mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-11 10:31:40 +00:00
6a2e7ac0b6
Caching it as a pointer allows us to reset it if the TargetMachine object changes. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@183361 91177308-0d34-0410-b5e6-96231b3b80d8
656 lines
20 KiB
C++
656 lines
20 KiB
C++
//===- ResourcePriorityQueue.cpp - A DFA-oriented priority queue -*- C++ -*-==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the ResourcePriorityQueue class, which is a
|
|
// SchedulingPriorityQueue that prioritizes instructions using DFA state to
|
|
// reduce the length of the critical path through the basic block
|
|
// on VLIW platforms.
|
|
// The scheduler is basically a top-down adaptable list scheduler with DFA
|
|
// resource tracking added to the cost function.
|
|
// DFA is queried as a state machine to model "packets/bundles" during
|
|
// schedule. Currently packets/bundles are discarded at the end of
|
|
// scheduling, affecting only order of instructions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "scheduler"
|
|
#include "llvm/CodeGen/ResourcePriorityQueue.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/SelectionDAGNodes.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetLowering.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool> DisableDFASched("disable-dfa-sched", cl::Hidden,
|
|
cl::ZeroOrMore, cl::init(false),
|
|
cl::desc("Disable use of DFA during scheduling"));
|
|
|
|
static cl::opt<signed> RegPressureThreshold(
|
|
"dfa-sched-reg-pressure-threshold", cl::Hidden, cl::ZeroOrMore, cl::init(5),
|
|
cl::desc("Track reg pressure and switch priority to in-depth"));
|
|
|
|
|
|
ResourcePriorityQueue::ResourcePriorityQueue(SelectionDAGISel *IS) :
|
|
Picker(this),
|
|
InstrItins(IS->getTargetLowering()->getTargetMachine().getInstrItineraryData())
|
|
{
|
|
TII = IS->getTargetLowering()->getTargetMachine().getInstrInfo();
|
|
TRI = IS->getTargetLowering()->getTargetMachine().getRegisterInfo();
|
|
TLI = IS->getTargetLowering();
|
|
|
|
const TargetMachine &tm = (*IS->MF).getTarget();
|
|
ResourcesModel = tm.getInstrInfo()->CreateTargetScheduleState(&tm,NULL);
|
|
// This hard requirement could be relaxed, but for now
|
|
// do not let it procede.
|
|
assert (ResourcesModel && "Unimplemented CreateTargetScheduleState.");
|
|
|
|
unsigned NumRC = TRI->getNumRegClasses();
|
|
RegLimit.resize(NumRC);
|
|
RegPressure.resize(NumRC);
|
|
std::fill(RegLimit.begin(), RegLimit.end(), 0);
|
|
std::fill(RegPressure.begin(), RegPressure.end(), 0);
|
|
for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
|
|
E = TRI->regclass_end(); I != E; ++I)
|
|
RegLimit[(*I)->getID()] = TRI->getRegPressureLimit(*I, *IS->MF);
|
|
|
|
ParallelLiveRanges = 0;
|
|
HorizontalVerticalBalance = 0;
|
|
}
|
|
|
|
unsigned
|
|
ResourcePriorityQueue::numberRCValPredInSU(SUnit *SU, unsigned RCId) {
|
|
unsigned NumberDeps = 0;
|
|
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
|
I != E; ++I) {
|
|
if (I->isCtrl())
|
|
continue;
|
|
|
|
SUnit *PredSU = I->getSUnit();
|
|
const SDNode *ScegN = PredSU->getNode();
|
|
|
|
if (!ScegN)
|
|
continue;
|
|
|
|
// If value is passed to CopyToReg, it is probably
|
|
// live outside BB.
