mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-11-08 04:07:07 +00:00
dfe076af98
This should fix three purely whitespace issues: + 80 column violations. + Tab characters. + TableGen brace placement. No functional changes. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174370 91177308-0d34-0410-b5e6-96231b3b80d8
1424 lines
56 KiB
C++
1424 lines
56 KiB
C++
//===-- AArch64ConstantIslandPass.cpp - AArch64 constant islands ----------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains a pass that splits the constant pool up into 'islands'
|
|
// which are scattered through-out the function. This is required due to the
|
|
// limited pc-relative displacements that AArch64 has.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "aarch64-cp-islands"
|
|
#include "AArch64.h"
|
|
#include "AArch64InstrInfo.h"
|
|
#include "AArch64MachineFunctionInfo.h"
|
|
#include "AArch64Subtarget.h"
|
|
#include "AArch64MachineFunctionInfo.h"
|
|
#include "Utils/AArch64BaseInfo.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineJumpTableInfo.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/Format.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include <algorithm>
|
|
using namespace llvm;
|
|
|
|
STATISTIC(NumCPEs, "Number of constpool entries");
|
|
STATISTIC(NumSplit, "Number of uncond branches inserted");
|
|
STATISTIC(NumCBrFixed, "Number of cond branches fixed");
|
|
|
|
// FIXME: This option should be removed once it has received sufficient testing.
|
|
static cl::opt<bool>
|
|
AlignConstantIslands("aarch64-align-constant-islands", cl::Hidden,
|
|
cl::init(true),
|
|
cl::desc("Align constant islands in code"));
|
|
|
|
/// Return the worst case padding that could result from unknown offset bits.
|
|
/// This does not include alignment padding caused by known offset bits.
|
|
///
|
|
/// @param LogAlign log2(alignment)
|
|
/// @param KnownBits Number of known low offset bits.
|
|
static inline unsigned UnknownPadding(unsigned LogAlign, unsigned KnownBits) {
|
|
if (KnownBits < LogAlign)
|
|
return (1u << LogAlign) - (1u << KnownBits);
|
|
return 0;
|
|
}
|
|
|
|
namespace {
|
|
/// Due to limited PC-relative displacements, AArch64 requires constant pool
|
|
/// entries to be scattered among the instructions inside a function. To do
|
|
/// this, it completely ignores the normal LLVM constant pool; instead, it
|
|
/// places constants wherever it feels like with special instructions.
|
|
///
|
|
/// The terminology used in this pass includes:
|
|
/// Islands - Clumps of constants placed in the function.
|
|
/// Water - Potential places where an island could be formed.
|
|
/// CPE - A constant pool entry that has been placed somewhere, which
|
|
/// tracks a list of users.
|
|
class AArch64ConstantIslands : public MachineFunctionPass {
|
|
/// Information about the offset and size of a single basic block.
|
|
struct BasicBlockInfo {
|
|
/// Distance from the beginning of the function to the beginning of this
|
|
/// basic block.
|
|
///
|
|
/// Offsets are computed assuming worst case padding before an aligned
|
|
/// block. This means that subtracting basic block offsets always gives a
|
|
/// conservative estimate of the real distance which may be smaller.
|
|
///
|
|
/// Because worst case padding is used, the computed offset of an aligned
|
|
/// block may not actually be aligned.
|
|
unsigned Offset;
|
|
|
|
/// Size of the basic block in bytes. If the block contains inline
|
|
/// assembly, this is a worst case estimate.
|
|
///
|
|
/// The size does not include any alignment padding whether from the
|
|
/// beginning of the block, or from an aligned jump table at the end.
|
|
unsigned Size;
|
|
|
|
/// The number of low bits in Offset that are known to be exact. The
|
|
/// remaining bits of Offset are an upper bound.
|
|
uint8_t KnownBits;
|
|
|
|
/// When non-zero, the block contains instructions (inline asm) of unknown
|
|
/// size. The real size may be smaller than Size bytes by a multiple of 1
|
|
/// << Unalign.
|
|
uint8_t Unalign;
|
|
|
|
BasicBlockInfo() : Offset(0), Size(0), KnownBits(0), Unalign(0) {}
|
|
|
|
/// Compute the number of known offset bits internally to this block.
|
|
/// This number should be used to predict worst case padding when
|
|
/// splitting the block.
|
|
unsigned internalKnownBits() const {
|
|
unsigned Bits = Unalign ? Unalign : KnownBits;
|
|
// If the block size isn't a multiple of the known bits, assume the
|
|
// worst case padding.
|
|
if (Size & ((1u << Bits) - 1))
|
|
Bits = CountTrailingZeros_32(Size);
|
|
return Bits;
|
|
}
|
|
|
|
/// Compute the offset immediately following this block. If LogAlign is
|
|
/// specified, return the offset the successor block will get if it has
|
|
/// this alignment.
|
|
unsigned postOffset(unsigned LogAlign = 0) const {
|
|
unsigned PO = Offset + Size;
|
|
if (!LogAlign)
|
|
return PO;
|
|
// Add alignment padding from the terminator.
|
|
return PO + UnknownPadding(LogAlign, internalKnownBits());
|
|
}
|
|
|
|
/// Compute the number of known low bits of postOffset. If this block
|
|
/// contains inline asm, the number of known bits drops to the
|
|
/// instruction alignment. An aligned terminator may increase the number
|
|
/// of know bits.
|
|
/// If LogAlign is given, also consider the alignment of the next block.
|
|
unsigned postKnownBits(unsigned LogAlign = 0) const {
|
|
return std::max(LogAlign, internalKnownBits());
|
|
}
|
|
};
|
|
|
|
std::vector<BasicBlockInfo> BBInfo;
|
|
|
|
/// A sorted list of basic blocks where islands could be placed (i.e. blocks
|
|
/// that don't fall through to the following block, due to a return,
|
|
/// unreachable, or unconditional branch).
|
|
std::vector<MachineBasicBlock*> WaterList;
|
|
|
|
/// The subset of WaterList that was created since the previous iteration by
|
|
/// inserting unconditional branches.
|
|
SmallSet<MachineBasicBlock*, 4> NewWaterList;
|
|
|
|
typedef std::vector<MachineBasicBlock*>::iterator water_iterator;
|
|
|
|
/// One user of a constant pool, keeping the machine instruction pointer,
|
|
/// the constant pool being referenced, and the number of bits used by the
|
|
/// instruction for displacement. The HighWaterMark records the highest
|
|
/// basic block where a new CPEntry can be placed. To ensure this pass
|
|
/// terminates, the CP entries are initially placed at the end of the
|
|
/// function and then move monotonically to lower addresses. The exception
|
|
/// to this rule is when the current CP entry for a particular CPUser is out
|
|
/// of range, but there is another CP entry for the same constant value in
|
|
/// range. We want to use the existing in-range CP entry, but if it later
|
|
/// moves out of range, the search for new water should resume where it left
|
|
/// off. The HighWaterMark is used to record that point.
|
|
struct CPUser {
|
|
MachineInstr *MI;
|
|
MachineInstr *CPEMI;
|
|
MachineBasicBlock *HighWaterMark;
|
|
private:
|
|
unsigned OffsetBits;
|
|
public:
|
|
CPUser(MachineInstr *mi, MachineInstr *cpemi, unsigned offsetbits)
|
|
: MI(mi), CPEMI(cpemi), OffsetBits(offsetbits) {
|
|
HighWaterMark = CPEMI->getParent();
|
|
}
|
|
/// Returns the number of bits used to specify the offset.
|
|
unsigned getOffsetBits() const {
|
|
return OffsetBits;
|
|
}
|
|
|
|
/// Returns the maximum positive displacement possible from this CPUser
|
|
/// (essentially INT<N>_MAX * 4).
|
|
unsigned getMaxPosDisp() const {
|
|
return (1 << (OffsetBits - 1)) - 1;
|
|
}
|
|
};
|
|
|
|
/// Keep track of all of the machine instructions that use various constant
|
|
/// pools and their max displacement.
|
|
std::vector<CPUser> CPUsers;
|
|
|
|
/// One per constant pool entry, keeping the machine instruction pointer,
|
|
/// the constpool index, and the number of CPUser's which reference this
|
|
/// entry.
|
|
struct CPEntry {
|
|
MachineInstr *CPEMI;
|
|
unsigned CPI;
|
|
unsigned RefCount;
|
|
CPEntry(MachineInstr *cpemi, unsigned cpi, unsigned rc = 0)
|
|
: CPEMI(cpemi), CPI(cpi), RefCount(rc) {}
|
|
};
|
|
|
|
/// Keep track of all of the constant pool entry machine instructions. For
|
|
/// each original constpool index (i.e. those that existed upon entry to
|
|
/// this pass), it keeps a vector of entries. Original elements are cloned
|
|
/// as we go along; the clones are put in the vector of the original
|
|
/// element, but have distinct CPIs.
