llvm-6502/lib/Transforms/Utils/InlineFunction.cpp
Bill Wendling fe7a071a19 Add inlining for the new EH scheme.
This builds off of the current scheme, but instead of llvm.eh.exception and
llvm.eh.selector, it uses the landingpad instruction. And instead of
llvm.eh.resume, it uses the resume instruction.

Because of the invariants in the landing pad instruction, a lot of code that's
currently needed to find the appropriate intrinsic calls for an invoke
instruction won't be needed once we go to the new EH scheme. The "FIXME"s tell
us what to remove after we switch.


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@137576 91177308-0d34-0410-b5e6-96231b3b80d8
2011-08-14 08:01:36 +00:00

1319 lines
52 KiB
C++

//===- InlineFunction.cpp - Code to perform function inlining -------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements inlining of a function into a call site, resolving
// parameters and the return value as appropriate.
//
// The code in this file for handling inlines through invoke
// instructions preserves semantics only under some assumptions about
// the behavior of unwinders which correspond to gcc-style libUnwind
// exception personality functions. Eventually the IR will be
// improved to make this unnecessary, but until then, this code is
// marked [LIBUNWIND].
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Module.h"
#include "llvm/Instructions.h"
#include "llvm/IntrinsicInst.h"
#include "llvm/Intrinsics.h"
#include "llvm/Attributes.h"
#include "llvm/Analysis/CallGraph.h"
#include "llvm/Analysis/DebugInfo.h"
#include "llvm/Analysis/InstructionSimplify.h"
#include "llvm/Target/TargetData.h"
#include "llvm/Transforms/Utils/Local.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/CallSite.h"
#include "llvm/Support/IRBuilder.h"
using namespace llvm;
bool llvm::InlineFunction(CallInst *CI, InlineFunctionInfo &IFI) {
return InlineFunction(CallSite(CI), IFI);
}
bool llvm::InlineFunction(InvokeInst *II, InlineFunctionInfo &IFI) {
return InlineFunction(CallSite(II), IFI);
}
// FIXME: New EH - Remove the functions marked [LIBUNWIND] when new EH is
// turned on.
/// [LIBUNWIND] Look for an llvm.eh.exception call in the given block.
static EHExceptionInst *findExceptionInBlock(BasicBlock *bb) {
for (BasicBlock::iterator i = bb->begin(), e = bb->end(); i != e; i++) {
EHExceptionInst *exn = dyn_cast<EHExceptionInst>(i);
if (exn) return exn;
}
return 0;
}
/// [LIBUNWIND] Look for the 'best' llvm.eh.selector instruction for
/// the given llvm.eh.exception call.
static EHSelectorInst *findSelectorForException(EHExceptionInst *exn) {
BasicBlock *exnBlock = exn->getParent();
EHSelectorInst *outOfBlockSelector = 0;
for (Instruction::use_iterator
ui = exn->use_begin(), ue = exn->use_end(); ui != ue; ++ui) {
EHSelectorInst *sel = dyn_cast<EHSelectorInst>(*ui);
if (!sel) continue;
// Immediately accept an eh.selector in the same block as the
// excepton call.
if (sel->getParent() == exnBlock) return sel;
// Otherwise, use the first selector we see.
if (!outOfBlockSelector) outOfBlockSelector = sel;
}
return outOfBlockSelector;
}
/// [LIBUNWIND] Find the (possibly absent) call to @llvm.eh.selector
/// in the given landing pad. In principle, llvm.eh.exception is
/// required to be in the landing pad; in practice, SplitCriticalEdge
/// can break that invariant, and then inlining can break it further.
/// There's a real need for a reliable solution here, but until that
/// happens, we have some fragile workarounds here.
static EHSelectorInst *findSelectorForLandingPad(BasicBlock *lpad) {
// Look for an exception call in the actual landing pad.
EHExceptionInst *exn = findExceptionInBlock(lpad);
if (exn) return findSelectorForException(exn);
// Okay, if that failed, look for one in an obvious successor. If
// we find one, we'll fix the IR by moving things back to the
// landing pad.
bool dominates = true; // does the lpad dominate the exn call
BasicBlock *nonDominated = 0; // if not, the first non-dominated block
BasicBlock *lastDominated = 0; // and the block which branched to it
BasicBlock *exnBlock = lpad;
// We need to protect against lpads that lead into infinite loops.
SmallPtrSet<BasicBlock*,4> visited;
visited.insert(exnBlock);
do {
// We're not going to apply this hack to anything more complicated
// than a series of unconditional branches, so if the block
// doesn't terminate in an unconditional branch, just fail. More
// complicated cases can arise when, say, sinking a call into a
// split unwind edge and then inlining it; but that can do almost
// *anything* to the CFG, including leaving the selector
// completely unreachable. The only way to fix that properly is
// to (1) prohibit transforms which move the exception or selector
// values away from the landing pad, e.g. by producing them with
// instructions that are pinned to an edge like a phi, or
// producing them with not-really-instructions, and (2) making
// transforms which split edges deal with that.
BranchInst *branch = dyn_cast<BranchInst>(&exnBlock->back());
if (!branch || branch->isConditional()) return 0;
BasicBlock *successor = branch->getSuccessor(0);
// Fail if we found an infinite loop.
if (!visited.insert(successor)) return 0;
// If the successor isn't dominated by exnBlock:
if (!successor->getSinglePredecessor()) {
// We don't want to have to deal with threading the exception
// through multiple levels of phi, so give up if we've already
// followed a non-dominating edge.
if (!dominates) return 0;
// Otherwise, remember this as a non-dominating edge.
dominates = false;
nonDominated = successor;
lastDominated = exnBlock;
}
exnBlock = successor;
// Can we stop here?
exn = findExceptionInBlock(exnBlock);
} while (!exn);
// Look for a selector call for the exception we found.
EHSelectorInst *selector = findSelectorForException(exn);
if (!selector) return 0;
// The easy case is when the landing pad still dominates the
// exception call, in which case we can just move both calls back to
// the landing pad.
if (dominates) {
selector->moveBefore(lpad->getFirstNonPHI());
exn->moveBefore(selector);
return selector;
}
// Otherwise, we have to split at the first non-dominating block.