|
|
switch (ScegN->getOpcode()) {
|
|
default: break;
|
|
case ISD::TokenFactor: break;
|
|
case ISD::CopyFromReg: NumberDeps++; break;
|
|
case ISD::CopyToReg: break;
|
|
case ISD::INLINEASM: break;
|
|
}
|
|
if (!ScegN->isMachineOpcode())
|
|
continue;
|
|
|
|
for (unsigned i = 0, e = ScegN->getNumValues(); i != e; ++i) {
|
|
MVT VT = ScegN->getSimpleValueType(i);
|
|
if (TLI->isTypeLegal(VT)
|
|
&& (TLI->getRegClassFor(VT)->getID() == RCId)) {
|
|
NumberDeps++;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return NumberDeps;
|
|
}
|
|
|
|
unsigned ResourcePriorityQueue::numberRCValSuccInSU(SUnit *SU,
|
|
unsigned RCId) {
|
|
unsigned NumberDeps = 0;
|
|
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
I != E; ++I) {
|
|
if (I->isCtrl())
|
|
continue;
|
|
|
|
SUnit *SuccSU = I->getSUnit();
|
|
const SDNode *ScegN = SuccSU->getNode();
|
|
if (!ScegN)
|
|
continue;
|
|
|
|
// If value is passed to CopyToReg, it is probably
|
|
// live outside BB.
|
|
switch (ScegN->getOpcode()) {
|
|
default: break;
|
|
case ISD::TokenFactor: break;
|
|
case ISD::CopyFromReg: break;
|
|
case ISD::CopyToReg: NumberDeps++; break;
|
|
case ISD::INLINEASM: break;
|
|
}
|
|
if (!ScegN->isMachineOpcode())
|
|
continue;
|
|
|
|
for (unsigned i = 0, e = ScegN->getNumOperands(); i != e; ++i) {
|
|
const SDValue &Op = ScegN->getOperand(i);
|
|
MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo());
|
|
if (TLI->isTypeLegal(VT)
|
|
&& (TLI->getRegClassFor(VT)->getID() == RCId)) {
|
|
NumberDeps++;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
return NumberDeps;
|
|
}
|
|
|
|
static unsigned numberCtrlDepsInSU(SUnit *SU) {
|
|
unsigned NumberDeps = 0;
|
|
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
I != E; ++I)
|
|
if (I->isCtrl())
|
|
NumberDeps++;
|
|
|
|
return NumberDeps;
|
|
}
|
|
|
|
static unsigned numberCtrlPredInSU(SUnit *SU) {
|
|
unsigned NumberDeps = 0;
|
|
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
|
I != E; ++I)
|
|
if (I->isCtrl())
|
|
NumberDeps++;
|
|
|
|
return NumberDeps;
|
|
}
|
|
|
|
///
|
|
/// Initialize nodes.
|
|
///
|
|
void ResourcePriorityQueue::initNodes(std::vector<SUnit> &sunits) {
|
|
SUnits = &sunits;
|
|
NumNodesSolelyBlocking.resize(SUnits->size(), 0);
|
|
|
|
for (unsigned i = 0, e = SUnits->size(); i != e; ++i) {
|
|
SUnit *SU = &(*SUnits)[i];
|
|
initNumRegDefsLeft(SU);
|
|
SU->NodeQueueId = 0;
|
|
}
|
|
}
|
|
|
|
/// This heuristic is used if DFA scheduling is not desired
|
|
/// for some VLIW platform.
|
|
bool resource_sort::operator()(const SUnit *LHS, const SUnit *RHS) const {
|
|
// The isScheduleHigh flag allows nodes with wraparound dependencies that
|
|
// cannot easily be modeled as edges with latencies to be scheduled as
|
|
// soon as possible in a top-down schedule.
|
|
if (LHS->isScheduleHigh && !RHS->isScheduleHigh)
|
|
return false;
|
|
|
|
if (!LHS->isScheduleHigh && RHS->isScheduleHigh)
|
|
return true;
|
|
|
|
unsigned LHSNum = LHS->NodeNum;
|
|
unsigned RHSNum = RHS->NodeNum;
|
|
|
|
// The most important heuristic is scheduling the critical path.