|
|
std::vector<std::vector<CPEntry> > CPEntries;
|
|
|
|
/// One per immediate branch, keeping the machine instruction pointer,
|
|
/// conditional or unconditional, the max displacement, and (if IsCond is
|
|
/// true) the corresponding inverted branch opcode.
|
|
struct ImmBranch {
|
|
MachineInstr *MI;
|
|
unsigned OffsetBits : 31;
|
|
bool IsCond : 1;
|
|
ImmBranch(MachineInstr *mi, unsigned offsetbits, bool cond)
|
|
: MI(mi), OffsetBits(offsetbits), IsCond(cond) {}
|
|
};
|
|
|
|
/// Keep track of all the immediate branch instructions.
|
|
///
|
|
std::vector<ImmBranch> ImmBranches;
|
|
|
|
MachineFunction *MF;
|
|
MachineConstantPool *MCP;
|
|
const AArch64InstrInfo *TII;
|
|
const AArch64Subtarget *STI;
|
|
AArch64MachineFunctionInfo *AFI;
|
|
public:
|
|
static char ID;
|
|
AArch64ConstantIslands() : MachineFunctionPass(ID) {}
|
|
|
|
virtual bool runOnMachineFunction(MachineFunction &MF);
|
|
|
|
virtual const char *getPassName() const {
|
|
return "AArch64 constant island placement pass";
|
|
}
|
|
|
|
private:
|
|
void doInitialPlacement(std::vector<MachineInstr*> &CPEMIs);
|
|
CPEntry *findConstPoolEntry(unsigned CPI, const MachineInstr *CPEMI);
|
|
unsigned getCPELogAlign(const MachineInstr *CPEMI);
|
|
void scanFunctionJumpTables();
|
|
void initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs);
|
|
MachineBasicBlock *splitBlockBeforeInstr(MachineInstr *MI);
|
|
void updateForInsertedWaterBlock(MachineBasicBlock *NewBB);
|
|
void adjustBBOffsetsAfter(MachineBasicBlock *BB);
|
|
bool decrementCPEReferenceCount(unsigned CPI, MachineInstr* CPEMI);
|
|
int findInRangeCPEntry(CPUser& U, unsigned UserOffset);
|
|
bool findAvailableWater(CPUser&U, unsigned UserOffset,
|
|
water_iterator &WaterIter);
|
|
void createNewWater(unsigned CPUserIndex, unsigned UserOffset,
|
|
MachineBasicBlock *&NewMBB);
|
|
bool handleConstantPoolUser(unsigned CPUserIndex);
|
|
void removeDeadCPEMI(MachineInstr *CPEMI);
|
|
bool removeUnusedCPEntries();
|
|
bool isCPEntryInRange(MachineInstr *MI, unsigned UserOffset,
|
|
MachineInstr *CPEMI, unsigned OffsetBits,
|
|
bool DoDump = false);
|
|
bool isWaterInRange(unsigned UserOffset, MachineBasicBlock *Water,
|
|
CPUser &U, unsigned &Growth);
|
|
bool isBBInRange(MachineInstr *MI, MachineBasicBlock *BB,
|
|
unsigned OffsetBits);
|
|
bool fixupImmediateBr(ImmBranch &Br);
|
|
bool fixupConditionalBr(ImmBranch &Br);
|
|
|
|
void computeBlockSize(MachineBasicBlock *MBB);
|
|
unsigned getOffsetOf(MachineInstr *MI) const;
|
|
unsigned getUserOffset(CPUser&) const;
|
|
void dumpBBs();
|
|
void verify();
|
|
|
|
bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
|
|
unsigned BitsAvailable);
|
|
bool isOffsetInRange(unsigned UserOffset, unsigned TrialOffset,
|
|
const CPUser &U) {
|
|
return isOffsetInRange(UserOffset, TrialOffset, U.getOffsetBits());
|
|
}
|
|
};
|
|
char AArch64ConstantIslands::ID = 0;
|
|
}
|
|
|
|
/// check BBOffsets, BBSizes, alignment of islands
|
|
void AArch64ConstantIslands::verify() {
|
|
#ifndef NDEBUG
|
|
for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
|
|
MBBI != E; ++MBBI) {
|
|
MachineBasicBlock *MBB = MBBI;
|
|
unsigned MBBId = MBB->getNumber();
|
|
assert(!MBBId || BBInfo[MBBId - 1].postOffset() <= BBInfo[MBBId].Offset);
|
|
}
|
|
DEBUG(dbgs() << "Verifying " << CPUsers.size() << " CP users.\n");
|
|
for (unsigned i = 0, e = CPUsers.size(); i != e; ++i) {
|
|
CPUser &U = CPUsers[i];
|
|
unsigned UserOffset = getUserOffset(U);
|
|
// Verify offset using the real max displacement without the safety
|
|
// adjustment.
|
|
if (isCPEntryInRange(U.MI, UserOffset, U.CPEMI, U.getOffsetBits(),
|
|
/* DoDump = */ true)) {
|
|
DEBUG(dbgs() << "OK\n");
|
|
continue;
|
|
}
|
|
DEBUG(dbgs() << "Out of range.\n");
|
|
dumpBBs();
|
|
DEBUG(MF->dump());
|
|
llvm_unreachable("Constant pool entry out of range!");
|
|
}
|
|
#endif
|
|
}
|
|
|
|
/// print block size and offset information - debugging
|
|
void AArch64ConstantIslands::dumpBBs() {
|
|
DEBUG({
|
|
for (unsigned J = 0, E = BBInfo.size(); J !=E; ++J) {
|
|
const BasicBlockInfo &BBI = BBInfo[J];
|
|
dbgs() << format("%08x BB#%u\t", BBI.Offset, J)
|
|
<< " kb=" << unsigned(BBI.KnownBits)
|
|
<< " ua=" << unsigned(BBI.Unalign)
|
|
<< format(" size=%#x\n", BBInfo[J].Size);
|
|
}
|
|
});
|
|
}
|
|
|
|
/// Returns an instance of the constpool island pass.
|
|
FunctionPass *llvm::createAArch64ConstantIslandPass() {
|
|
return new AArch64ConstantIslands();
|
|
}
|
|
|
|
bool AArch64ConstantIslands::runOnMachineFunction(MachineFunction &mf) {
|
|
MF = &mf;
|
|
MCP = mf.getConstantPool();
|
|
|
|
DEBUG(dbgs() << "***** AArch64ConstantIslands: "
|
|
<< MCP->getConstants().size() << " CP entries, aligned to "
|
|
<< MCP->getConstantPoolAlignment() << " bytes *****\n");
|
|
|
|
TII = (const AArch64InstrInfo*)MF->getTarget().getInstrInfo();
|
|
AFI = MF->getInfo<AArch64MachineFunctionInfo>();
|
|
STI = &MF->getTarget().getSubtarget<AArch64Subtarget>();
|
|
|
|
// This pass invalidates liveness information when it splits basic blocks.
|
|
MF->getRegInfo().invalidateLiveness();
|
|
|
|
// Renumber all of the machine basic blocks in the function, guaranteeing that
|
|
// the numbers agree with the position of the block in the function.
|
|
MF->RenumberBlocks();
|
|
|
|
// Perform the initial placement of the constant pool entries. To start with,
|
|
// we put them all at the end of the function.
|
|
std::vector<MachineInstr*> CPEMIs;
|
|
if (!MCP->isEmpty())
|
|
doInitialPlacement(CPEMIs);
|
|
|
|
/// The next UID to take is the first unused one.
|
|
AFI->initPICLabelUId(CPEMIs.size());
|
|
|
|
// Do the initial scan of the function, building up information about the
|
|
// sizes of each block, the location of all the water, and finding all of the
|
|
// constant pool users.
|
|
initializeFunctionInfo(CPEMIs);
|
|
CPEMIs.clear();
|
|
DEBUG(dumpBBs());
|
|
|
|
|
|
/// Remove dead constant pool entries.
|
|
bool MadeChange = removeUnusedCPEntries();
|
|
|
|
// Iteratively place constant pool entries and fix up branches until there
|
|
// is no change.
|
|
unsigned NoCPIters = 0, NoBRIters = 0;
|
|
while (true) {
|
|
DEBUG(dbgs() << "Beginning CP iteration #" << NoCPIters << '\n');
|
|
bool CPChange = false;
|
|
for (unsigned i = 0, e = CPUsers.size(); i != e; ++i)
|
|
CPChange |= handleConstantPoolUser(i);
|
|
if (CPChange && ++NoCPIters > 30)
|
|
report_fatal_error("Constant Island pass failed to converge!");
|
|
DEBUG(dumpBBs());
|
|
|
|
// Clear NewWaterList now. If we split a block for branches, it should
|
|
// appear as "new water" for the next iteration of constant pool placement.
