llvm-6502/include/llvm/IR/Attributes.h
Sanjoy Das 5ff5907996 [IR] Introduce a dereferenceable_or_null(N) attribute.
Summary:
If a pointer is marked as dereferenceable_or_null(N), LLVM assumes it
is either `null` or `dereferenceable(N)` or both.  This change only
introduces the attribute and adds a token test case for the `llvm-as`
/ `llvm-dis`.  It does not hook up other parts of the optimizer to
actually exploit the attribute -- those changes will come later.

For pointers in address space 0, `dereferenceable(N)` is now exactly
equivalent to `dereferenceable_or_null(N)` && `nonnull`.  For other
address spaces, `dereferenceable(N)` is potentially weaker than
`dereferenceable_or_null(N)` && `nonnull` (since we could have a null
`dereferenceable(N)` pointer).

The motivating case for this change is Java (and other managed
languages), where pointers are either `null` or dereferenceable up to
some usually known-at-compile-time constant offset.

Reviewers: rafael, hfinkel

Reviewed By: hfinkel

Subscribers: nicholas, llvm-commits

Differential Revision: http://reviews.llvm.org/D8650

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@235132 91177308-0d34-0410-b5e6-96231b3b80d8
2015-04-16 20:29:50 +00:00

562 lines
23 KiB
C++

//===-- llvm/Attributes.h - Container for Attributes ------------*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
///
/// \file
/// \brief This file contains the simple types necessary to represent the
/// attributes associated with functions and their calls.
///
//===----------------------------------------------------------------------===//
#ifndef LLVM_IR_ATTRIBUTES_H
#define LLVM_IR_ATTRIBUTES_H
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/PointerLikeTypeTraits.h"
#include <bitset>
#include <cassert>
#include <map>
#include <string>
namespace llvm {
class AttrBuilder;
class AttributeImpl;
class AttributeSetImpl;
class AttributeSetNode;
class Constant;
template<typename T> struct DenseMapInfo;
class LLVMContext;
class Type;
//===----------------------------------------------------------------------===//
/// \class
/// \brief Functions, function parameters, and return types can have attributes
/// to indicate how they should be treated by optimizations and code
/// generation. This class represents one of those attributes. It's light-weight
/// and should be passed around by-value.
class Attribute {
public:
/// This enumeration lists the attributes that can be associated with
/// parameters, function results, or the function itself.
///
/// Note: The `uwtable' attribute is about the ABI or the user mandating an
/// entry in the unwind table. The `nounwind' attribute is about an exception
/// passing by the function.
///
/// In a theoretical system that uses tables for profiling and SjLj for
/// exceptions, they would be fully independent. In a normal system that uses
/// tables for both, the semantics are:
///
/// nil = Needs an entry because an exception might pass by.
/// nounwind = No need for an entry
/// uwtable = Needs an entry because the ABI says so and because
/// an exception might pass by.
/// uwtable + nounwind = Needs an entry because the ABI says so.
enum AttrKind {
// IR-Level Attributes
None, ///< No attributes have been set
Alignment, ///< Alignment of parameter (5 bits)
///< stored as log2 of alignment with +1 bias
///< 0 means unaligned (different from align(1))
AlwaysInline, ///< inline=always
Builtin, ///< Callee is recognized as a builtin, despite
///< nobuiltin attribute on its declaration.
ByVal, ///< Pass structure by value
InAlloca, ///< Pass structure in an alloca
Cold, ///< Marks function as being in a cold path.
InlineHint, ///< Source said inlining was desirable
InReg, ///< Force argument to be passed in register
JumpTable, ///< Build jump-instruction tables and replace refs.
MinSize, ///< Function must be optimized for size first
Naked, ///< Naked function
Nest, ///< Nested function static chain
NoAlias, ///< Considered to not alias after call
NoBuiltin, ///< Callee isn't recognized as a builtin
NoCapture, ///< Function creates no aliases of pointer
NoDuplicate, ///< Call cannot be duplicated
NoImplicitFloat, ///< Disable implicit floating point insts
NoInline, ///< inline=never
NonLazyBind, ///< Function is called early and/or
///< often, so lazy binding isn't worthwhile
NonNull, ///< Pointer is known to be not null