// The CFG looks basically like this:
// lpad:
// phis_0
// insnsAndBranches_1
// br label %nonDominated
// nonDominated:
// phis_2
// insns_3
// %exn = call i8* @llvm.eh.exception()
// insnsAndBranches_4
// %selector = call @llvm.eh.selector(i8* %exn, ...
// We need to turn this into:
// lpad:
// phis_0
// %exn0 = call i8* @llvm.eh.exception()
// %selector0 = call @llvm.eh.selector(i8* %exn0, ...
// insnsAndBranches_1
// br label %split // from lastDominated
// nonDominated:
// phis_2 (without edge from lastDominated)
// %exn1 = call i8* @llvm.eh.exception()
// %selector1 = call i8* @llvm.eh.selector(i8* %exn1, ...
// br label %split
// split:
// phis_2 (edge from lastDominated, edge from split)
// %exn = phi ...
// %selector = phi ...
// insns_3
// insnsAndBranches_4
assert(nonDominated);
assert(lastDominated);
// First, make clones of the intrinsics to go in lpad.
EHExceptionInst *lpadExn = cast<EHExceptionInst>(exn->clone());
EHSelectorInst *lpadSelector = cast<EHSelectorInst>(selector->clone());
lpadSelector->setArgOperand(0, lpadExn);
lpadSelector->insertBefore(lpad->getFirstNonPHI());
lpadExn->insertBefore(lpadSelector);
// Split the non-dominated block.
BasicBlock *split =
nonDominated->splitBasicBlock(nonDominated->getFirstNonPHI(),
nonDominated->getName() + ".lpad-fix");
// Redirect the last dominated branch there.
cast<BranchInst>(lastDominated->back()).setSuccessor(0, split);
// Move the existing intrinsics to the end of the old block.
selector->moveBefore(&nonDominated->back());
exn->moveBefore(selector);
Instruction *splitIP = &split->front();
// For all the phis in nonDominated, make a new phi in split to join
// that phi with the edge from lastDominated.
for (BasicBlock::iterator
i = nonDominated->begin(), e = nonDominated->end(); i != e; ++i) {
PHINode *phi = dyn_cast<PHINode>(i);
if (!phi) break;
PHINode *splitPhi = PHINode::Create(phi->getType(), 2, phi->getName(),
splitIP);
phi->replaceAllUsesWith(splitPhi);
splitPhi->addIncoming(phi, nonDominated);
splitPhi->addIncoming(phi->removeIncomingValue(lastDominated),
lastDominated);
}
// Make new phis for the exception and selector.
PHINode *exnPhi = PHINode::Create(exn->getType(), 2, "", splitIP);
exn->replaceAllUsesWith(exnPhi);
selector->setArgOperand(0, exn); // except for this use
exnPhi->addIncoming(exn, nonDominated);
exnPhi->addIncoming(lpadExn, lastDominated);
PHINode *selectorPhi = PHINode::Create(selector->getType(), 2, "", splitIP);
selector->replaceAllUsesWith(selectorPhi);
selectorPhi->addIncoming(selector, nonDominated);
selectorPhi->addIncoming(lpadSelector, lastDominated);
return lpadSelector;
}
namespace {
/// A class for recording information about inlining through an invoke.
class InvokeInliningInfo {
BasicBlock *OuterUnwindDest;
EHSelectorInst *OuterSelector;
BasicBlock *InnerUnwindDest;
PHINode *InnerExceptionPHI;
PHINode *InnerSelectorPHI;
SmallVector<Value*, 8> UnwindDestPHIValues;
// FIXME: New EH - These will replace the analogous ones above.
BasicBlock *OuterResumeDest; //< Destination of the invoke's unwind.
BasicBlock *InnerResumeDest; //< Destination for the callee's resume.
LandingPadInst *CallerLPad; //< LandingPadInst associated with the invoke.
PHINode *InnerEHValuesPHI; //< PHI for EH values from landingpad insts.
public:
InvokeInliningInfo(InvokeInst *II)
: OuterUnwindDest(II->getUnwindDest()), OuterSelector(0),
InnerUnwindDest(0), InnerExceptionPHI(0), InnerSelectorPHI(0),
OuterResumeDest(II->getUnwindDest()), InnerResumeDest(0),
CallerLPad(0), InnerEHValuesPHI(0) {
// If there are PHI nodes in the unwind destination block, we need to keep
// track of which values came into them from the invoke before removing
// the edge from this block.
llvm::BasicBlock *InvokeBB = II->getParent();
BasicBlock::iterator I = OuterUnwindDest->begin();
for (; isa<PHINode>(I); ++I) {
// Save the value to use for this edge.
PHINode *PHI = cast<PHINode>(I);
UnwindDestPHIValues.push_back(PHI->getIncomingValueForBlock(InvokeBB));
}
// FIXME: With the new EH, this if/dyn_cast should be a 'cast'.
if (LandingPadInst *LPI = dyn_cast<LandingPadInst>(I)) {
CallerLPad = LPI;
}
}
/// The outer unwind destination is the target of unwind edges
/// introduced for calls within the inlined function.
BasicBlock *getOuterUnwindDest() const {
return OuterUnwindDest;
}
EHSelectorInst *getOuterSelector() {
if (!OuterSelector)
OuterSelector = findSelectorForLandingPad(OuterUnwindDest);
return OuterSelector;
}
BasicBlock *getInnerUnwindDest();
// FIXME: New EH - Rename when new EH is turned on.