|
|
NewWaterList.clear();
|
|
|
|
DEBUG(dbgs() << "Beginning BR iteration #" << NoBRIters << '\n');
|
|
bool BRChange = false;
|
|
for (unsigned i = 0, e = ImmBranches.size(); i != e; ++i)
|
|
BRChange |= fixupImmediateBr(ImmBranches[i]);
|
|
if (BRChange && ++NoBRIters > 30)
|
|
report_fatal_error("Branch Fix Up pass failed to converge!");
|
|
DEBUG(dumpBBs());
|
|
|
|
if (!CPChange && !BRChange)
|
|
break;
|
|
MadeChange = true;
|
|
}
|
|
|
|
// After a while, this might be made debug-only, but it is not expensive.
|
|
verify();
|
|
|
|
DEBUG(dbgs() << '\n'; dumpBBs());
|
|
|
|
BBInfo.clear();
|
|
WaterList.clear();
|
|
CPUsers.clear();
|
|
CPEntries.clear();
|
|
ImmBranches.clear();
|
|
|
|
return MadeChange;
|
|
}
|
|
|
|
/// Perform the initial placement of the constant pool entries. To start with,
|
|
/// we put them all at the end of the function.
|
|
void
|
|
AArch64ConstantIslands::doInitialPlacement(std::vector<MachineInstr*> &CPEMIs) {
|
|
// Create the basic block to hold the CPE's.
|
|
MachineBasicBlock *BB = MF->CreateMachineBasicBlock();
|
|
MF->push_back(BB);
|
|
|
|
// MachineConstantPool measures alignment in bytes. We measure in log2(bytes).
|
|
unsigned MaxAlign = Log2_32(MCP->getConstantPoolAlignment());
|
|
|
|
// Mark the basic block as required by the const-pool.
|
|
// If AlignConstantIslands isn't set, use 4-byte alignment for everything.
|
|
BB->setAlignment(AlignConstantIslands ? MaxAlign : 2);
|
|
|
|
// The function needs to be as aligned as the basic blocks. The linker may
|
|
// move functions around based on their alignment.
|
|
MF->ensureAlignment(BB->getAlignment());
|
|
|
|
// Order the entries in BB by descending alignment. That ensures correct
|
|
// alignment of all entries as long as BB is sufficiently aligned. Keep
|
|
// track of the insertion point for each alignment. We are going to bucket
|
|
// sort the entries as they are created.
|
|
SmallVector<MachineBasicBlock::iterator, 8> InsPoint(MaxAlign + 1, BB->end());
|
|
|
|
// Add all of the constants from the constant pool to the end block, use an
|
|
// identity mapping of CPI's to CPE's.
|
|
const std::vector<MachineConstantPoolEntry> &CPs = MCP->getConstants();
|
|
|
|
const DataLayout &TD = *MF->getTarget().getDataLayout();
|
|
for (unsigned i = 0, e = CPs.size(); i != e; ++i) {
|
|
unsigned Size = TD.getTypeAllocSize(CPs[i].getType());
|
|
assert(Size >= 4 && "Too small constant pool entry");
|
|
unsigned Align = CPs[i].getAlignment();
|
|
assert(isPowerOf2_32(Align) && "Invalid alignment");
|
|
// Verify that all constant pool entries are a multiple of their alignment.
|
|
// If not, we would have to pad them out so that instructions stay aligned.
|
|
assert((Size % Align) == 0 && "CP Entry not multiple of 4 bytes!");
|
|
|
|
// Insert CONSTPOOL_ENTRY before entries with a smaller alignment.
|
|
unsigned LogAlign = Log2_32(Align);
|
|
MachineBasicBlock::iterator InsAt = InsPoint[LogAlign];
|
|
MachineInstr *CPEMI =
|
|
BuildMI(*BB, InsAt, DebugLoc(), TII->get(AArch64::CONSTPOOL_ENTRY))
|
|
.addImm(i).addConstantPoolIndex(i).addImm(Size);
|
|
CPEMIs.push_back(CPEMI);
|
|
|
|
// Ensure that future entries with higher alignment get inserted before
|
|
// CPEMI. This is bucket sort with iterators.
|
|
for (unsigned a = LogAlign + 1; a <= MaxAlign; ++a)
|
|
if (InsPoint[a] == InsAt)
|
|
InsPoint[a] = CPEMI;
|
|
|
|
// Add a new CPEntry, but no corresponding CPUser yet.
|
|
std::vector<CPEntry> CPEs;
|
|
CPEs.push_back(CPEntry(CPEMI, i));
|
|
CPEntries.push_back(CPEs);
|
|
++NumCPEs;
|
|
DEBUG(dbgs() << "Moved CPI#" << i << " to end of function, size = "
|
|
<< Size << ", align = " << Align <<'\n');
|
|
}
|
|
DEBUG(BB->dump());
|
|
}
|
|
|
|
/// Return true if the specified basic block can fallthrough into the block
|
|
/// immediately after it.
|
|
static bool BBHasFallthrough(MachineBasicBlock *MBB) {
|
|
// Get the next machine basic block in the function.
|
|
MachineFunction::iterator MBBI = MBB;
|
|
// Can't fall off end of function.
|
|
if (llvm::next(MBBI) == MBB->getParent()->end())
|
|
return false;
|
|
|
|
MachineBasicBlock *NextBB = llvm::next(MBBI);
|
|
for (MachineBasicBlock::succ_iterator I = MBB->succ_begin(),
|
|
E = MBB->succ_end(); I != E; ++I)
|
|
if (*I == NextBB)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
/// Given the constpool index and CONSTPOOL_ENTRY MI, look up the corresponding
|
|
/// CPEntry.
|
|
AArch64ConstantIslands::CPEntry
|
|
*AArch64ConstantIslands::findConstPoolEntry(unsigned CPI,
|
|
const MachineInstr *CPEMI) {
|
|
std::vector<CPEntry> &CPEs = CPEntries[CPI];
|
|
// Number of entries per constpool index should be small, just do a
|
|
// linear search.
|
|
for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
|
|
if (CPEs[i].CPEMI == CPEMI)
|
|
return &CPEs[i];
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
/// Returns the required alignment of the constant pool entry represented by
|
|
/// CPEMI. Alignment is measured in log2(bytes) units.
|
|
unsigned AArch64ConstantIslands::getCPELogAlign(const MachineInstr *CPEMI) {
|
|
assert(CPEMI && CPEMI->getOpcode() == AArch64::CONSTPOOL_ENTRY);
|
|
|
|
// Everything is 4-byte aligned unless AlignConstantIslands is set.
|
|
if (!AlignConstantIslands)
|
|
return 2;
|
|
|
|
unsigned CPI = CPEMI->getOperand(1).getIndex();
|
|
assert(CPI < MCP->getConstants().size() && "Invalid constant pool index.");
|
|
unsigned Align = MCP->getConstants()[CPI].getAlignment();
|
|
assert(isPowerOf2_32(Align) && "Invalid CPE alignment");
|
|
return Log2_32(Align);
|
|
}
|
|
|
|
/// Do the initial scan of the function, building up information about the sizes
|
|
/// of each block, the location of all the water, and finding all of the
|
|
/// constant pool users.
|
|
void AArch64ConstantIslands::
|
|
initializeFunctionInfo(const std::vector<MachineInstr*> &CPEMIs) {
|
|
BBInfo.clear();
|
|
BBInfo.resize(MF->getNumBlockIDs());
|
|
|
|
// First thing, compute the size of all basic blocks, and see if the function
|
|
// has any inline assembly in it. If so, we have to be conservative about
|
|
// alignment assumptions, as we don't know for sure the size of any
|
|
// instructions in the inline assembly.
|
|
for (MachineFunction::iterator I = MF->begin(), E = MF->end(); I != E; ++I)
|
|
computeBlockSize(I);
|
|
|
|
// The known bits of the entry block offset are determined by the function
|
|
// alignment.
|
|
BBInfo.front().KnownBits = MF->getAlignment();
|
|
|
|
// Compute block offsets and known bits.
|
|
adjustBBOffsetsAfter(MF->begin());
|
|
|
|
// Now go back through the instructions and build up our data structures.
|
|
for (MachineFunction::iterator MBBI = MF->begin(), E = MF->end();
|
|
MBBI != E; ++MBBI) {
|
|
MachineBasicBlock &MBB = *MBBI;
|
|
|
|
// If this block doesn't fall through into the next MBB, then this is
|
|
// 'water' that a constant pool island could be placed.