Dereferenceable, ///< Pointer is known to be dereferenceable
DereferenceableOrNull, ///< Pointer is either null or dereferenceable
NoRedZone, ///< Disable redzone
NoReturn, ///< Mark the function as not returning
NoUnwind, ///< Function doesn't unwind stack
OptimizeForSize, ///< opt_size
OptimizeNone, ///< Function must not be optimized.
ReadNone, ///< Function does not access memory
ReadOnly, ///< Function only reads from memory
Returned, ///< Return value is always equal to this argument
ReturnsTwice, ///< Function can return twice
SExt, ///< Sign extended before/after call
StackAlignment, ///< Alignment of stack for function (3 bits)
///< stored as log2 of alignment with +1 bias 0
///< means unaligned (different from
///< alignstack=(1))
StackProtect, ///< Stack protection.
StackProtectReq, ///< Stack protection required.
StackProtectStrong, ///< Strong Stack protection.
StructRet, ///< Hidden pointer to structure to return
SanitizeAddress, ///< AddressSanitizer is on.
SanitizeThread, ///< ThreadSanitizer is on.
SanitizeMemory, ///< MemorySanitizer is on.
UWTable, ///< Function must be in a unwind table
ZExt, ///< Zero extended before/after call
EndAttrKinds ///< Sentinal value useful for loops
};
private:
AttributeImpl *pImpl;
Attribute(AttributeImpl *A) : pImpl(A) {}
public:
Attribute() : pImpl(nullptr) {}
//===--------------------------------------------------------------------===//
// Attribute Construction
//===--------------------------------------------------------------------===//
/// \brief Return a uniquified Attribute object.
static Attribute get(LLVMContext &Context, AttrKind Kind, uint64_t Val = 0);
static Attribute get(LLVMContext &Context, StringRef Kind,
StringRef Val = StringRef());
/// \brief Return a uniquified Attribute object that has the specific
/// alignment set.
static Attribute getWithAlignment(LLVMContext &Context, uint64_t Align);
static Attribute getWithStackAlignment(LLVMContext &Context, uint64_t Align);
static Attribute getWithDereferenceableBytes(LLVMContext &Context,
uint64_t Bytes);
static Attribute getWithDereferenceableOrNullBytes(LLVMContext &Context,
uint64_t Bytes);
//===--------------------------------------------------------------------===//
// Attribute Accessors
//===--------------------------------------------------------------------===//
/// \brief Return true if the attribute is an Attribute::AttrKind type.
bool isEnumAttribute() const;
/// \brief Return true if the attribute is an integer attribute.
bool isIntAttribute() const;
/// \brief Return true if the attribute is a string (target-dependent)
/// attribute.
bool isStringAttribute() const;
/// \brief Return true if the attribute is present.
bool hasAttribute(AttrKind Val) const;
/// \brief Return true if the target-dependent attribute is present.
bool hasAttribute(StringRef Val) const;
/// \brief Return the attribute's kind as an enum (Attribute::AttrKind). This
/// requires the attribute to be an enum or alignment attribute.
Attribute::AttrKind getKindAsEnum() const;
/// \brief Return the attribute's value as an integer. This requires that the
/// attribute be an alignment attribute.
uint64_t getValueAsInt() const;
/// \brief Return the attribute's kind as a string. This requires the
/// attribute to be a string attribute.
StringRef getKindAsString() const;
/// \brief Return the attribute's value as a string. This requires the
/// attribute to be a string attribute.
StringRef getValueAsString() const;
/// \brief Returns the alignment field of an attribute as a byte alignment
/// value.
unsigned getAlignment() const;
/// \brief Returns the stack alignment field of an attribute as a byte
/// alignment value.
unsigned getStackAlignment() const;
/// \brief Returns the number of dereferenceable bytes from the
/// dereferenceable attribute (or zero if unknown).
uint64_t getDereferenceableBytes() const;
/// \brief Returns the number of dereferenceable_or_null bytes from the
/// dereferenceable_or_null attribute (or zero if unknown).
uint64_t getDereferenceableOrNullBytes() const;
/// \brief The Attribute is converted to a string of equivalent mnemonic. This
/// is, presumably, for writing out the mnemonics for the assembly writer.
std::string getAsString(bool InAttrGrp = false) const;
/// \brief Equality and non-equality operators.