|
|
unsigned LHSLatency = PQ->getLatency(LHSNum);
|
|
unsigned RHSLatency = PQ->getLatency(RHSNum);
|
|
if (LHSLatency < RHSLatency) return true;
|
|
if (LHSLatency > RHSLatency) return false;
|
|
|
|
// After that, if two nodes have identical latencies, look to see if one will
|
|
// unblock more other nodes than the other.
|
|
unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum);
|
|
unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum);
|
|
if (LHSBlocked < RHSBlocked) return true;
|
|
if (LHSBlocked > RHSBlocked) return false;
|
|
|
|
// Finally, just to provide a stable ordering, use the node number as a
|
|
// deciding factor.
|
|
return LHSNum < RHSNum;
|
|
}
|
|
|
|
|
|
/// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor
|
|
/// of SU, return it, otherwise return null.
|
|
SUnit *ResourcePriorityQueue::getSingleUnscheduledPred(SUnit *SU) {
|
|
SUnit *OnlyAvailablePred = 0;
|
|
for (SUnit::const_pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
|
I != E; ++I) {
|
|
SUnit &Pred = *I->getSUnit();
|
|
if (!Pred.isScheduled) {
|
|
// We found an available, but not scheduled, predecessor. If it's the
|
|
// only one we have found, keep track of it... otherwise give up.
|
|
if (OnlyAvailablePred && OnlyAvailablePred != &Pred)
|
|
return 0;
|
|
OnlyAvailablePred = &Pred;
|
|
}
|
|
}
|
|
return OnlyAvailablePred;
|
|
}
|
|
|
|
void ResourcePriorityQueue::push(SUnit *SU) {
|
|
// Look at all of the successors of this node. Count the number of nodes that
|
|
// this node is the sole unscheduled node for.
|
|
unsigned NumNodesBlocking = 0;
|
|
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
I != E; ++I)
|
|
if (getSingleUnscheduledPred(I->getSUnit()) == SU)
|
|
++NumNodesBlocking;
|
|
|
|
NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking;
|
|
Queue.push_back(SU);
|
|
}
|
|
|
|
/// Check if scheduling of this SU is possible
|
|
/// in the current packet.
|
|
bool ResourcePriorityQueue::isResourceAvailable(SUnit *SU) {
|
|
if (!SU || !SU->getNode())
|
|
return false;
|
|
|
|
// If this is a compound instruction,
|
|
// it is likely to be a call. Do not delay it.
|
|
if (SU->getNode()->getGluedNode())
|
|
return true;
|
|
|
|
// First see if the pipeline could receive this instruction
|
|
// in the current cycle.
|
|
if (SU->getNode()->isMachineOpcode())
|
|
switch (SU->getNode()->getMachineOpcode()) {
|
|
default:
|
|
if (!ResourcesModel->canReserveResources(&TII->get(
|
|
SU->getNode()->getMachineOpcode())))
|
|
return false;
|
|
case TargetOpcode::EXTRACT_SUBREG:
|
|
case TargetOpcode::INSERT_SUBREG:
|
|
case TargetOpcode::SUBREG_TO_REG:
|
|
case TargetOpcode::REG_SEQUENCE:
|
|
case TargetOpcode::IMPLICIT_DEF:
|
|
break;
|
|
}
|
|
|
|
// Now see if there are no other dependencies
|
|
// to instructions alredy in the packet.
|
|
for (unsigned i = 0, e = Packet.size(); i != e; ++i)
|
|
for (SUnit::const_succ_iterator I = Packet[i]->Succs.begin(),
|
|
E = Packet[i]->Succs.end(); I != E; ++I) {
|
|
// Since we do not add pseudos to packets, might as well
|
|
// ignor order deps.
|
|
if (I->isCtrl())
|
|
continue;
|
|
|
|
if (I->getSUnit() == SU)
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
/// Keep track of available resources.
|
|
void ResourcePriorityQueue::reserveResources(SUnit *SU) {
|
|
// If this SU does not fit in the packet
|
|
// start a new one.