|
|
if (!BBHasFallthrough(&MBB))
|
|
WaterList.push_back(&MBB);
|
|
|
|
for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
|
|
I != E; ++I) {
|
|
if (I->isDebugValue())
|
|
continue;
|
|
|
|
int Opc = I->getOpcode();
|
|
if (I->isBranch()) {
|
|
bool IsCond = false;
|
|
|
|
// The offsets encoded in instructions here scale by the instruction
|
|
// size (4 bytes), effectively increasing their range by 2 bits.
|
|
unsigned Bits = 0;
|
|
switch (Opc) {
|
|
default:
|
|
continue; // Ignore other JT branches
|
|
case AArch64::TBZxii:
|
|
case AArch64::TBZwii:
|
|
case AArch64::TBNZxii:
|
|
case AArch64::TBNZwii:
|
|
IsCond = true;
|
|
Bits = 14 + 2;
|
|
break;
|
|
case AArch64::Bcc:
|
|
case AArch64::CBZx:
|
|
case AArch64::CBZw:
|
|
case AArch64::CBNZx:
|
|
case AArch64::CBNZw:
|
|
IsCond = true;
|
|
Bits = 19 + 2;
|
|
break;
|
|
case AArch64::Bimm:
|
|
Bits = 26 + 2;
|
|
break;
|
|
}
|
|
|
|
// Record this immediate branch.
|
|
ImmBranches.push_back(ImmBranch(I, Bits, IsCond));
|
|
}
|
|
|
|
if (Opc == AArch64::CONSTPOOL_ENTRY)
|
|
continue;
|
|
|
|
// Scan the instructions for constant pool operands.
|
|
for (unsigned op = 0, e = I->getNumOperands(); op != e; ++op)
|
|
if (I->getOperand(op).isCPI()) {
|
|
// We found one. The addressing mode tells us the max displacement
|
|
// from the PC that this instruction permits.
|
|
|
|
// The offsets encoded in instructions here scale by the instruction
|
|
// size (4 bytes), effectively increasing their range by 2 bits.
|
|
unsigned Bits = 0;
|
|
|
|
switch (Opc) {
|
|
default:
|
|
llvm_unreachable("Unknown addressing mode for CP reference!");
|
|
|
|
case AArch64::LDRw_lit:
|
|
case AArch64::LDRx_lit:
|
|
case AArch64::LDRs_lit:
|
|
case AArch64::LDRd_lit:
|
|
case AArch64::LDRq_lit:
|
|
case AArch64::LDRSWx_lit:
|
|
case AArch64::PRFM_lit:
|
|
Bits = 19 + 2;
|
|
}
|
|
|
|
// Remember that this is a user of a CP entry.
|
|
unsigned CPI = I->getOperand(op).getIndex();
|
|
MachineInstr *CPEMI = CPEMIs[CPI];
|
|
CPUsers.push_back(CPUser(I, CPEMI, Bits));
|
|
|
|
// Increment corresponding CPEntry reference count.
|
|
CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
|
|
assert(CPE && "Cannot find a corresponding CPEntry!");
|
|
CPE->RefCount++;
|
|
|
|
// Instructions can only use one CP entry, don't bother scanning the
|
|
// rest of the operands.
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Compute the size and some alignment information for MBB. This function
|
|
/// updates BBInfo directly.
|
|
void AArch64ConstantIslands::computeBlockSize(MachineBasicBlock *MBB) {
|
|
BasicBlockInfo &BBI = BBInfo[MBB->getNumber()];
|
|
BBI.Size = 0;
|
|
BBI.Unalign = 0;
|
|
|
|
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;
|
|
++I) {
|
|
BBI.Size += TII->getInstSizeInBytes(*I);
|
|
// For inline asm, GetInstSizeInBytes returns a conservative estimate.
|
|
// The actual size may be smaller, but still a multiple of the instr size.
|
|
if (I->isInlineAsm())
|
|
BBI.Unalign = 2;
|
|
}
|
|
}
|
|
|
|
/// Return the current offset of the specified machine instruction from the
|
|
/// start of the function. This offset changes as stuff is moved around inside
|
|
/// the function.
|
|
unsigned AArch64ConstantIslands::getOffsetOf(MachineInstr *MI) const {
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
|
|
// The offset is composed of two things: the sum of the sizes of all MBB's
|
|
// before this instruction's block, and the offset from the start of the block
|
|
// it is in.
|
|
unsigned Offset = BBInfo[MBB->getNumber()].Offset;
|
|
|
|
// Sum instructions before MI in MBB.
|
|
for (MachineBasicBlock::iterator I = MBB->begin(); &*I != MI; ++I) {
|
|
assert(I != MBB->end() && "Didn't find MI in its own basic block?");
|
|
Offset += TII->getInstSizeInBytes(*I);
|
|
}
|
|
return Offset;
|
|
}
|
|
|
|
/// Little predicate function to sort the WaterList by MBB ID.
|
|
static bool CompareMBBNumbers(const MachineBasicBlock *LHS,
|
|
const MachineBasicBlock *RHS) {
|
|
return LHS->getNumber() < RHS->getNumber();
|
|
}
|
|
|
|
/// When a block is newly inserted into the machine function, it upsets all of
|
|
/// the block numbers. Renumber the blocks and update the arrays that parallel
|
|
/// this numbering.
|
|
void AArch64ConstantIslands::
|
|
updateForInsertedWaterBlock(MachineBasicBlock *NewBB) {
|
|
// Renumber the MBB's to keep them consecutive.
|
|
NewBB->getParent()->RenumberBlocks(NewBB);
|
|
|
|
// Insert an entry into BBInfo to align it properly with the (newly
|
|
// renumbered) block numbers.
|
|
BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
|
|
|
|
// Next, update WaterList. Specifically, we need to add NewMBB as having
|
|
// available water after it.
|
|
water_iterator IP =
|
|
std::lower_bound(WaterList.begin(), WaterList.end(), NewBB,
|
|
CompareMBBNumbers);
|
|
WaterList.insert(IP, NewBB);
|
|
}
|
|
|
|
|
|
/// Split the basic block containing MI into two blocks, which are joined by
|
|
/// an unconditional branch. Update data structures and renumber blocks to
|
|
/// account for this change and returns the newly created block.
|
|
MachineBasicBlock *
|
|
AArch64ConstantIslands::splitBlockBeforeInstr(MachineInstr *MI) {
|
|
MachineBasicBlock *OrigBB = MI->getParent();
|
|
|
|
// Create a new MBB for the code after the OrigBB.
|
|
MachineBasicBlock *NewBB =
|
|
MF->CreateMachineBasicBlock(OrigBB->getBasicBlock());
|
|
MachineFunction::iterator MBBI = OrigBB; ++MBBI;
|
|
MF->insert(MBBI, NewBB);
|
|
|
|
// Splice the instructions starting with MI over to NewBB.
|
|
NewBB->splice(NewBB->end(), OrigBB, MI, OrigBB->end());
|
|
|
|
// Add an unconditional branch from OrigBB to NewBB.
|
|
// Note the new unconditional branch is not being recorded.
|
|
// There doesn't seem to be meaningful DebugInfo available; this doesn't
|
|
// correspond to anything in the source.
|
|
BuildMI(OrigBB, DebugLoc(), TII->get(AArch64::Bimm)).addMBB(NewBB);
|
|
++NumSplit;
|
|
|
|
// Update the CFG. All succs of OrigBB are now succs of NewBB.
|
|
NewBB->transferSuccessors(OrigBB);
|
|
|
|
// OrigBB branches to NewBB.
|
|
OrigBB->addSuccessor(NewBB);
|
|
|
|
// Update internal data structures to account for the newly inserted MBB.
|
|
// This is almost the same as updateForInsertedWaterBlock, except that
|
|
// the Water goes after OrigBB, not NewBB.
|
|
MF->RenumberBlocks(NewBB);
|
|
|
|
// Insert an entry into BBInfo to align it properly with the (newly
|
|
// renumbered) block numbers.
|
|
BBInfo.insert(BBInfo.begin() + NewBB->getNumber(), BasicBlockInfo());
|
|
|
|
// Next, update WaterList. Specifically, we need to add OrigMBB as having
|
|
// available water after it (but not if it's already there, which happens
|
|
// when splitting before a conditional branch that is followed by an
|
|
// unconditional branch - in that case we want to insert NewBB).