BasicBlock *getInnerUnwindDestNewEH();
LandingPadInst *getLandingPadInst() const { return CallerLPad; }
bool forwardEHResume(CallInst *call, BasicBlock *src);
/// forwardResume - Forward the 'resume' instruction to the caller's landing
/// pad block. When the landing pad block has only one predecessor, this is
/// a simple branch. When there is more than one predecessor, we need to
/// split the landing pad block after the landingpad instruction and jump
/// to there.
void forwardResume(ResumeInst *RI);
/// addIncomingPHIValuesFor - Add incoming-PHI values to the unwind
/// destination block for the given basic block, using the values for the
/// original invoke's source block.
void addIncomingPHIValuesFor(BasicBlock *BB) const {
addIncomingPHIValuesForInto(BB, OuterUnwindDest);
}
void addIncomingPHIValuesForInto(BasicBlock *src, BasicBlock *dest) const {
BasicBlock::iterator I = dest->begin();
for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
PHINode *phi = cast<PHINode>(I);
phi->addIncoming(UnwindDestPHIValues[i], src);
}
}
};
}
/// [LIBUNWIND] Get or create a target for the branch out of rewritten calls to
/// llvm.eh.resume.
BasicBlock *InvokeInliningInfo::getInnerUnwindDest() {
if (InnerUnwindDest) return InnerUnwindDest;
// Find and hoist the llvm.eh.exception and llvm.eh.selector calls
// in the outer landing pad to immediately following the phis.
EHSelectorInst *selector = getOuterSelector();
if (!selector) return 0;
// The call to llvm.eh.exception *must* be in the landing pad.
Instruction *exn = cast<Instruction>(selector->getArgOperand(0));
assert(exn->getParent() == OuterUnwindDest);
// TODO: recognize when we've already done this, so that we don't
// get a linear number of these when inlining calls into lots of
// invokes with the same landing pad.
// Do the hoisting.
Instruction *splitPoint = exn->getParent()->getFirstNonPHI();
assert(splitPoint != selector && "selector-on-exception dominance broken!");
if (splitPoint == exn) {
selector->removeFromParent();
selector->insertAfter(exn);
splitPoint = selector->getNextNode();
} else {
exn->moveBefore(splitPoint);
selector->moveBefore(splitPoint);
}
// Split the landing pad.
InnerUnwindDest = OuterUnwindDest->splitBasicBlock(splitPoint,
OuterUnwindDest->getName() + ".body");
// The number of incoming edges we expect to the inner landing pad.
const unsigned phiCapacity = 2;
// Create corresponding new phis for all the phis in the outer landing pad.
BasicBlock::iterator insertPoint = InnerUnwindDest->begin();
BasicBlock::iterator I = OuterUnwindDest->begin();
for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
PHINode *outerPhi = cast<PHINode>(I);
PHINode *innerPhi = PHINode::Create(outerPhi->getType(), phiCapacity,
outerPhi->getName() + ".lpad-body",
insertPoint);
outerPhi->replaceAllUsesWith(innerPhi);
innerPhi->addIncoming(outerPhi, OuterUnwindDest);
}
// Create a phi for the exception value...
InnerExceptionPHI = PHINode::Create(exn->getType(), phiCapacity,
"exn.lpad-body", insertPoint);
exn->replaceAllUsesWith(InnerExceptionPHI);
selector->setArgOperand(0, exn); // restore this use
InnerExceptionPHI->addIncoming(exn, OuterUnwindDest);
// ...and the selector.
InnerSelectorPHI = PHINode::Create(selector->getType(), phiCapacity,
"selector.lpad-body", insertPoint);
selector->replaceAllUsesWith(InnerSelectorPHI);
InnerSelectorPHI->addIncoming(selector, OuterUnwindDest);
// All done.
return InnerUnwindDest;
}
/// [LIBUNWIND] Try to forward the given call, which logically occurs
/// at the end of the given block, as a branch to the inner unwind
/// block. Returns true if the call was forwarded.
bool InvokeInliningInfo::forwardEHResume(CallInst *call, BasicBlock *src) {
// First, check whether this is a call to the intrinsic.
Function *fn = dyn_cast<Function>(call->getCalledValue());
if (!fn || fn->getName() != "llvm.eh.resume")
return false;
// At this point, we need to return true on all paths, because
// otherwise we'll construct an invoke of the intrinsic, which is
// not well-formed.
// Try to find or make an inner unwind dest, which will fail if we
// can't find a selector call for the outer unwind dest.
BasicBlock *dest = getInnerUnwindDest();
bool hasSelector = (dest != 0);
// If we failed, just use the outer unwind dest, dropping the
// exception and selector on the floor.
if (!hasSelector)
dest = OuterUnwindDest;
// Make a branch.
BranchInst::Create(dest, src);
// Update the phis in the destination. They were inserted in an
// order which makes this work.
addIncomingPHIValuesForInto(src, dest);
if (hasSelector) {
InnerExceptionPHI->addIncoming(call->getArgOperand(0), src);
InnerSelectorPHI->addIncoming(call->getArgOperand(1), src);
}
return true;
}
/// Get or create a target for the branch from ResumeInsts.
BasicBlock *InvokeInliningInfo::getInnerUnwindDestNewEH() {
// FIXME: New EH - rename this function when new EH is turned on.
if (InnerResumeDest) return InnerResumeDest;
// Split the landing pad.
BasicBlock::iterator SplitPoint = CallerLPad; ++SplitPoint;
InnerResumeDest =
OuterResumeDest->splitBasicBlock(SplitPoint,
OuterResumeDest->getName() + ".body");
// The number of incoming edges we expect to the inner landing pad.
const unsigned PHICapacity = 2;
// Create corresponding new PHIs for all the PHIs in the outer landing pad.
BasicBlock::iterator InsertPoint = InnerResumeDest->begin();
BasicBlock::iterator I = OuterResumeDest->begin();
for (unsigned i = 0, e = UnwindDestPHIValues.size(); i != e; ++i, ++I) {
PHINode *OuterPHI = cast<PHINode>(I);
PHINode *InnerPHI = PHINode::Create(OuterPHI->getType(), PHICapacity,
OuterPHI->getName() + ".lpad-body",
InsertPoint);
OuterPHI->replaceAllUsesWith(InnerPHI);
InnerPHI->addIncoming(OuterPHI, OuterResumeDest);
}
// Create a PHI for the exception values.