|
|
if (!isResourceAvailable(SU) || SU->getNode()->getGluedNode()) {
|
|
ResourcesModel->clearResources();
|
|
Packet.clear();
|
|
}
|
|
|
|
if (SU->getNode() && SU->getNode()->isMachineOpcode()) {
|
|
switch (SU->getNode()->getMachineOpcode()) {
|
|
default:
|
|
ResourcesModel->reserveResources(&TII->get(
|
|
SU->getNode()->getMachineOpcode()));
|
|
break;
|
|
case TargetOpcode::EXTRACT_SUBREG:
|
|
case TargetOpcode::INSERT_SUBREG:
|
|
case TargetOpcode::SUBREG_TO_REG:
|
|
case TargetOpcode::REG_SEQUENCE:
|
|
case TargetOpcode::IMPLICIT_DEF:
|
|
break;
|
|
}
|
|
Packet.push_back(SU);
|
|
}
|
|
// Forcefully end packet for PseudoOps.
|
|
else {
|
|
ResourcesModel->clearResources();
|
|
Packet.clear();
|
|
}
|
|
|
|
// If packet is now full, reset the state so in the next cycle
|
|
// we start fresh.
|
|
if (Packet.size() >= InstrItins->SchedModel->IssueWidth) {
|
|
ResourcesModel->clearResources();
|
|
Packet.clear();
|
|
}
|
|
}
|
|
|
|
signed ResourcePriorityQueue::rawRegPressureDelta(SUnit *SU, unsigned RCId) {
|
|
signed RegBalance = 0;
|
|
|
|
if (!SU || !SU->getNode() || !SU->getNode()->isMachineOpcode())
|
|
return RegBalance;
|
|
|
|
// Gen estimate.
|
|
for (unsigned i = 0, e = SU->getNode()->getNumValues(); i != e; ++i) {
|
|
MVT VT = SU->getNode()->getSimpleValueType(i);
|
|
if (TLI->isTypeLegal(VT)
|
|
&& TLI->getRegClassFor(VT)
|
|
&& TLI->getRegClassFor(VT)->getID() == RCId)
|
|
RegBalance += numberRCValSuccInSU(SU, RCId);
|
|
}
|
|
// Kill estimate.
|
|
for (unsigned i = 0, e = SU->getNode()->getNumOperands(); i != e; ++i) {
|
|
const SDValue &Op = SU->getNode()->getOperand(i);
|
|
MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo());
|
|
if (isa<ConstantSDNode>(Op.getNode()))
|
|
continue;
|
|
|
|
if (TLI->isTypeLegal(VT) && TLI->getRegClassFor(VT)
|
|
&& TLI->getRegClassFor(VT)->getID() == RCId)
|
|
RegBalance -= numberRCValPredInSU(SU, RCId);
|
|
}
|
|
return RegBalance;
|
|
}
|
|
|
|
/// Estimates change in reg pressure from this SU.
|
|
/// It is achieved by trivial tracking of defined
|
|
/// and used vregs in dependent instructions.
|
|
/// The RawPressure flag makes this function to ignore
|
|
/// existing reg file sizes, and report raw def/use
|
|
/// balance.
|
|
signed ResourcePriorityQueue::regPressureDelta(SUnit *SU, bool RawPressure) {
|
|
signed RegBalance = 0;
|
|
|
|
if (!SU || !SU->getNode() || !SU->getNode()->isMachineOpcode())
|
|
return RegBalance;
|
|
|
|
if (RawPressure) {
|
|
for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
|
|
E = TRI->regclass_end(); I != E; ++I) {
|
|
const TargetRegisterClass *RC = *I;
|
|
RegBalance += rawRegPressureDelta(SU, RC->getID());
|
|
}
|
|
}
|
|
else {
|
|
for (TargetRegisterInfo::regclass_iterator I = TRI->regclass_begin(),
|
|
E = TRI->regclass_end(); I != E; ++I) {
|
|
const TargetRegisterClass *RC = *I;
|
|
if ((RegPressure[RC->getID()] +
|
|
rawRegPressureDelta(SU, RC->getID()) > 0) &&
|
|
(RegPressure[RC->getID()] +
|
|
rawRegPressureDelta(SU, RC->getID()) >= RegLimit[RC->getID()]))
|
|
RegBalance += rawRegPressureDelta(SU, RC->getID());
|
|
}
|
|
}
|
|
|
|
return RegBalance;
|
|
}
|
|
|
|
// Constants used to denote relative importance of
|
|
// heuristic components for cost computation.
