transform our list of users and offsets to a bit more complex table. In
|
|
// this new vector, the first entry for each element is the base of the
|
|
// strided access, and the second is the BasedUser object for the use. We
|
|
// progressively move information from the first to the second entry, until we
|
|
// eventually emit the object.
|
|
std::vector<std::pair<SCEVHandle, BasedUser> > UsersToProcess;
|
|
UsersToProcess.reserve(Uses.Users.size());
|
|
|
|
SCEVHandle ZeroBase = SCEVUnknown::getIntegerSCEV(0,
|
|
Uses.Users[0].first->getType());
|
|
|
|
for (unsigned i = 0, e = Uses.Users.size(); i != e; ++i)
|
|
UsersToProcess.push_back(std::make_pair(Uses.Users[i].first,
|
|
BasedUser(Uses.Users[i].second,
|
|
Uses.UserOperands[i],
|
|
ZeroBase)));
|
|
|
|
// First pass, figure out what we can represent in the immediate fields of
|
|
// instructions. If we can represent anything there, move it to the imm
|
|
// fields of the BasedUsers.
|
|
for (unsigned i = 0, e = UsersToProcess.size(); i != e; ++i) {
|
|
bool isAddress = isa<LoadInst>(UsersToProcess[i].second.Inst) ||
|
|
isa<StoreInst>(UsersToProcess[i].second.Inst);
|
|
UsersToProcess[i].second.Imm = GetImmediateValues(UsersToProcess[i].first,
|
|
isAddress);
|
|
UsersToProcess[i].first = SCEV::getMinusSCEV(UsersToProcess[i].first,
|
|
UsersToProcess[i].second.Imm);
|
|
|
|
DEBUG(std::cerr << "BASE: " << *UsersToProcess[i].first);
|
|
DEBUG(UsersToProcess[i].second.dump());
|
|
}
|
|
|
|
SCEVExpander Rewriter(*SE, *LI);
|
|
BasicBlock *Preheader = L->getLoopPreheader();
|
|
Instruction *PreInsertPt = Preheader->getTerminator();
|
|
Instruction *PhiInsertBefore = L->getHeader()->begin();
|
|
|
|
assert(isa<PHINode>(PhiInsertBefore) &&
|
|
"How could this loop have IV's without any phis?");
|
|
PHINode *SomeLoopPHI = cast<PHINode>(PhiInsertBefore);
|
|
assert(SomeLoopPHI->getNumIncomingValues() == 2 &&
|
|
"This loop isn't canonicalized right");
|
|
BasicBlock *LatchBlock =
|
|
SomeLoopPHI->getIncomingBlock(SomeLoopPHI->getIncomingBlock(0) == Preheader);
|
|
|
|
// FIXME: This loop needs increasing levels of intelligence.
|
|
// STAGE 0: just emit everything as its own base. <-- We are here
|
|
// STAGE 1: factor out common vars from bases, and try and push resulting
|
|
// constants into Imm field.
|
|
// STAGE 2: factor out large constants to try and make more constants
|
|
// acceptable for target loads and stores.
|
|
std::sort(UsersToProcess.begin(), UsersToProcess.end());
|
|
|
|
while (!UsersToProcess.empty()) {
|
|
// Create a new Phi for this base, and stick it in the loop header.
|
|
Value *Replaced = UsersToProcess.front().second.Op;
|
|
const Type *ReplacedTy = Replaced->getType();
|
|
PHINode *NewPHI = new PHINode(ReplacedTy, Replaced->getName()+".str",
|
|
PhiInsertBefore);
|
|
|
|
// Emit the initial base value into the loop preheader, and add it to the
|
|
// Phi node.
|
|
Value *BaseV = Rewriter.expandCodeFor(UsersToProcess.front().first,
|
|
PreInsertPt, ReplacedTy);
|
|
NewPHI->addIncoming(BaseV, Preheader);
|
|
|
|
// Emit the increment of the base value before the terminator of the loop
|
|
// latch block, and add it to the Phi node.
|
|
SCEVHandle Inc = SCEVAddExpr::get(SCEVUnknown::get(NewPHI),
|
|
SCEVUnknown::get(Stride));
|
|
|
|
Value *IncV = Rewriter.expandCodeFor(Inc, LatchBlock->getTerminator(),
|
|
ReplacedTy);
|
|
IncV->setName(NewPHI->getName()+".inc");
|
|
NewPHI->addIncoming(IncV, LatchBlock);
|
|
|
|
// Emit the code to add the immediate offset to the Phi value, just before
|
|
// the instruction that we identified as using this stride and base.
|
|
// First, empty the SCEVExpander's expression map so that we are guaranteed
|
|
// to have the code emitted where we expect it.
|
|
Rewriter.clear();
|
|
SCEVHandle NewValSCEV = SCEVAddExpr::get(SCEVUnknown::get(NewPHI),
|
|
UsersToProcess.front().second.Imm);
|
|
Value *newVal = Rewriter.expandCodeFor(NewValSCEV,
|
|
UsersToProcess.front().second.Inst,
|
|
ReplacedTy);
|
|
|
|
// Replace the use of the operand Value with the new Phi we just created.