InnerEHValuesPHI = PHINode::Create(CallerLPad->getType(), PHICapacity,
"eh.lpad-body", InsertPoint);
CallerLPad->replaceAllUsesWith(InnerEHValuesPHI);
InnerEHValuesPHI->addIncoming(CallerLPad, OuterResumeDest);
// All done.
return InnerResumeDest;
}
/// forwardResume - Forward the 'resume' instruction to the caller's landing pad
/// block. When the landing pad block has only one predecessor, this is a simple
/// branch. When there is more than one predecessor, we need to split the
/// landing pad block after the landingpad instruction and jump to there.
void InvokeInliningInfo::forwardResume(ResumeInst *RI) {
BasicBlock *Dest = getInnerUnwindDestNewEH();
BasicBlock *Src = RI->getParent();
BranchInst::Create(Dest, Src);
// Update the PHIs in the destination. They were inserted in an order which
// makes this work.
addIncomingPHIValuesForInto(Src, Dest);
InnerEHValuesPHI->addIncoming(RI->getOperand(0), Src);
RI->eraseFromParent();
}
/// [LIBUNWIND] Check whether this selector is "only cleanups":
/// call i32 @llvm.eh.selector(blah, blah, i32 0)
static bool isCleanupOnlySelector(EHSelectorInst *selector) {
if (selector->getNumArgOperands() != 3) return false;
ConstantInt *val = dyn_cast<ConstantInt>(selector->getArgOperand(2));
return (val && val->isZero());
}
/// HandleCallsInBlockInlinedThroughInvoke - When we inline a basic block into
/// an invoke, we have to turn all of the calls that can throw into
/// invokes. This function analyze BB to see if there are any calls, and if so,
/// it rewrites them to be invokes that jump to InvokeDest and fills in the PHI
/// nodes in that block with the values specified in InvokeDestPHIValues.
///
/// Returns true to indicate that the next block should be skipped.
static bool HandleCallsInBlockInlinedThroughInvoke(BasicBlock *BB,
InvokeInliningInfo &Invoke) {
LandingPadInst *LPI = Invoke.getLandingPadInst();
for (BasicBlock::iterator BBI = BB->begin(), E = BB->end(); BBI != E; ) {
Instruction *I = BBI++;
if (LPI) // FIXME: New EH - This won't be NULL in the new EH.
if (LandingPadInst *L = dyn_cast<LandingPadInst>(I)) {
unsigned NumClauses = LPI->getNumClauses();
L->reserveClauses(NumClauses);
for (unsigned i = 0; i != NumClauses; ++i)
L->addClause(LPI->getClause(i));
}
// We only need to check for function calls: inlined invoke
// instructions require no special handling.
CallInst *CI = dyn_cast<CallInst>(I);
if (CI == 0) continue;
// LIBUNWIND: merge selector instructions.
if (EHSelectorInst *Inner = dyn_cast<EHSelectorInst>(CI)) {
EHSelectorInst *Outer = Invoke.getOuterSelector();
if (!Outer) continue;
bool innerIsOnlyCleanup = isCleanupOnlySelector(Inner);
bool outerIsOnlyCleanup = isCleanupOnlySelector(Outer);
// If both selectors contain only cleanups, we don't need to do
// anything. TODO: this is really just a very specific instance
// of a much more general optimization.
if (innerIsOnlyCleanup && outerIsOnlyCleanup) continue;
// Otherwise, we just append the outer selector to the inner selector.
SmallVector<Value*, 16> NewSelector;
for (unsigned i = 0, e = Inner->getNumArgOperands(); i != e; ++i)
NewSelector.push_back(Inner->getArgOperand(i));
for (unsigned i = 2, e = Outer->getNumArgOperands(); i != e; ++i)
NewSelector.push_back(Outer->getArgOperand(i));
CallInst *NewInner =
IRBuilder<>(Inner).CreateCall(Inner->getCalledValue(), NewSelector);
// No need to copy attributes, calling convention, etc.
NewInner->takeName(Inner);
Inner->replaceAllUsesWith(NewInner);
Inner->eraseFromParent();
continue;
}
// If this call cannot unwind, don't convert it to an invoke.
if (CI->doesNotThrow())
continue;
// Convert this function call into an invoke instruction.
// First, split the basic block.
BasicBlock *Split = BB->splitBasicBlock(CI, CI->getName()+".noexc");
// Delete the unconditional branch inserted by splitBasicBlock
BB->getInstList().pop_back();
// LIBUNWIND: If this is a call to @llvm.eh.resume, just branch
// directly to the new landing pad.
if (Invoke.forwardEHResume(CI, BB)) {
// TODO: 'Split' is now unreachable; clean it up.
// We want to leave the original call intact so that the call
// graph and other structures won't get misled. We also have to
// avoid processing the next block, or we'll iterate here forever.
return true;
}
// Otherwise, create the new invoke instruction.
ImmutableCallSite CS(CI);
SmallVector<Value*, 8> InvokeArgs(CS.arg_begin(), CS.arg_end());
InvokeInst *II =
InvokeInst::Create(CI->getCalledValue(), Split,
Invoke.getOuterUnwindDest(),
InvokeArgs, CI->getName(), BB);
II->setCallingConv(CI->getCallingConv());
II->setAttributes(CI->getAttributes());
// Make sure that anything using the call now uses the invoke! This also
// updates the CallGraph if present, because it uses a WeakVH.
CI->replaceAllUsesWith(II);
Split->getInstList().pop_front(); // Delete the original call
// Update any PHI nodes in the exceptional block to indicate that
// there is now a new entry in them.
Invoke.addIncomingPHIValuesFor(BB);
return false;
}
return false;
}
/// HandleInlinedInvoke - If we inlined an invoke site, we need to convert calls
/// in the body of the inlined function into invokes and turn unwind
/// instructions into branches to the invoke unwind dest.
///
/// II is the invoke instruction being inlined. FirstNewBlock is the first
/// block of the inlined code (the last block is the end of the function),
/// and InlineCodeInfo is information about the code that got inlined.
static void HandleInlinedInvoke(InvokeInst *II, BasicBlock *FirstNewBlock,
ClonedCodeInfo &InlinedCodeInfo) {
BasicBlock *InvokeDest = II->getUnwindDest();
Function *Caller = FirstNewBlock->getParent();
// The inlined code is currently at the end of the function, scan from the
// start of the inlined code to its end, checking for stuff we need to
// rewrite. If the code doesn't have calls or unwinds, we know there is
// nothing to rewrite.
if (!InlinedCodeInfo.ContainsCalls && !InlinedCodeInfo.ContainsUnwinds) {
// Now that everything is happy, we have one final detail. The PHI nodes in
// the exception destination block still have entries due to the original
// invoke instruction. Eliminate these entries (which might even delete the
// PHI node) now.