|
|
static const unsigned PriorityOne = 200;
|
|
static const unsigned PriorityTwo = 100;
|
|
static const unsigned PriorityThree = 50;
|
|
static const unsigned PriorityFour = 15;
|
|
static const unsigned PriorityFive = 5;
|
|
static const unsigned ScaleOne = 20;
|
|
static const unsigned ScaleTwo = 10;
|
|
static const unsigned ScaleThree = 5;
|
|
static const unsigned FactorOne = 2;
|
|
|
|
/// Returns single number reflecting benefit of scheduling SU
|
|
/// in the current cycle.
|
|
signed ResourcePriorityQueue::SUSchedulingCost(SUnit *SU) {
|
|
// Initial trivial priority.
|
|
signed ResCount = 1;
|
|
|
|
// Do not waste time on a node that is already scheduled.
|
|
if (SU->isScheduled)
|
|
return ResCount;
|
|
|
|
// Forced priority is high.
|
|
if (SU->isScheduleHigh)
|
|
ResCount += PriorityOne;
|
|
|
|
// Adaptable scheduling
|
|
// A small, but very parallel
|
|
// region, where reg pressure is an issue.
|
|
if (HorizontalVerticalBalance > RegPressureThreshold) {
|
|
// Critical path first
|
|
ResCount += (SU->getHeight() * ScaleTwo);
|
|
// If resources are available for it, multiply the
|
|
// chance of scheduling.
|
|
if (isResourceAvailable(SU))
|
|
ResCount <<= FactorOne;
|
|
|
|
// Consider change to reg pressure from scheduling
|
|
// this SU.
|
|
ResCount -= (regPressureDelta(SU,true) * ScaleOne);
|
|
}
|
|
// Default heuristic, greeady and
|
|
// critical path driven.
|
|
else {
|
|
// Critical path first.
|
|
ResCount += (SU->getHeight() * ScaleTwo);
|
|
// Now see how many instructions is blocked by this SU.
|
|
ResCount += (NumNodesSolelyBlocking[SU->NodeNum] * ScaleTwo);
|
|
// If resources are available for it, multiply the
|
|
// chance of scheduling.
|
|
if (isResourceAvailable(SU))
|
|
ResCount <<= FactorOne;
|
|
|
|
ResCount -= (regPressureDelta(SU) * ScaleTwo);
|
|
}
|
|
|
|
// These are platform specific things.
|
|
// Will need to go into the back end
|
|
// and accessed from here via a hook.
|
|
for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) {
|
|
if (N->isMachineOpcode()) {
|
|
const MCInstrDesc &TID = TII->get(N->getMachineOpcode());
|
|
if (TID.isCall())
|
|
ResCount += (PriorityThree + (ScaleThree*N->getNumValues()));
|
|
}
|
|
else
|
|
switch (N->getOpcode()) {
|
|
default: break;
|
|
case ISD::TokenFactor:
|
|
case ISD::CopyFromReg:
|
|
case ISD::CopyToReg:
|
|
ResCount += PriorityFive;
|
|
break;
|
|
|
|
case ISD::INLINEASM:
|
|
ResCount += PriorityFour;
|
|
break;
|
|
}
|
|
}
|
|
return ResCount;
|
|
}
|
|
|
|
|
|
/// Main resource tracking point.