bool operator==(Attribute A) const { return pImpl == A.pImpl; }
bool operator!=(Attribute A) const { return pImpl != A.pImpl; }
/// \brief Less-than operator. Useful for sorting the attributes list.
bool operator<(Attribute A) const;
void Profile(FoldingSetNodeID &ID) const {
ID.AddPointer(pImpl);
}
};
//===----------------------------------------------------------------------===//
/// \class
/// \brief This class holds the attributes for a function, its return value, and
/// its parameters. You access the attributes for each of them via an index into
/// the AttributeSet object. The function attributes are at index
/// `AttributeSet::FunctionIndex', the return value is at index
/// `AttributeSet::ReturnIndex', and the attributes for the parameters start at
/// index `1'.
class AttributeSet {
public:
enum AttrIndex : unsigned {
ReturnIndex = 0U,
FunctionIndex = ~0U
};
private:
friend class AttrBuilder;
friend class AttributeSetImpl;
template <typename Ty> friend struct DenseMapInfo;
/// \brief The attributes that we are managing. This can be null to represent
/// the empty attributes list.
AttributeSetImpl *pImpl;
/// \brief The attributes for the specified index are returned.
AttributeSetNode *getAttributes(unsigned Index) const;
/// \brief Create an AttributeSet with the specified parameters in it.
static AttributeSet get(LLVMContext &C,
ArrayRef<std::pair<unsigned, Attribute> > Attrs);
static AttributeSet get(LLVMContext &C,
ArrayRef<std::pair<unsigned,
AttributeSetNode*> > Attrs);
static AttributeSet getImpl(LLVMContext &C,
ArrayRef<std::pair<unsigned,
AttributeSetNode*> > Attrs);
explicit AttributeSet(AttributeSetImpl *LI) : pImpl(LI) {}
public:
AttributeSet() : pImpl(nullptr) {}
//===--------------------------------------------------------------------===//
// AttributeSet Construction and Mutation
//===--------------------------------------------------------------------===//
/// \brief Return an AttributeSet with the specified parameters in it.
static AttributeSet get(LLVMContext &C, ArrayRef<AttributeSet> Attrs);
static AttributeSet get(LLVMContext &C, unsigned Index,
ArrayRef<Attribute::AttrKind> Kind);
static AttributeSet get(LLVMContext &C, unsigned Index, const AttrBuilder &B);
/// \brief Add an attribute to the attribute set at the given index. Since
/// attribute sets are immutable, this returns a new set.
AttributeSet addAttribute(LLVMContext &C, unsigned Index,
Attribute::AttrKind Attr) const;
/// \brief Add an attribute to the attribute set at the given index. Since
/// attribute sets are immutable, this returns a new set.
AttributeSet addAttribute(LLVMContext &C, unsigned Index,
StringRef Kind) const;
AttributeSet addAttribute(LLVMContext &C, unsigned Index,
StringRef Kind, StringRef Value) const;
/// \brief Add attributes to the attribute set at the given index. Since
/// attribute sets are immutable, this returns a new set.
AttributeSet addAttributes(LLVMContext &C, unsigned Index,
AttributeSet Attrs) const;
/// \brief Remove the specified attribute at the specified index from this
/// attribute list. Since attribute lists are immutable, this returns the new
/// list.
AttributeSet removeAttribute(LLVMContext &C, unsigned Index,
Attribute::AttrKind Attr) const;
/// \brief Remove the specified attributes at the specified index from this
/// attribute list. Since attribute lists are immutable, this returns the new
/// list.
AttributeSet removeAttributes(LLVMContext &C, unsigned Index,
AttributeSet Attrs) const;
/// \brief Add the dereferenceable attribute to the attribute set at the given
/// index. Since attribute sets are immutable, this returns a new set.
AttributeSet addDereferenceableAttr(LLVMContext &C, unsigned Index,
uint64_t Bytes) const;
/// \brief Add the dereferenceable_or_null attribute to the attribute set at
/// the given index. Since attribute sets are immutable, this returns a new
/// set.
AttributeSet addDereferenceableOrNullAttr(LLVMContext &C, unsigned Index,
uint64_t Bytes) const;
//===--------------------------------------------------------------------===//
// AttributeSet Accessors
//===--------------------------------------------------------------------===//
/// \brief Retrieve the LLVM context.
LLVMContext &getContext() const;
/// \brief The attributes for the specified index are returned.
AttributeSet getParamAttributes(unsigned Index) const;