InvokeDest->removePredecessor(II->getParent());
return;
}
InvokeInliningInfo Invoke(II);
for (Function::iterator BB = FirstNewBlock, E = Caller->end(); BB != E; ++BB){
if (InlinedCodeInfo.ContainsCalls)
if (HandleCallsInBlockInlinedThroughInvoke(BB, Invoke)) {
// Honor a request to skip the next block. We don't need to
// consider UnwindInsts in this case either.
++BB;
continue;
}
if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
// An UnwindInst requires special handling when it gets inlined into an
// invoke site. Once this happens, we know that the unwind would cause
// a control transfer to the invoke exception destination, so we can
// transform it into a direct branch to the exception destination.
BranchInst::Create(InvokeDest, UI);
// Delete the unwind instruction!
UI->eraseFromParent();
// Update any PHI nodes in the exceptional block to indicate that
// there is now a new entry in them.
Invoke.addIncomingPHIValuesFor(BB);
}
if (ResumeInst *RI = dyn_cast<ResumeInst>(BB->getTerminator())) {
Invoke.forwardResume(RI);
}
}
// Now that everything is happy, we have one final detail. The PHI nodes in
// the exception destination block still have entries due to the original
// invoke instruction. Eliminate these entries (which might even delete the
// PHI node) now.
InvokeDest->removePredecessor(II->getParent());
}
/// UpdateCallGraphAfterInlining - Once we have cloned code over from a callee
/// into the caller, update the specified callgraph to reflect the changes we
/// made. Note that it's possible that not all code was copied over, so only
/// some edges of the callgraph may remain.
static void UpdateCallGraphAfterInlining(CallSite CS,
Function::iterator FirstNewBlock,
ValueToValueMapTy &VMap,
InlineFunctionInfo &IFI) {
CallGraph &CG = *IFI.CG;
const Function *Caller = CS.getInstruction()->getParent()->getParent();
const Function *Callee = CS.getCalledFunction();
CallGraphNode *CalleeNode = CG[Callee];
CallGraphNode *CallerNode = CG[Caller];
// Since we inlined some uninlined call sites in the callee into the caller,
// add edges from the caller to all of the callees of the callee.
CallGraphNode::iterator I = CalleeNode->begin(), E = CalleeNode->end();
// Consider the case where CalleeNode == CallerNode.
CallGraphNode::CalledFunctionsVector CallCache;
if (CalleeNode == CallerNode) {
CallCache.assign(I, E);
I = CallCache.begin();
E = CallCache.end();
}
for (; I != E; ++I) {
const Value *OrigCall = I->first;
ValueToValueMapTy::iterator VMI = VMap.find(OrigCall);
// Only copy the edge if the call was inlined!
if (VMI == VMap.end() || VMI->second == 0)
continue;
// If the call was inlined, but then constant folded, there is no edge to
// add. Check for this case.
Instruction *NewCall = dyn_cast<Instruction>(VMI->second);
if (NewCall == 0) continue;
// Remember that this call site got inlined for the client of
// InlineFunction.
IFI.InlinedCalls.push_back(NewCall);
// It's possible that inlining the callsite will cause it to go from an
// indirect to a direct call by resolving a function pointer. If this
// happens, set the callee of the new call site to a more precise
// destination. This can also happen if the call graph node of the caller
// was just unnecessarily imprecise.
if (I->second->getFunction() == 0)
if (Function *F = CallSite(NewCall).getCalledFunction()) {
// Indirect call site resolved to direct call.
CallerNode->addCalledFunction(CallSite(NewCall), CG[F]);
continue;
}
CallerNode->addCalledFunction(CallSite(NewCall), I->second);
}
// Update the call graph by deleting the edge from Callee to Caller. We must
// do this after the loop above in case Caller and Callee are the same.
CallerNode->removeCallEdgeFor(CS);
}
/// HandleByValArgument - When inlining a call site that has a byval argument,
/// we have to make the implicit memcpy explicit by adding it.
static Value *HandleByValArgument(Value *Arg, Instruction *TheCall,
const Function *CalledFunc,
InlineFunctionInfo &IFI,
unsigned ByValAlignment) {
Type *AggTy = cast<PointerType>(Arg->getType())->getElementType();
// If the called function is readonly, then it could not mutate the caller's
// copy of the byval'd memory. In this case, it is safe to elide the copy and
// temporary.
if (CalledFunc->onlyReadsMemory()) {
// If the byval argument has a specified alignment that is greater than the
// passed in pointer, then we either have to round up the input pointer or
// give up on this transformation.
if (ByValAlignment <= 1) // 0 = unspecified, 1 = no particular alignment.
return Arg;
// If the pointer is already known to be sufficiently aligned, or if we can
// round it up to a larger alignment, then we don't need a temporary.
if (getOrEnforceKnownAlignment(Arg, ByValAlignment,
IFI.TD) >= ByValAlignment)
return Arg;
// Otherwise, we have to make a memcpy to get a safe alignment. This is bad
// for code quality, but rarely happens and is required for correctness.
}
LLVMContext &Context = Arg->getContext();
Type *VoidPtrTy = Type::getInt8PtrTy(Context);
// Create the alloca. If we have TargetData, use nice alignment.
unsigned Align = 1;
if (IFI.TD)
Align = IFI.TD->getPrefTypeAlignment(AggTy);
// If the byval had an alignment specified, we *must* use at least that
// alignment, as it is required by the byval argument (and uses of the
// pointer inside the callee).
Align = std::max(Align, ByValAlignment);
Function *Caller = TheCall->getParent()->getParent();
Value *NewAlloca = new AllocaInst(AggTy, 0, Align, Arg->getName(),
&*Caller->begin()->begin());
// Emit a memcpy.