|
|
water_iterator IP =
|
|
std::lower_bound(WaterList.begin(), WaterList.end(), OrigBB,
|
|
CompareMBBNumbers);
|
|
MachineBasicBlock* WaterBB = *IP;
|
|
if (WaterBB == OrigBB)
|
|
WaterList.insert(llvm::next(IP), NewBB);
|
|
else
|
|
WaterList.insert(IP, OrigBB);
|
|
NewWaterList.insert(OrigBB);
|
|
|
|
// Figure out how large the OrigBB is. As the first half of the original
|
|
// block, it cannot contain a tablejump. The size includes
|
|
// the new jump we added. (It should be possible to do this without
|
|
// recounting everything, but it's very confusing, and this is rarely
|
|
// executed.)
|
|
computeBlockSize(OrigBB);
|
|
|
|
// Figure out how large the NewMBB is. As the second half of the original
|
|
// block, it may contain a tablejump.
|
|
computeBlockSize(NewBB);
|
|
|
|
// All BBOffsets following these blocks must be modified.
|
|
adjustBBOffsetsAfter(OrigBB);
|
|
|
|
return NewBB;
|
|
}
|
|
|
|
/// Compute the offset of U.MI as seen by the hardware displacement computation.
|
|
unsigned AArch64ConstantIslands::getUserOffset(CPUser &U) const {
|
|
return getOffsetOf(U.MI);
|
|
}
|
|
|
|
/// Checks whether UserOffset (the location of a constant pool reference) is
|
|
/// within OffsetBits of TrialOffset (a proposed location of a constant pool
|
|
/// entry).
|
|
bool AArch64ConstantIslands::isOffsetInRange(unsigned UserOffset,
|
|
unsigned TrialOffset,
|
|
unsigned OffsetBits) {
|
|
return isIntN(OffsetBits, static_cast<int64_t>(TrialOffset) - UserOffset);
|
|
}
|
|
|
|
/// Returns true if a CPE placed after the specified Water (a basic block) will
|
|
/// be in range for the specific MI.
|
|
///
|
|
/// Compute how much the function will grow by inserting a CPE after Water.
|
|
bool AArch64ConstantIslands::isWaterInRange(unsigned UserOffset,
|
|
MachineBasicBlock* Water, CPUser &U,
|
|
unsigned &Growth) {
|
|
unsigned CPELogAlign = getCPELogAlign(U.CPEMI);
|
|
unsigned CPEOffset = BBInfo[Water->getNumber()].postOffset(CPELogAlign);
|
|
unsigned NextBlockOffset, NextBlockAlignment;
|
|
MachineFunction::const_iterator NextBlock = Water;
|
|
if (++NextBlock == MF->end()) {
|
|
NextBlockOffset = BBInfo[Water->getNumber()].postOffset();
|
|
NextBlockAlignment = 0;
|
|
} else {
|
|
NextBlockOffset = BBInfo[NextBlock->getNumber()].Offset;
|
|
NextBlockAlignment = NextBlock->getAlignment();
|
|
}
|
|
unsigned Size = U.CPEMI->getOperand(2).getImm();
|
|
unsigned CPEEnd = CPEOffset + Size;
|
|
|
|
// The CPE may be able to hide in the alignment padding before the next
|
|
// block. It may also cause more padding to be required if it is more aligned
|
|
// that the next block.
|
|
if (CPEEnd > NextBlockOffset) {
|
|
Growth = CPEEnd - NextBlockOffset;
|
|
// Compute the padding that would go at the end of the CPE to align the next
|
|
// block.
|
|
Growth += OffsetToAlignment(CPEEnd, 1u << NextBlockAlignment);
|
|
|
|
// If the CPE is to be inserted before the instruction, that will raise
|
|
// the offset of the instruction. Also account for unknown alignment padding
|
|
// in blocks between CPE and the user.
|
|
if (CPEOffset < UserOffset)
|
|
UserOffset += Growth + UnknownPadding(MF->getAlignment(), CPELogAlign);
|
|
} else
|
|
// CPE fits in existing padding.
|
|
Growth = 0;
|
|
|
|
return isOffsetInRange(UserOffset, CPEOffset, U);
|
|
}
|
|
|
|
/// Returns true if the distance between specific MI and specific ConstPool
|
|
/// entry instruction can fit in MI's displacement field.
|
|
bool AArch64ConstantIslands::isCPEntryInRange(MachineInstr *MI,
|
|
unsigned UserOffset,
|
|
MachineInstr *CPEMI,
|
|
unsigned OffsetBits,
|
|
bool DoDump) {
|
|
unsigned CPEOffset = getOffsetOf(CPEMI);
|
|
|
|
if (DoDump) {
|
|
DEBUG({
|
|
unsigned Block = MI->getParent()->getNumber();
|
|
const BasicBlockInfo &BBI = BBInfo[Block];
|
|
dbgs() << "User of CPE#" << CPEMI->getOperand(0).getImm()
|
|
<< " bits available=" << OffsetBits
|
|
<< format(" insn address=%#x", UserOffset)
|
|
<< " in BB#" << Block << ": "
|
|
<< format("%#x-%x\t", BBI.Offset, BBI.postOffset()) << *MI
|
|
<< format("CPE address=%#x offset=%+d: ", CPEOffset,
|
|
int(CPEOffset-UserOffset));
|
|
});
|
|
}
|
|
|
|
return isOffsetInRange(UserOffset, CPEOffset, OffsetBits);
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
/// Return true of the specified basic block's only predecessor unconditionally
|
|
/// branches to its only successor.
|
|
static bool BBIsJumpedOver(MachineBasicBlock *MBB) {
|
|
if (MBB->pred_size() != 1 || MBB->succ_size() != 1)
|
|
return false;
|
|
|
|
MachineBasicBlock *Succ = *MBB->succ_begin();
|
|
MachineBasicBlock *Pred = *MBB->pred_begin();
|
|
MachineInstr *PredMI = &Pred->back();
|
|
if (PredMI->getOpcode() == AArch64::Bimm)
|
|
return PredMI->getOperand(0).getMBB() == Succ;
|
|
return false;
|
|
}
|
|
#endif // NDEBUG
|
|
|
|
void AArch64ConstantIslands::adjustBBOffsetsAfter(MachineBasicBlock *BB) {
|
|
unsigned BBNum = BB->getNumber();
|
|
for(unsigned i = BBNum + 1, e = MF->getNumBlockIDs(); i < e; ++i) {
|
|
// Get the offset and known bits at the end of the layout predecessor.
|
|
// Include the alignment of the current block.
|
|
unsigned LogAlign = MF->getBlockNumbered(i)->getAlignment();
|
|
unsigned Offset = BBInfo[i - 1].postOffset(LogAlign);
|
|
unsigned KnownBits = BBInfo[i - 1].postKnownBits(LogAlign);
|
|
|
|
// This is where block i begins. Stop if the offset is already correct,
|
|
// and we have updated 2 blocks. This is the maximum number of blocks
|
|
// changed before calling this function.
|
|
if (i > BBNum + 2 &&
|
|
BBInfo[i].Offset == Offset &&
|
|
BBInfo[i].KnownBits == KnownBits)
|
|
break;
|
|
|
|
BBInfo[i].Offset = Offset;
|
|
BBInfo[i].KnownBits = KnownBits;
|
|
}
|
|
}
|
|
|
|
/// Find the constant pool entry with index CPI and instruction CPEMI, and
|
|
/// decrement its refcount. If the refcount becomes 0 remove the entry and
|
|
/// instruction. Returns true if we removed the entry, false if we didn't.
|
|
bool AArch64ConstantIslands::decrementCPEReferenceCount(unsigned CPI,
|
|
MachineInstr *CPEMI) {
|
|
// Find the old entry. Eliminate it if it is no longer used.
|
|
CPEntry *CPE = findConstPoolEntry(CPI, CPEMI);
|
|
assert(CPE && "Unexpected!");
|
|
if (--CPE->RefCount == 0) {
|
|
removeDeadCPEMI(CPEMI);
|
|
CPE->CPEMI = NULL;
|
|
--NumCPEs;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// See if the currently referenced CPE is in range; if not, see if an in-range
|
|
/// clone of the CPE is in range, and if so, change the data structures so the
|
|
/// user references the clone. Returns:
|
|
/// 0 = no existing entry found
|
|
/// 1 = entry found, and there were no code insertions or deletions
|
|
/// 2 = entry found, and there were code insertions or deletions
|
|
int AArch64ConstantIslands::findInRangeCPEntry(CPUser& U, unsigned UserOffset)
|
|
{
|
|
MachineInstr *UserMI = U.MI;
|
|
MachineInstr *CPEMI = U.CPEMI;
|
|
|
|
// Check to see if the CPE is already in-range.
|
|
if (isCPEntryInRange(UserMI, UserOffset, CPEMI, U.getOffsetBits(), true)) {
|
|
DEBUG(dbgs() << "In range\n");
|
|
return 1;
|
|
}
|
|
|
|
// No. Look for previously created clones of the CPE that are in range.