/// \brief The attributes for the ret value are returned.
AttributeSet getRetAttributes() const;
/// \brief The function attributes are returned.
AttributeSet getFnAttributes() const;
/// \brief Return true if the attribute exists at the given index.
bool hasAttribute(unsigned Index, Attribute::AttrKind Kind) const;
/// \brief Return true if the attribute exists at the given index.
bool hasAttribute(unsigned Index, StringRef Kind) const;
/// \brief Return true if attribute exists at the given index.
bool hasAttributes(unsigned Index) const;
/// \brief Return true if the specified attribute is set for at least one
/// parameter or for the return value.
bool hasAttrSomewhere(Attribute::AttrKind Attr) const;
/// \brief Return the attribute object that exists at the given index.
Attribute getAttribute(unsigned Index, Attribute::AttrKind Kind) const;
/// \brief Return the attribute object that exists at the given index.
Attribute getAttribute(unsigned Index, StringRef Kind) const;
/// \brief Return the alignment for the specified function parameter.
unsigned getParamAlignment(unsigned Index) const;
/// \brief Get the stack alignment.
unsigned getStackAlignment(unsigned Index) const;
/// \brief Get the number of dereferenceable bytes (or zero if unknown).
uint64_t getDereferenceableBytes(unsigned Index) const;
/// \brief Get the number of dereferenceable_or_null bytes (or zero if
/// unknown).
uint64_t getDereferenceableOrNullBytes(unsigned Index) const;
/// \brief Return the attributes at the index as a string.
std::string getAsString(unsigned Index, bool InAttrGrp = false) const;
typedef ArrayRef<Attribute>::iterator iterator;
iterator begin(unsigned Slot) const;
iterator end(unsigned Slot) const;
/// operator==/!= - Provide equality predicates.
bool operator==(const AttributeSet &RHS) const {
return pImpl == RHS.pImpl;
}
bool operator!=(const AttributeSet &RHS) const {
return pImpl != RHS.pImpl;
}
//===--------------------------------------------------------------------===//
// AttributeSet Introspection
//===--------------------------------------------------------------------===//
// FIXME: Remove this.
uint64_t Raw(unsigned Index) const;
/// \brief Return a raw pointer that uniquely identifies this attribute list.
void *getRawPointer() const {
return pImpl;
}
/// \brief Return true if there are no attributes.
bool isEmpty() const {
return getNumSlots() == 0;
}
/// \brief Return the number of slots used in this attribute list. This is
/// the number of arguments that have an attribute set on them (including the
/// function itself).
unsigned getNumSlots() const;
/// \brief Return the index for the given slot.
unsigned getSlotIndex(unsigned Slot) const;
/// \brief Return the attributes at the given slot.
AttributeSet getSlotAttributes(unsigned Slot) const;
void dump() const;
};
//===----------------------------------------------------------------------===//
/// \class
/// \brief Provide DenseMapInfo for AttributeSet.
template<> struct DenseMapInfo<AttributeSet> {
static inline AttributeSet getEmptyKey() {
uintptr_t Val = static_cast<uintptr_t>(-1);
Val <<= PointerLikeTypeTraits<void*>::NumLowBitsAvailable;
return AttributeSet(reinterpret_cast<AttributeSetImpl*>(Val));
}
static inline AttributeSet getTombstoneKey() {
uintptr_t Val = static_cast<uintptr_t>(-2);
Val <<= PointerLikeTypeTraits<void*>::NumLowBitsAvailable;
return AttributeSet(reinterpret_cast<AttributeSetImpl*>(Val));
}
static unsigned getHashValue(AttributeSet AS) {
return (unsigned((uintptr_t)AS.pImpl) >> 4) ^
(unsigned((uintptr_t)AS.pImpl) >> 9);
}
static bool isEqual(AttributeSet LHS, AttributeSet RHS) { return LHS == RHS; }
};
//===----------------------------------------------------------------------===//
/// \class
/// \brief This class is used in conjunction with the Attribute::get method to
/// create an Attribute object. The object itself is uniquified. The Builder's
/// value, however, is not. So this can be used as a quick way to test for
/// equality, presence of attributes, etc.
class AttrBuilder {
std::bitset<Attribute::EndAttrKinds> Attrs;
std::map<std::string, std::string> TargetDepAttrs;
uint64_t Alignment;
uint64_t StackAlignment;
uint64_t DerefBytes;
uint64_t DerefOrNullBytes;
public:
AttrBuilder() : Attrs(0), Alignment(0), StackAlignment(0), DerefBytes(0) {}
explicit AttrBuilder(uint64_t Val)