|
|
void ResourcePriorityQueue::scheduledNode(SUnit *SU) {
|
|
// Use NULL entry as an event marker to reset
|
|
// the DFA state.
|
|
if (!SU) {
|
|
ResourcesModel->clearResources();
|
|
Packet.clear();
|
|
return;
|
|
}
|
|
|
|
const SDNode *ScegN = SU->getNode();
|
|
// Update reg pressure tracking.
|
|
// First update current node.
|
|
if (ScegN->isMachineOpcode()) {
|
|
// Estimate generated regs.
|
|
for (unsigned i = 0, e = ScegN->getNumValues(); i != e; ++i) {
|
|
MVT VT = ScegN->getSimpleValueType(i);
|
|
|
|
if (TLI->isTypeLegal(VT)) {
|
|
const TargetRegisterClass *RC = TLI->getRegClassFor(VT);
|
|
if (RC)
|
|
RegPressure[RC->getID()] += numberRCValSuccInSU(SU, RC->getID());
|
|
}
|
|
}
|
|
// Estimate killed regs.
|
|
for (unsigned i = 0, e = ScegN->getNumOperands(); i != e; ++i) {
|
|
const SDValue &Op = ScegN->getOperand(i);
|
|
MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo());
|
|
|
|
if (TLI->isTypeLegal(VT)) {
|
|
const TargetRegisterClass *RC = TLI->getRegClassFor(VT);
|
|
if (RC) {
|
|
if (RegPressure[RC->getID()] >
|
|
(numberRCValPredInSU(SU, RC->getID())))
|
|
RegPressure[RC->getID()] -= numberRCValPredInSU(SU, RC->getID());
|
|
else RegPressure[RC->getID()] = 0;
|
|
}
|
|
}
|
|
}
|
|
for (SUnit::pred_iterator I = SU->Preds.begin(), E = SU->Preds.end();
|
|
I != E; ++I) {
|
|
if (I->isCtrl() || (I->getSUnit()->NumRegDefsLeft == 0))
|
|
continue;
|
|
--I->getSUnit()->NumRegDefsLeft;
|
|
}
|
|
}
|
|
|
|
// Reserve resources for this SU.
|
|
reserveResources(SU);
|
|
|
|
// Adjust number of parallel live ranges.
|
|
// Heuristic is simple - node with no data successors reduces
|
|
// number of live ranges. All others, increase it.
|
|
unsigned NumberNonControlDeps = 0;
|
|
|
|
for (SUnit::const_succ_iterator I = SU->Succs.begin(), E = SU->Succs.end();
|
|
I != E; ++I) {
|
|
adjustPriorityOfUnscheduledPreds(I->getSUnit());
|
|
if (!I->isCtrl())
|
|
NumberNonControlDeps++;
|
|
}
|
|
|
|
if (!NumberNonControlDeps) {
|
|
if (ParallelLiveRanges >= SU->NumPreds)
|
|
ParallelLiveRanges -= SU->NumPreds;
|
|
else
|
|
ParallelLiveRanges = 0;
|
|
|
|
}
|
|
else
|
|
ParallelLiveRanges += SU->NumRegDefsLeft;
|
|
|
|
// Track parallel live chains.
|
|
HorizontalVerticalBalance += (SU->Succs.size() - numberCtrlDepsInSU(SU));
|
|
HorizontalVerticalBalance -= (SU->Preds.size() - numberCtrlPredInSU(SU));
|
|
}
|
|
|
|
void ResourcePriorityQueue::initNumRegDefsLeft(SUnit *SU) {
|
|
unsigned NodeNumDefs = 0;
|
|
for (SDNode *N = SU->getNode(); N; N = N->getGluedNode())
|
|
if (N->isMachineOpcode()) {
|
|
const MCInstrDesc &TID = TII->get(N->getMachineOpcode());
|
|
// No register need be allocated for this.