|
|
unsigned CPI = CPEMI->getOperand(1).getIndex();
|
|
std::vector<CPEntry> &CPEs = CPEntries[CPI];
|
|
for (unsigned i = 0, e = CPEs.size(); i != e; ++i) {
|
|
// We already tried this one
|
|
if (CPEs[i].CPEMI == CPEMI)
|
|
continue;
|
|
// Removing CPEs can leave empty entries, skip
|
|
if (CPEs[i].CPEMI == NULL)
|
|
continue;
|
|
if (isCPEntryInRange(UserMI, UserOffset, CPEs[i].CPEMI,
|
|
U.getOffsetBits())) {
|
|
DEBUG(dbgs() << "Replacing CPE#" << CPI << " with CPE#"
|
|
<< CPEs[i].CPI << "\n");
|
|
// Point the CPUser node to the replacement
|
|
U.CPEMI = CPEs[i].CPEMI;
|
|
// Change the CPI in the instruction operand to refer to the clone.
|
|
for (unsigned j = 0, e = UserMI->getNumOperands(); j != e; ++j)
|
|
if (UserMI->getOperand(j).isCPI()) {
|
|
UserMI->getOperand(j).setIndex(CPEs[i].CPI);
|
|
break;
|
|
}
|
|
// Adjust the refcount of the clone...
|
|
CPEs[i].RefCount++;
|
|
// ...and the original. If we didn't remove the old entry, none of the
|
|
// addresses changed, so we don't need another pass.
|
|
return decrementCPEReferenceCount(CPI, CPEMI) ? 2 : 1;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// Look for an existing entry in the WaterList in which we can place the CPE
|
|
/// referenced from U so it's within range of U's MI. Returns true if found,
|
|
/// false if not. If it returns true, WaterIter is set to the WaterList
|
|
/// entry. To ensure that this pass terminates, the CPE location for a
|
|
/// particular CPUser is only allowed to move to a lower address, so search
|
|
/// backward from the end of the list and prefer the first water that is in
|
|
/// range.
|
|
bool AArch64ConstantIslands::findAvailableWater(CPUser &U, unsigned UserOffset,
|
|
water_iterator &WaterIter) {
|
|
if (WaterList.empty())
|
|
return false;
|
|
|
|
unsigned BestGrowth = ~0u;
|
|
for (water_iterator IP = prior(WaterList.end()), B = WaterList.begin();;
|
|
--IP) {
|
|
MachineBasicBlock* WaterBB = *IP;
|
|
// Check if water is in range and is either at a lower address than the
|
|
// current "high water mark" or a new water block that was created since
|
|
// the previous iteration by inserting an unconditional branch. In the
|
|
// latter case, we want to allow resetting the high water mark back to
|
|
// this new water since we haven't seen it before. Inserting branches
|
|
// should be relatively uncommon and when it does happen, we want to be
|
|
// sure to take advantage of it for all the CPEs near that block, so that
|
|
// we don't insert more branches than necessary.
|
|
unsigned Growth;
|
|
if (isWaterInRange(UserOffset, WaterBB, U, Growth) &&
|
|
(WaterBB->getNumber() < U.HighWaterMark->getNumber() ||
|
|
NewWaterList.count(WaterBB)) && Growth < BestGrowth) {
|
|
// This is the least amount of required padding seen so far.
|
|
BestGrowth = Growth;
|
|
WaterIter = IP;
|
|
DEBUG(dbgs() << "Found water after BB#" << WaterBB->getNumber()
|
|
<< " Growth=" << Growth << '\n');
|
|
|
|
// Keep looking unless it is perfect.
|
|
if (BestGrowth == 0)
|
|
return true;
|
|
}
|
|
if (IP == B)
|
|
break;
|
|
}
|
|
return BestGrowth != ~0u;
|
|
}
|
|
|
|
/// No existing WaterList entry will work for CPUsers[CPUserIndex], so create a
|
|
/// place to put the CPE. The end of the block is used if in range, and the
|
|
/// conditional branch munged so control flow is correct. Otherwise the block
|
|
/// is split to create a hole with an unconditional branch around it. In either
|
|
/// case NewMBB is set to a block following which the new island can be inserted
|
|
/// (the WaterList is not adjusted).
|
|
void AArch64ConstantIslands::createNewWater(unsigned CPUserIndex,
|
|
unsigned UserOffset,
|
|
MachineBasicBlock *&NewMBB) {
|
|
CPUser &U = CPUsers[CPUserIndex];
|
|
MachineInstr *UserMI = U.MI;
|
|
MachineInstr *CPEMI = U.CPEMI;
|
|
unsigned CPELogAlign = getCPELogAlign(CPEMI);
|
|
MachineBasicBlock *UserMBB = UserMI->getParent();
|
|
const BasicBlockInfo &UserBBI = BBInfo[UserMBB->getNumber()];
|
|
|
|
// If the block does not end in an unconditional branch already, and if the
|
|
// end of the block is within range, make new water there.
|
|
if (BBHasFallthrough(UserMBB)) {
|
|
// Size of branch to insert.
|
|
unsigned InstrSize = 4;
|
|
// Compute the offset where the CPE will begin.
|
|
unsigned CPEOffset = UserBBI.postOffset(CPELogAlign) + InstrSize;
|
|
|
|
if (isOffsetInRange(UserOffset, CPEOffset, U)) {
|
|
DEBUG(dbgs() << "Split at end of BB#" << UserMBB->getNumber()
|
|
<< format(", expected CPE offset %#x\n", CPEOffset));
|
|
NewMBB = llvm::next(MachineFunction::iterator(UserMBB));
|
|
// Add an unconditional branch from UserMBB to fallthrough block. Record
|
|
// it for branch lengthening; this new branch will not get out of range,
|
|
// but if the preceding conditional branch is out of range, the targets
|
|
// will be exchanged, and the altered branch may be out of range, so the
|
|
// machinery has to know about it.
|
|
BuildMI(UserMBB, DebugLoc(), TII->get(AArch64::Bimm)).addMBB(NewMBB);
|
|
|
|
// 26 bits written down, specifying a multiple of 4.
|
|
unsigned OffsetBits = 26 + 2;
|
|
ImmBranches.push_back(ImmBranch(&UserMBB->back(), OffsetBits, false));
|
|
BBInfo[UserMBB->getNumber()].Size += InstrSize;
|
|
adjustBBOffsetsAfter(UserMBB);
|
|
return;
|
|
}
|
|
}
|
|
|
|
// What a big block. Find a place within the block to split it. We make a
|
|
// first guess, then walk through the instructions between the one currently
|
|
// being looked at and the possible insertion point, and make sure any other
|
|
// instructions that reference CPEs will be able to use the same island area;
|
|
// if not, we back up the insertion point.
|
|
|
|
// Try to split the block so it's fully aligned. Compute the latest split
|
|
// point where we can add a 4-byte branch instruction, and then align to
|
|
// LogAlign which is the largest possible alignment in the function.
|
|
unsigned LogAlign = MF->getAlignment();
|
|
assert(LogAlign >= CPELogAlign && "Over-aligned constant pool entry");
|
|
unsigned KnownBits = UserBBI.internalKnownBits();
|
|
unsigned UPad = UnknownPadding(LogAlign, KnownBits);
|
|
unsigned BaseInsertOffset = UserOffset + U.getMaxPosDisp() - UPad;
|
|
DEBUG(dbgs() << format("Split in middle of big block before %#x",
|
|
BaseInsertOffset));
|
|
|
|
// The 4 in the following is for the unconditional branch we'll be inserting
|
|
// Alignment of the island is handled inside isOffsetInRange.
|
|
BaseInsertOffset -= 4;
|
|
|
|
DEBUG(dbgs() << format(", adjusted to %#x", BaseInsertOffset)
|
|
<< " la=" << LogAlign
|
|
<< " kb=" << KnownBits
|
|
<< " up=" << UPad << '\n');
|
|
|
|
// This could point off the end of the block if we've already got constant
|
|
// pool entries following this block; only the last one is in the water list.
|
|
// Back past any possible branches (allow for a conditional and a maximally
|
|
// long unconditional).