|
|
DEBUG(std::cerr << "REPLACING: " << *Replaced << "IN: " <<
|
|
*UsersToProcess.front().second.Inst << "WITH: "<< *newVal << '\n');
|
|
UsersToProcess.front().second.Inst->replaceUsesOfWith(Replaced, newVal);
|
|
|
|
// Mark old value we replaced as possibly dead, so that it is elminated
|
|
// if we just replaced the last use of that value.
|
|
DeadInsts.insert(cast<Instruction>(Replaced));
|
|
|
|
UsersToProcess.erase(UsersToProcess.begin());
|
|
++NumReduced;
|
|
|
|
// TODO: Next, find out which base index is the most common, pull it out.
|
|
}
|
|
|
|
// IMPORTANT TODO: Figure out how to partition the IV's with this stride, but
|
|
// different starting values, into different PHIs.
|
|
|
|
// BEFORE writing this, it's probably useful to handle GEP's.
|
|
|
|
// NOTE: pull all constants together, for REG+IMM addressing, include &GV in
|
|
// 'IMM' if the target supports it.
|
|
}
|
|
|
|
|
|
void LoopStrengthReduce::runOnLoop(Loop *L) {
|
|
// First step, transform all loops nesting inside of this loop.
|
|
for (LoopInfo::iterator I = L->begin(), E = L->end(); I != E; ++I)
|
|
runOnLoop(*I);
|
|
|
|
// Next, find all uses of induction variables in this loop, and catagorize
|
|
// them by stride. Start by finding all of the PHI nodes in the header for
|
|
// this loop. If they are induction variables, inspect their uses.
|
|
for (BasicBlock::iterator I = L->getHeader()->begin(); isa<PHINode>(I); ++I)
|
|
AddUsersIfInteresting(I, L);
|
|
|
|
// If we have nothing to do, return.
|
|
//if (IVUsesByStride.empty()) return;
|
|
|
|
// FIXME: We can widen subreg IV's here for RISC targets. e.g. instead of
|
|
// doing computation in byte values, promote to 32-bit values if safe.
|
|
|
|
// FIXME: Attempt to reuse values across multiple IV's. In particular, we
|
|
// could have something like "for(i) { foo(i*8); bar(i*16) }", which should be
|
|
// codegened as "for (j = 0;; j+=8) { foo(j); bar(j+j); }" on X86/PPC. Need
|
|
// to be careful that IV's are all the same type. Only works for intptr_t
|
|
// indvars.
|
|
|
|
// If we only have one stride, we can more aggressively eliminate some things.
|
|
bool HasOneStride = IVUsesByStride.size() == 1;
|
|
|
|
for (std::map<Value*, IVUse>::iterator SI = IVUsesByStride.begin(),
|
|
E = IVUsesByStride.end(); SI != E; ++SI)
|
|
StrengthReduceStridedIVUsers(SI->first, SI->second, L, HasOneStride);
|
|
|
|
// Clean up after ourselves
|
|
if (!DeadInsts.empty()) {
|
|
DeleteTriviallyDeadInstructions(DeadInsts);
|
|
|
|
BasicBlock::iterator I = L->getHeader()->begin();
|
|
PHINode *PN;
|
|
for (; (PN = dyn_cast<PHINode>(I)); ) {
|
|
++I; // Preincrement iterator to avoid invalidating it when deleting PN.
|
|
|
|
// At this point, we know that we have killed one or more GEP instructions.
|
|
// It is worth checking to see if the cann indvar is also dead, so that we
|
|
// can remove it as well. The requirements for the cann indvar to be
|
|
// considered dead are:
|
|
// 1. the cann indvar has one use
|
|
// 2. the use is an add instruction
|
|
// 3. the add has one use
|
|
// 4. the add is used by the cann indvar
|
|
// If all four cases above are true, then we can remove both the add and
|
|
// the cann indvar.
|
|
// FIXME: this needs to eliminate an induction variable even if it's being
|
|
// compared against some value to decide loop termination.
|
|
if (PN->hasOneUse()) {
|
|
BinaryOperator *BO = dyn_cast<BinaryOperator>(*(PN->use_begin()));
|
|
if (BO && BO->getOpcode() == Instruction::Add)
|
|
if (BO->hasOneUse()) {
|
|
if (PN == dyn_cast<PHINode>(*(BO->use_begin()))) {
|
|
DeadInsts.insert(BO);
|
|
// Break the cycle, then delete the PHI.
|
|
PN->replaceAllUsesWith(UndefValue::get(PN->getType()));
|
|
PN->eraseFromParent();
|
|
}
|
|
}
|
|
}
|
|
}
|
|
DeleteTriviallyDeadInstructions(DeadInsts);
|
|
}
|
|
|
|
IVUsesByStride.clear();
|
|
return;
|
|
}
|