|
|
if (N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) {
|
|
NodeNumDefs = 0;
|
|
break;
|
|
}
|
|
NodeNumDefs = std::min(N->getNumValues(), TID.getNumDefs());
|
|
}
|
|
else
|
|
switch(N->getOpcode()) {
|
|
default: break;
|
|
case ISD::CopyFromReg:
|
|
NodeNumDefs++;
|
|
break;
|
|
case ISD::INLINEASM:
|
|
NodeNumDefs++;
|
|
break;
|
|
}
|
|
|
|
SU->NumRegDefsLeft = NodeNumDefs;
|
|
}
|
|
|
|
/// adjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just
|
|
/// scheduled. If SU is not itself available, then there is at least one
|
|
/// predecessor node that has not been scheduled yet. If SU has exactly ONE
|
|
/// unscheduled predecessor, we want to increase its priority: it getting
|
|
/// scheduled will make this node available, so it is better than some other
|
|
/// node of the same priority that will not make a node available.
|
|
void ResourcePriorityQueue::adjustPriorityOfUnscheduledPreds(SUnit *SU) {
|
|
if (SU->isAvailable) return; // All preds scheduled.
|
|
|
|
SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU);
|
|
if (OnlyAvailablePred == 0 || !OnlyAvailablePred->isAvailable)
|
|
return;
|
|
|
|
// Okay, we found a single predecessor that is available, but not scheduled.
|
|
// Since it is available, it must be in the priority queue. First remove it.
|
|
remove(OnlyAvailablePred);
|
|
|
|
// Reinsert the node into the priority queue, which recomputes its
|
|
// NumNodesSolelyBlocking value.
|
|
push(OnlyAvailablePred);
|
|
}
|
|
|
|
|
|
/// Main access point - returns next instructions
|
|
/// to be placed in scheduling sequence.
|
|
SUnit *ResourcePriorityQueue::pop() {
|
|
if (empty())
|
|
return 0;
|
|
|
|
std::vector<SUnit *>::iterator Best = Queue.begin();
|
|
if (!DisableDFASched) {
|
|
signed BestCost = SUSchedulingCost(*Best);
|
|
for (std::vector<SUnit *>::iterator I = llvm::next(Queue.begin()),
|
|
E = Queue.end(); I != E; ++I) {
|
|
|
|
if (SUSchedulingCost(*I) > BestCost) {
|
|
BestCost = SUSchedulingCost(*I);
|
|
Best = I;
|
|
}
|
|
}
|
|
}
|
|
// Use default TD scheduling mechanism.
|
|
else {
|
|
for (std::vector<SUnit *>::iterator I = llvm::next(Queue.begin()),
|
|
E = Queue.end(); I != E; ++I)
|
|
if (Picker(*Best, *I))
|
|
Best = I;
|
|
}
|
|
|
|
SUnit *V = *Best;
|
|
if (Best != prior(Queue.end()))
|
|
std::swap(*Best, Queue.back());
|
|
|
|
Queue.pop_back();
|
|
|
|
return V;
|
|
}
|
|
|
|
|
|
void ResourcePriorityQueue::remove(SUnit *SU) {
|
|
assert(!Queue.empty() && "Queue is empty!");
|
|
std::vector<SUnit *>::iterator I = std::find(Queue.begin(), Queue.end(), SU);
|
|
if (I != prior(Queue.end()))
|
|
std::swap(*I, Queue.back());
|
|
|
|
Queue.pop_back();
|
|
}
|
|
|
|
|
|
#ifdef NDEBUG
|
|
void ResourcePriorityQueue::dump(ScheduleDAG *DAG) const {}
|
|
#else
|
|
void ResourcePriorityQueue::dump(ScheduleDAG *DAG) const {
|
|
ResourcePriorityQueue q = *this;
|
|
while (!q.empty()) {
|
|
SUnit *su = q.pop();
|
|
dbgs() << "Height " << su->getHeight() << ": ";
|
|
su->dump(DAG);
|
|
}
|
|
}
|
|
#endif
|