Type *Tys[3] = {VoidPtrTy, VoidPtrTy, Type::getInt64Ty(Context)};
Function *MemCpyFn = Intrinsic::getDeclaration(Caller->getParent(),
Intrinsic::memcpy,
Tys);
Value *DestCast = new BitCastInst(NewAlloca, VoidPtrTy, "tmp", TheCall);
Value *SrcCast = new BitCastInst(Arg, VoidPtrTy, "tmp", TheCall);
Value *Size;
if (IFI.TD == 0)
Size = ConstantExpr::getSizeOf(AggTy);
else
Size = ConstantInt::get(Type::getInt64Ty(Context),
IFI.TD->getTypeStoreSize(AggTy));
// Always generate a memcpy of alignment 1 here because we don't know
// the alignment of the src pointer. Other optimizations can infer
// better alignment.
Value *CallArgs[] = {
DestCast, SrcCast, Size,
ConstantInt::get(Type::getInt32Ty(Context), 1),
ConstantInt::getFalse(Context) // isVolatile
};
IRBuilder<>(TheCall).CreateCall(MemCpyFn, CallArgs);
// Uses of the argument in the function should use our new alloca
// instead.
return NewAlloca;
}
// isUsedByLifetimeMarker - Check whether this Value is used by a lifetime
// intrinsic.
static bool isUsedByLifetimeMarker(Value *V) {
for (Value::use_iterator UI = V->use_begin(), UE = V->use_end(); UI != UE;
++UI) {
if (IntrinsicInst *II = dyn_cast<IntrinsicInst>(*UI)) {
switch (II->getIntrinsicID()) {
default: break;
case Intrinsic::lifetime_start:
case Intrinsic::lifetime_end:
return true;
}
}
}
return false;
}
// hasLifetimeMarkers - Check whether the given alloca already has
// lifetime.start or lifetime.end intrinsics.
static bool hasLifetimeMarkers(AllocaInst *AI) {
Type *Int8PtrTy = Type::getInt8PtrTy(AI->getType()->getContext());
if (AI->getType() == Int8PtrTy)
return isUsedByLifetimeMarker(AI);
// Do a scan to find all the casts to i8*.
for (Value::use_iterator I = AI->use_begin(), E = AI->use_end(); I != E;
++I) {
if (I->getType() != Int8PtrTy) continue;
if (I->stripPointerCasts() != AI) continue;
if (isUsedByLifetimeMarker(*I))
return true;
}
return false;
}
/// updateInlinedAtInfo - Helper function used by fixupLineNumbers to recursively
/// update InlinedAtEntry of a DebugLoc.
static DebugLoc updateInlinedAtInfo(const DebugLoc &DL,
const DebugLoc &InlinedAtDL,
LLVMContext &Ctx) {
if (MDNode *IA = DL.getInlinedAt(Ctx)) {
DebugLoc NewInlinedAtDL
= updateInlinedAtInfo(DebugLoc::getFromDILocation(IA), InlinedAtDL, Ctx);
return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
NewInlinedAtDL.getAsMDNode(Ctx));
}
return DebugLoc::get(DL.getLine(), DL.getCol(), DL.getScope(Ctx),
InlinedAtDL.getAsMDNode(Ctx));
}
/// fixupLineNumbers - Update inlined instructions' line numbers to
/// to encode location where these instructions are inlined.
static void fixupLineNumbers(Function *Fn, Function::iterator FI,
Instruction *TheCall) {
DebugLoc TheCallDL = TheCall->getDebugLoc();
if (TheCallDL.isUnknown())
return;
for (; FI != Fn->end(); ++FI) {
for (BasicBlock::iterator BI = FI->begin(), BE = FI->end();
BI != BE; ++BI) {
DebugLoc DL = BI->getDebugLoc();
if (!DL.isUnknown()) {
BI->setDebugLoc(updateInlinedAtInfo(DL, TheCallDL, BI->getContext()));
if (DbgValueInst *DVI = dyn_cast<DbgValueInst>(BI)) {
LLVMContext &Ctx = BI->getContext();
MDNode *InlinedAt = BI->getDebugLoc().getInlinedAt(Ctx);
DVI->setOperand(2, createInlinedVariable(DVI->getVariable(),
InlinedAt, Ctx));
}
}
}
}
}
// InlineFunction - This function inlines the called function into the basic
// block of the caller. This returns false if it is not possible to inline this
// call. The program is still in a well defined state if this occurs though.
//
// Note that this only does one level of inlining. For example, if the
// instruction 'call B' is inlined, and 'B' calls 'C', then the call to 'C' now
// exists in the instruction stream. Similarly this will inline a recursive
// function by one level.
//
bool llvm::InlineFunction(CallSite CS, InlineFunctionInfo &IFI) {
Instruction *TheCall = CS.getInstruction();
LLVMContext &Context = TheCall->getContext();
assert(TheCall->getParent() && TheCall->getParent()->getParent() &&
"Instruction not in function!");
// If IFI has any state in it, zap it before we fill it in.
IFI.reset();
const Function *CalledFunc = CS.getCalledFunction();
if (CalledFunc == 0 || // Can't inline external function or indirect
CalledFunc->isDeclaration() || // call, or call to a vararg function!
CalledFunc->getFunctionType()->isVarArg()) return false;
// If the call to the callee is not a tail call, we must clear the 'tail'
// flags on any calls that we inline.
bool MustClearTailCallFlags =
!(isa<CallInst>(TheCall) && cast<CallInst>(TheCall)->isTailCall());
// If the call to the callee cannot throw, set the 'nounwind' flag on any
// calls that we inline.
bool MarkNoUnwind = CS.doesNotThrow();
BasicBlock *OrigBB = TheCall->getParent();
Function *Caller = OrigBB->getParent();
// GC poses two hazards to inlining, which only occur when the callee has GC:
// 1. If the caller has no GC, then the callee's GC must be propagated to the
// caller.