: Attrs(0), Alignment(0), StackAlignment(0), DerefBytes(0) {
addRawValue(Val);
}
AttrBuilder(const Attribute &A)
: Attrs(0), Alignment(0), StackAlignment(0), DerefBytes(0) {
addAttribute(A);
}
AttrBuilder(AttributeSet AS, unsigned Idx);
void clear();
/// \brief Add an attribute to the builder.
AttrBuilder &addAttribute(Attribute::AttrKind Val);
/// \brief Add the Attribute object to the builder.
AttrBuilder &addAttribute(Attribute A);
/// \brief Add the target-dependent attribute to the builder.
AttrBuilder &addAttribute(StringRef A, StringRef V = StringRef());
/// \brief Remove an attribute from the builder.
AttrBuilder &removeAttribute(Attribute::AttrKind Val);
/// \brief Remove the attributes from the builder.
AttrBuilder &removeAttributes(AttributeSet A, uint64_t Index);
/// \brief Remove the target-dependent attribute to the builder.
AttrBuilder &removeAttribute(StringRef A);
/// \brief Add the attributes from the builder.
AttrBuilder &merge(const AttrBuilder &B);
/// \brief Return true if the builder has the specified attribute.
bool contains(Attribute::AttrKind A) const {
assert((unsigned)A < Attribute::EndAttrKinds && "Attribute out of range!");
return Attrs[A];
}
/// \brief Return true if the builder has the specified target-dependent
/// attribute.
bool contains(StringRef A) const;
/// \brief Return true if the builder has IR-level attributes.
bool hasAttributes() const;
/// \brief Return true if the builder has any attribute that's in the
/// specified attribute.
bool hasAttributes(AttributeSet A, uint64_t Index) const;
/// \brief Return true if the builder has an alignment attribute.
bool hasAlignmentAttr() const;
/// \brief Retrieve the alignment attribute, if it exists.
uint64_t getAlignment() const { return Alignment; }
/// \brief Retrieve the stack alignment attribute, if it exists.
uint64_t getStackAlignment() const { return StackAlignment; }
/// \brief Retrieve the number of dereferenceable bytes, if the dereferenceable
/// attribute exists (zero is returned otherwise).
uint64_t getDereferenceableBytes() const { return DerefBytes; }
/// \brief Retrieve the number of dereferenceable_or_null bytes, if the
/// dereferenceable_or_null attribute exists (zero is returned otherwise).
uint64_t getDereferenceableOrNullBytes() const { return DerefOrNullBytes; }
/// \brief This turns an int alignment (which must be a power of 2) into the
/// form used internally in Attribute.
AttrBuilder &addAlignmentAttr(unsigned Align);
/// \brief This turns an int stack alignment (which must be a power of 2) into
/// the form used internally in Attribute.
AttrBuilder &addStackAlignmentAttr(unsigned Align);
/// \brief This turns the number of dereferenceable bytes into the form used
/// internally in Attribute.
AttrBuilder &addDereferenceableAttr(uint64_t Bytes);
/// \brief This turns the number of dereferenceable_or_null bytes into the
/// form used internally in Attribute.
AttrBuilder &addDereferenceableOrNullAttr(uint64_t Bytes);
/// \brief Return true if the builder contains no target-independent
/// attributes.
bool empty() const { return Attrs.none(); }
// Iterators for target-dependent attributes.
typedef std::pair<std::string, std::string> td_type;
typedef std::map<std::string, std::string>::iterator td_iterator;
typedef std::map<std::string, std::string>::const_iterator td_const_iterator;
typedef llvm::iterator_range<td_iterator> td_range;
typedef llvm::iterator_range<td_const_iterator> td_const_range;
td_iterator td_begin() { return TargetDepAttrs.begin(); }
td_iterator td_end() { return TargetDepAttrs.end(); }
td_const_iterator td_begin() const { return TargetDepAttrs.begin(); }
td_const_iterator td_end() const { return TargetDepAttrs.end(); }
td_range td_attrs() { return td_range(td_begin(), td_end()); }
td_const_range td_attrs() const {
return td_const_range(td_begin(), td_end());
}
bool td_empty() const { return TargetDepAttrs.empty(); }
bool operator==(const AttrBuilder &B);
bool operator!=(const AttrBuilder &B) {
return !(*this == B);
}
// FIXME: Remove this in 4.0.
/// \brief Add the raw value to the internal representation.
AttrBuilder &addRawValue(uint64_t Val);
};
namespace AttributeFuncs {
/// \brief Which attributes cannot be applied to a type.
AttributeSet typeIncompatible(Type *Ty, uint64_t Index);
} // end AttributeFuncs namespace
} // end llvm namespace
#endif