|
|
if (BaseInsertOffset + 8 >= UserBBI.postOffset()) {
|
|
BaseInsertOffset = UserBBI.postOffset() - UPad - 8;
|
|
DEBUG(dbgs() << format("Move inside block: %#x\n", BaseInsertOffset));
|
|
}
|
|
unsigned EndInsertOffset = BaseInsertOffset + 4 + UPad +
|
|
CPEMI->getOperand(2).getImm();
|
|
MachineBasicBlock::iterator MI = UserMI;
|
|
++MI;
|
|
unsigned CPUIndex = CPUserIndex+1;
|
|
unsigned NumCPUsers = CPUsers.size();
|
|
for (unsigned Offset = UserOffset+TII->getInstSizeInBytes(*UserMI);
|
|
Offset < BaseInsertOffset;
|
|
Offset += TII->getInstSizeInBytes(*MI),
|
|
MI = llvm::next(MI)) {
|
|
assert(MI != UserMBB->end() && "Fell off end of block");
|
|
if (CPUIndex < NumCPUsers && CPUsers[CPUIndex].MI == MI) {
|
|
CPUser &U = CPUsers[CPUIndex];
|
|
if (!isOffsetInRange(Offset, EndInsertOffset, U)) {
|
|
// Shift intertion point by one unit of alignment so it is within reach.
|
|
BaseInsertOffset -= 1u << LogAlign;
|
|
EndInsertOffset -= 1u << LogAlign;
|
|
}
|
|
// This is overly conservative, as we don't account for CPEMIs being
|
|
// reused within the block, but it doesn't matter much. Also assume CPEs
|
|
// are added in order with alignment padding. We may eventually be able
|
|
// to pack the aligned CPEs better.
|
|
EndInsertOffset += U.CPEMI->getOperand(2).getImm();
|
|
CPUIndex++;
|
|
}
|
|
}
|
|
|
|
--MI;
|
|
NewMBB = splitBlockBeforeInstr(MI);
|
|
}
|
|
|
|
/// Analyze the specified user, checking to see if it is out-of-range. If so,
|
|
/// pick up the constant pool value and move it some place in-range. Return
|
|
/// true if we changed any addresses, false otherwise.
|
|
bool AArch64ConstantIslands::handleConstantPoolUser(unsigned CPUserIndex) {
|
|
CPUser &U = CPUsers[CPUserIndex];
|
|
MachineInstr *UserMI = U.MI;
|
|
MachineInstr *CPEMI = U.CPEMI;
|
|
unsigned CPI = CPEMI->getOperand(1).getIndex();
|
|
unsigned Size = CPEMI->getOperand(2).getImm();
|
|
// Compute this only once, it's expensive.
|
|
unsigned UserOffset = getUserOffset(U);
|
|
|
|
// See if the current entry is within range, or there is a clone of it
|
|
// in range.
|
|
int result = findInRangeCPEntry(U, UserOffset);
|
|
if (result==1) return false;
|
|
else if (result==2) return true;
|
|
|
|
// No existing clone of this CPE is within range.
|
|
// We will be generating a new clone. Get a UID for it.
|
|
unsigned ID = AFI->createPICLabelUId();
|
|
|
|
// Look for water where we can place this CPE.
|
|
MachineBasicBlock *NewIsland = MF->CreateMachineBasicBlock();
|
|
MachineBasicBlock *NewMBB;
|
|
water_iterator IP;
|
|
if (findAvailableWater(U, UserOffset, IP)) {
|
|
DEBUG(dbgs() << "Found water in range\n");
|
|
MachineBasicBlock *WaterBB = *IP;
|
|
|
|
// If the original WaterList entry was "new water" on this iteration,
|
|
// propagate that to the new island. This is just keeping NewWaterList
|
|
// updated to match the WaterList, which will be updated below.
|
|
if (NewWaterList.count(WaterBB)) {
|
|
NewWaterList.erase(WaterBB);
|
|
NewWaterList.insert(NewIsland);
|
|
}
|
|
// The new CPE goes before the following block (NewMBB).
|
|
NewMBB = llvm::next(MachineFunction::iterator(WaterBB));
|
|
|
|
} else {
|
|
// No water found.
|
|
DEBUG(dbgs() << "No water found\n");
|
|
createNewWater(CPUserIndex, UserOffset, NewMBB);
|
|
|
|
// splitBlockBeforeInstr adds to WaterList, which is important when it is
|
|
// called while handling branches so that the water will be seen on the
|
|
// next iteration for constant pools, but in this context, we don't want
|
|
// it. Check for this so it will be removed from the WaterList.
|
|
// Also remove any entry from NewWaterList.
|
|
MachineBasicBlock *WaterBB = prior(MachineFunction::iterator(NewMBB));
|
|
IP = std::find(WaterList.begin(), WaterList.end(), WaterBB);
|
|
if (IP != WaterList.end())
|
|
NewWaterList.erase(WaterBB);
|
|
|
|
// We are adding new water. Update NewWaterList.
|
|
NewWaterList.insert(NewIsland);
|
|
}
|
|
|
|
// Remove the original WaterList entry; we want subsequent insertions in
|
|
// this vicinity to go after the one we're about to insert. This
|
|
// considerably reduces the number of times we have to move the same CPE
|
|
// more than once and is also important to ensure the algorithm terminates.
|
|
if (IP != WaterList.end())
|
|
WaterList.erase(IP);
|
|
|
|
// Okay, we know we can put an island before NewMBB now, do it!
|
|
MF->insert(NewMBB, NewIsland);
|
|
|
|
// Update internal data structures to account for the newly inserted MBB.
|
|
updateForInsertedWaterBlock(NewIsland);
|
|
|
|
// Decrement the old entry, and remove it if refcount becomes 0.
|
|
decrementCPEReferenceCount(CPI, CPEMI);
|
|
|
|
// Now that we have an island to add the CPE to, clone the original CPE and
|
|
// add it to the island.
|
|
U.HighWaterMark = NewIsland;
|
|
U.CPEMI = BuildMI(NewIsland, DebugLoc(), TII->get(AArch64::CONSTPOOL_ENTRY))
|
|
.addImm(ID).addConstantPoolIndex(CPI).addImm(Size);
|
|
CPEntries[CPI].push_back(CPEntry(U.CPEMI, ID, 1));
|
|
++NumCPEs;
|
|
|
|
// Mark the basic block as aligned as required by the const-pool entry.
|
|
NewIsland->setAlignment(getCPELogAlign(U.CPEMI));
|
|
|
|
// Increase the size of the island block to account for the new entry.
|
|
BBInfo[NewIsland->getNumber()].Size += Size;
|
|
adjustBBOffsetsAfter(llvm::prior(MachineFunction::iterator(NewIsland)));
|
|
|
|
// Finally, change the CPI in the instruction operand to be ID.
|
|
for (unsigned i = 0, e = UserMI->getNumOperands(); i != e; ++i)
|
|
if (UserMI->getOperand(i).isCPI()) {
|
|
UserMI->getOperand(i).setIndex(ID);
|
|
break;
|
|
}
|
|
|
|
DEBUG(dbgs() << " Moved CPE to #" << ID << " CPI=" << CPI
|
|
<< format(" offset=%#x\n", BBInfo[NewIsland->getNumber()].Offset));
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Remove a dead constant pool entry instruction. Update sizes and offsets of
|
|
/// impacted basic blocks.
|
|
void AArch64ConstantIslands::removeDeadCPEMI(MachineInstr *CPEMI) {
|
|
MachineBasicBlock *CPEBB = CPEMI->getParent();
|
|
unsigned Size = CPEMI->getOperand(2).getImm();
|
|
CPEMI->eraseFromParent();
|
|
BBInfo[CPEBB->getNumber()].Size -= Size;
|
|
// All succeeding offsets have the current size value added in, fix this.
|
|
if (CPEBB->empty()) {
|
|
BBInfo[CPEBB->getNumber()].Size = 0;
|
|
|
|
// This block no longer needs to be aligned. <rdar://problem/10534709>.
|
|
CPEBB->setAlignment(0);
|
|
} else
|
|
// Entries are sorted by descending alignment, so realign from the front.
|
|
CPEBB->setAlignment(getCPELogAlign(CPEBB->begin()));
|
|
|
|
adjustBBOffsetsAfter(CPEBB);
|
|
// An island has only one predecessor BB and one successor BB. Check if
|
|
// this BB's predecessor jumps directly to this BB's successor. This
|
|
// shouldn't happen currently.
|
|
assert(!BBIsJumpedOver(CPEBB) && "How did this happen?");
|
|
// FIXME: remove the empty blocks after all the work is done?
|
|
}
|
|
|
|
/// Remove constant pool entries whose refcounts are zero.
|
|
bool AArch64ConstantIslands::removeUnusedCPEntries() {
|
|
unsigned MadeChange = false;
|
|
for (unsigned i = 0, e = CPEntries.size(); i != e; ++i) {
|
|
std::vector<CPEntry> &CPEs = CPEntries[i];
|
|
for (unsigned j = 0, ee = CPEs.size(); j != ee; ++j) {
|
|
if (CPEs[j].RefCount == 0 && CPEs[j].CPEMI) {
|
|
removeDeadCPEMI(CPEs[j].CPEMI);
|
|
CPEs[j].CPEMI = NULL;
|
|
MadeChange = true;
|
|
}
|
|
}
|
|
}
|
|
return MadeChange;
|
|
}
|
|
|
|
/// Returns true if the distance between specific MI and specific BB can fit in
|
|
/// MI's displacement field.