// 2. If the caller has a differing GC, it is invalid to inline.
if (CalledFunc->hasGC()) {
if (!Caller->hasGC())
Caller->setGC(CalledFunc->getGC());
else if (CalledFunc->getGC() != Caller->getGC())
return false;
}
// Find the personality function used by the landing pads of the caller. If it
// exists, then check to see that it matches the personality function used in
// the callee.
for (Function::const_iterator
I = Caller->begin(), E = Caller->end(); I != E; ++I)
if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
const BasicBlock *BB = II->getUnwindDest();
// FIXME: This 'isa' here should become go away once the new EH system is
// in place.
if (!isa<LandingPadInst>(BB->getFirstNonPHI()))
continue;
const LandingPadInst *LP = cast<LandingPadInst>(BB->getFirstNonPHI());
const Value *CallerPersFn = LP->getPersonalityFn();
// If the personality functions match, then we can perform the
// inlining. Otherwise, we can't inline.
// TODO: This isn't 100% true. Some personality functions are proper
// supersets of others and can be used in place of the other.
for (Function::const_iterator
I = CalledFunc->begin(), E = CalledFunc->end(); I != E; ++I)
if (const InvokeInst *II = dyn_cast<InvokeInst>(I->getTerminator())) {
const BasicBlock *BB = II->getUnwindDest();
// FIXME: This 'if/dyn_cast' here should become a normal 'cast' once
// the new EH system is in place.
if (const LandingPadInst *LP =
dyn_cast<LandingPadInst>(BB->getFirstNonPHI()))
if (CallerPersFn != LP->getPersonalityFn())
return false;
break;
}
break;
}
// Get an iterator to the last basic block in the function, which will have
// the new function inlined after it.
//
Function::iterator LastBlock = &Caller->back();
// Make sure to capture all of the return instructions from the cloned
// function.
SmallVector<ReturnInst*, 8> Returns;
ClonedCodeInfo InlinedFunctionInfo;
Function::iterator FirstNewBlock;
{ // Scope to destroy VMap after cloning.
ValueToValueMapTy VMap;
assert(CalledFunc->arg_size() == CS.arg_size() &&
"No varargs calls can be inlined!");
// Calculate the vector of arguments to pass into the function cloner, which
// matches up the formal to the actual argument values.
CallSite::arg_iterator AI = CS.arg_begin();
unsigned ArgNo = 0;
for (Function::const_arg_iterator I = CalledFunc->arg_begin(),
E = CalledFunc->arg_end(); I != E; ++I, ++AI, ++ArgNo) {
Value *ActualArg = *AI;
// When byval arguments actually inlined, we need to make the copy implied
// by them explicit. However, we don't do this if the callee is readonly
// or readnone, because the copy would be unneeded: the callee doesn't
// modify the struct.
if (CalledFunc->paramHasAttr(ArgNo+1, Attribute::ByVal)) {
ActualArg = HandleByValArgument(ActualArg, TheCall, CalledFunc, IFI,
CalledFunc->getParamAlignment(ArgNo+1));
// Calls that we inline may use the new alloca, so we need to clear
// their 'tail' flags if HandleByValArgument introduced a new alloca and
// the callee has calls.
MustClearTailCallFlags |= ActualArg != *AI;
}
VMap[I] = ActualArg;
}
// We want the inliner to prune the code as it copies. We would LOVE to
// have no dead or constant instructions leftover after inlining occurs
// (which can happen, e.g., because an argument was constant), but we'll be
// happy with whatever the cloner can do.
CloneAndPruneFunctionInto(Caller, CalledFunc, VMap,
/*ModuleLevelChanges=*/false, Returns, ".i",
&InlinedFunctionInfo, IFI.TD, TheCall);
// Remember the first block that is newly cloned over.
FirstNewBlock = LastBlock; ++FirstNewBlock;
// Update the callgraph if requested.
if (IFI.CG)
UpdateCallGraphAfterInlining(CS, FirstNewBlock, VMap, IFI);
// Update inlined instructions' line number information.
fixupLineNumbers(Caller, FirstNewBlock, TheCall);
}
// If there are any alloca instructions in the block that used to be the entry
// block for the callee, move them to the entry block of the caller. First
// calculate which instruction they should be inserted before. We insert the
// instructions at the end of the current alloca list.
//
{
BasicBlock::iterator InsertPoint = Caller->begin()->begin();
for (BasicBlock::iterator I = FirstNewBlock->begin(),
E = FirstNewBlock->end(); I != E; ) {
AllocaInst *AI = dyn_cast<AllocaInst>(I++);
if (AI == 0) continue;
// If the alloca is now dead, remove it. This often occurs due to code
// specialization.
if (AI->use_empty()) {
AI->eraseFromParent();
continue;
}
if (!isa<Constant>(AI->getArraySize()))
continue;
// Keep track of the static allocas that we inline into the caller.
IFI.StaticAllocas.push_back(AI);
// Scan for the block of allocas that we can move over, and move them
// all at once.
while (isa<AllocaInst>(I) &&
isa<Constant>(cast<AllocaInst>(I)->getArraySize())) {
IFI.StaticAllocas.push_back(cast<AllocaInst>(I));
++I;
}
// Transfer all of the allocas over in a block. Using splice means
// that the instructions aren't removed from the symbol table, then
// reinserted.
Caller->getEntryBlock().getInstList().splice(InsertPoint,
FirstNewBlock->getInstList(),
AI, I);
}
}
// Leave lifetime markers for the static alloca's, scoping them to the
// function we just inlined.
if (!IFI.StaticAllocas.empty()) {
IRBuilder<> builder(FirstNewBlock->begin());
for (unsigned ai = 0, ae = IFI.StaticAllocas.size(); ai != ae; ++ai) {
AllocaInst *AI = IFI.StaticAllocas[ai];
// If the alloca is already scoped to something smaller than the whole
// function then there's no need to add redundant, less accurate markers.
if (hasLifetimeMarkers(AI))
continue;
builder.CreateLifetimeStart(AI);
for (unsigned ri = 0, re = Returns.size(); ri != re; ++ri) {
IRBuilder<> builder(Returns[ri]);
builder.CreateLifetimeEnd(AI);
}
}
}
// If the inlined code contained dynamic alloca instructions, wrap the inlined
// code with llvm.stacksave/llvm.stackrestore intrinsics.
if (InlinedFunctionInfo.ContainsDynamicAllocas) {
Module *M = Caller->getParent();
// Get the two intrinsics we care about.