|
|
bool AArch64ConstantIslands::isBBInRange(MachineInstr *MI,
|
|
MachineBasicBlock *DestBB,
|
|
unsigned OffsetBits) {
|
|
int64_t BrOffset = getOffsetOf(MI);
|
|
int64_t DestOffset = BBInfo[DestBB->getNumber()].Offset;
|
|
|
|
DEBUG(dbgs() << "Branch of destination BB#" << DestBB->getNumber()
|
|
<< " from BB#" << MI->getParent()->getNumber()
|
|
<< " bits available=" << OffsetBits
|
|
<< " from " << getOffsetOf(MI) << " to " << DestOffset
|
|
<< " offset " << int(DestOffset-BrOffset) << "\t" << *MI);
|
|
|
|
return isIntN(OffsetBits, DestOffset - BrOffset);
|
|
}
|
|
|
|
/// Fix up an immediate branch whose destination is too far away to fit in its
|
|
/// displacement field.
|
|
bool AArch64ConstantIslands::fixupImmediateBr(ImmBranch &Br) {
|
|
MachineInstr *MI = Br.MI;
|
|
MachineBasicBlock *DestBB = 0;
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
if (MI->getOperand(i).isMBB()) {
|
|
DestBB = MI->getOperand(i).getMBB();
|
|
break;
|
|
}
|
|
}
|
|
assert(DestBB && "Branch with no destination BB?");
|
|
|
|
// Check to see if the DestBB is already in-range.
|
|
if (isBBInRange(MI, DestBB, Br.OffsetBits))
|
|
return false;
|
|
|
|
assert(Br.IsCond && "Only conditional branches should need fixup");
|
|
return fixupConditionalBr(Br);
|
|
}
|
|
|
|
/// Fix up a conditional branch whose destination is too far away to fit in its
|
|
/// displacement field. It is converted to an inverse conditional branch + an
|
|
/// unconditional branch to the destination.
|
|
bool
|
|
AArch64ConstantIslands::fixupConditionalBr(ImmBranch &Br) {
|
|
MachineInstr *MI = Br.MI;
|
|
MachineBasicBlock *MBB = MI->getParent();
|
|
unsigned CondBrMBBOperand = 0;
|
|
|
|
// The general idea is to add an unconditional branch to the destination and
|
|
// invert the conditional branch to jump over it. Complications occur around
|
|
// fallthrough and unreachable ends to the block.
|
|
// b.lt L1
|
|
// =>
|
|
// b.ge L2
|
|
// b L1
|
|
// L2:
|
|
|
|
// First we invert the conditional branch, by creating a replacement if
|
|
// necessary. This if statement contains all the special handling of different
|
|
// branch types.
|
|
if (MI->getOpcode() == AArch64::Bcc) {
|
|
// The basic block is operand number 1 for Bcc
|
|
CondBrMBBOperand = 1;
|
|
|
|
A64CC::CondCodes CC = (A64CC::CondCodes)MI->getOperand(0).getImm();
|
|
CC = A64InvertCondCode(CC);
|
|
MI->getOperand(0).setImm(CC);
|
|
} else {
|
|
MachineInstrBuilder InvertedMI;
|
|
int InvertedOpcode;
|
|
switch (MI->getOpcode()) {
|
|
default: llvm_unreachable("Unknown branch type");
|
|
case AArch64::TBZxii: InvertedOpcode = AArch64::TBNZxii; break;
|
|
case AArch64::TBZwii: InvertedOpcode = AArch64::TBNZwii; break;
|
|
case AArch64::TBNZxii: InvertedOpcode = AArch64::TBZxii; break;
|
|
case AArch64::TBNZwii: InvertedOpcode = AArch64::TBZwii; break;
|
|
case AArch64::CBZx: InvertedOpcode = AArch64::CBNZx; break;
|
|
case AArch64::CBZw: InvertedOpcode = AArch64::CBNZw; break;
|
|
case AArch64::CBNZx: InvertedOpcode = AArch64::CBZx; break;
|
|
case AArch64::CBNZw: InvertedOpcode = AArch64::CBZw; break;
|
|
}
|
|
|
|
InvertedMI = BuildMI(*MBB, MI, MI->getDebugLoc(), TII->get(InvertedOpcode));
|
|
for (unsigned i = 0, e= MI->getNumOperands(); i != e; ++i) {
|
|
InvertedMI.addOperand(MI->getOperand(i));
|
|
if (MI->getOperand(i).isMBB())
|
|
CondBrMBBOperand = i;
|
|
}
|
|
|
|
MI->eraseFromParent();
|
|
MI = Br.MI = InvertedMI;
|
|
}
|
|
|
|
// If the branch is at the end of its MBB and that has a fall-through block,
|
|
// direct the updated conditional branch to the fall-through
|
|
// block. Otherwise, split the MBB before the next instruction.
|
|
MachineInstr *BMI = &MBB->back();
|
|
bool NeedSplit = (BMI != MI) || !BBHasFallthrough(MBB);
|
|
|
|
++NumCBrFixed;
|
|
if (BMI != MI) {
|
|
if (llvm::next(MachineBasicBlock::iterator(MI)) == prior(MBB->end()) &&
|
|
BMI->getOpcode() == AArch64::Bimm) {
|
|
// Last MI in the BB is an unconditional branch. We can swap destinations:
|
|
// b.eq L1 (temporarily b.ne L1 after first change)
|
|
// b L2
|
|
// =>
|
|
// b.ne L2
|
|
// b L1
|
|
MachineBasicBlock *NewDest = BMI->getOperand(0).getMBB();
|
|
if (isBBInRange(MI, NewDest, Br.OffsetBits)) {
|
|
DEBUG(dbgs() << " Invert Bcc condition and swap its destination with "
|
|
<< *BMI);
|
|
MachineBasicBlock *DestBB = MI->getOperand(CondBrMBBOperand).getMBB();
|
|
BMI->getOperand(0).setMBB(DestBB);
|
|
MI->getOperand(CondBrMBBOperand).setMBB(NewDest);
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (NeedSplit) {
|
|
MachineBasicBlock::iterator MBBI = MI; ++MBBI;
|
|
splitBlockBeforeInstr(MBBI);
|
|
// No need for the branch to the next block. We're adding an unconditional
|
|
// branch to the destination.
|
|
int delta = TII->getInstSizeInBytes(MBB->back());
|
|
BBInfo[MBB->getNumber()].Size -= delta;
|
|
MBB->back().eraseFromParent();
|
|
// BBInfo[SplitBB].Offset is wrong temporarily, fixed below
|
|
}
|
|
|
|
// After splitting and removing the unconditional branch from the original BB,
|
|
// the structure is now:
|
|
// oldbb:
|
|
// [things]
|
|
// b.invertedCC L1
|
|
// splitbb/fallthroughbb:
|
|
// [old b L2/real continuation]
|
|
//
|
|
// We now have to change the conditional branch to point to splitbb and add an
|
|
// unconditional branch after it to L1, giving the final structure:
|
|
// oldbb:
|
|
// [things]
|
|
// b.invertedCC splitbb
|
|
// b L1
|
|
// splitbb/fallthroughbb:
|
|
// [old b L2/real continuation]
|
|
MachineBasicBlock *NextBB = llvm::next(MachineFunction::iterator(MBB));
|
|
|
|
DEBUG(dbgs() << " Insert B to BB#"
|
|
<< MI->getOperand(CondBrMBBOperand).getMBB()->getNumber()
|
|
<< " also invert condition and change dest. to BB#"
|
|
<< NextBB->getNumber() << "\n");
|
|
|
|
// Insert a new unconditional branch and fixup the destination of the
|
|
// conditional one. Also update the ImmBranch as well as adding a new entry
|
|
// for the new branch.
|
|
BuildMI(MBB, DebugLoc(), TII->get(AArch64::Bimm))
|
|
.addMBB(MI->getOperand(CondBrMBBOperand).getMBB());
|
|
MI->getOperand(CondBrMBBOperand).setMBB(NextBB);
|
|
|
|
BBInfo[MBB->getNumber()].Size += TII->getInstSizeInBytes(MBB->back());
|
|
|
|
// 26 bits written down in Bimm, specifying a multiple of 4.
|
|
unsigned OffsetBits = 26 + 2;
|
|
ImmBranches.push_back(ImmBranch(&MBB->back(), OffsetBits, false));
|
|
|
|
adjustBBOffsetsAfter(MBB);
|
|
return true;
|
|
}
|