Function *StackSave = Intrinsic::getDeclaration(M, Intrinsic::stacksave);
Function *StackRestore=Intrinsic::getDeclaration(M,Intrinsic::stackrestore);
// Insert the llvm.stacksave.
CallInst *SavedPtr = IRBuilder<>(FirstNewBlock, FirstNewBlock->begin())
.CreateCall(StackSave, "savedstack");
// Insert a call to llvm.stackrestore before any return instructions in the
// inlined function.
for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
IRBuilder<>(Returns[i]).CreateCall(StackRestore, SavedPtr);
}
// Count the number of StackRestore calls we insert.
unsigned NumStackRestores = Returns.size();
// If we are inlining an invoke instruction, insert restores before each
// unwind. These unwinds will be rewritten into branches later.
if (InlinedFunctionInfo.ContainsUnwinds && isa<InvokeInst>(TheCall)) {
for (Function::iterator BB = FirstNewBlock, E = Caller->end();
BB != E; ++BB)
if (UnwindInst *UI = dyn_cast<UnwindInst>(BB->getTerminator())) {
IRBuilder<>(UI).CreateCall(StackRestore, SavedPtr);
++NumStackRestores;
}
}
}
// If we are inlining tail call instruction through a call site that isn't
// marked 'tail', we must remove the tail marker for any calls in the inlined
// code. Also, calls inlined through a 'nounwind' call site should be marked
// 'nounwind'.
if (InlinedFunctionInfo.ContainsCalls &&
(MustClearTailCallFlags || MarkNoUnwind)) {
for (Function::iterator BB = FirstNewBlock, E = Caller->end();
BB != E; ++BB)
for (BasicBlock::iterator I = BB->begin(), E = BB->end(); I != E; ++I)
if (CallInst *CI = dyn_cast<CallInst>(I)) {
if (MustClearTailCallFlags)
CI->setTailCall(false);
if (MarkNoUnwind)
CI->setDoesNotThrow();
}
}
// If we are inlining through a 'nounwind' call site then any inlined 'unwind'
// instructions are unreachable.
if (InlinedFunctionInfo.ContainsUnwinds && MarkNoUnwind)
for (Function::iterator BB = FirstNewBlock, E = Caller->end();
BB != E; ++BB) {
TerminatorInst *Term = BB->getTerminator();
if (isa<UnwindInst>(Term)) {
new UnreachableInst(Context, Term);
BB->getInstList().erase(Term);
}
}
// If we are inlining for an invoke instruction, we must make sure to rewrite
// any inlined 'unwind' instructions into branches to the invoke exception
// destination, and call instructions into invoke instructions.
if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
HandleInlinedInvoke(II, FirstNewBlock, InlinedFunctionInfo);
// If we cloned in _exactly one_ basic block, and if that block ends in a
// return instruction, we splice the body of the inlined callee directly into
// the calling basic block.
if (Returns.size() == 1 && std::distance(FirstNewBlock, Caller->end()) == 1) {
// Move all of the instructions right before the call.
OrigBB->getInstList().splice(TheCall, FirstNewBlock->getInstList(),
FirstNewBlock->begin(), FirstNewBlock->end());
// Remove the cloned basic block.
Caller->getBasicBlockList().pop_back();
// If the call site was an invoke instruction, add a branch to the normal
// destination.
if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall))
BranchInst::Create(II->getNormalDest(), TheCall);
// If the return instruction returned a value, replace uses of the call with
// uses of the returned value.
if (!TheCall->use_empty()) {
ReturnInst *R = Returns[0];
if (TheCall == R->getReturnValue())
TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
else
TheCall->replaceAllUsesWith(R->getReturnValue());
}
// Since we are now done with the Call/Invoke, we can delete it.
TheCall->eraseFromParent();
// Since we are now done with the return instruction, delete it also.
Returns[0]->eraseFromParent();
// We are now done with the inlining.
return true;
}
// Otherwise, we have the normal case, of more than one block to inline or
// multiple return sites.
// We want to clone the entire callee function into the hole between the
// "starter" and "ender" blocks. How we accomplish this depends on whether
// this is an invoke instruction or a call instruction.
BasicBlock *AfterCallBB;
if (InvokeInst *II = dyn_cast<InvokeInst>(TheCall)) {
// Add an unconditional branch to make this look like the CallInst case...
BranchInst *NewBr = BranchInst::Create(II->getNormalDest(), TheCall);
// Split the basic block. This guarantees that no PHI nodes will have to be
// updated due to new incoming edges, and make the invoke case more
// symmetric to the call case.
AfterCallBB = OrigBB->splitBasicBlock(NewBr,
CalledFunc->getName()+".exit");
} else { // It's a call
// If this is a call instruction, we need to split the basic block that
// the call lives in.
//
AfterCallBB = OrigBB->splitBasicBlock(TheCall,
CalledFunc->getName()+".exit");
}
// Change the branch that used to go to AfterCallBB to branch to the first
// basic block of the inlined function.
//
TerminatorInst *Br = OrigBB->getTerminator();
assert(Br && Br->getOpcode() == Instruction::Br &&
"splitBasicBlock broken!");
Br->setOperand(0, FirstNewBlock);
// Now that the function is correct, make it a little bit nicer. In
// particular, move the basic blocks inserted from the end of the function
// into the space made by splitting the source basic block.
Caller->getBasicBlockList().splice(AfterCallBB, Caller->getBasicBlockList(),
FirstNewBlock, Caller->end());
// Handle all of the return instructions that we just cloned in, and eliminate
// any users of the original call/invoke instruction.
Type *RTy = CalledFunc->getReturnType();
PHINode *PHI = 0;
if (Returns.size() > 1) {
// The PHI node should go at the front of the new basic block to merge all
// possible incoming values.
if (!TheCall->use_empty()) {
PHI = PHINode::Create(RTy, Returns.size(), TheCall->getName(),
AfterCallBB->begin());
// Anything that used the result of the function call should now use the
// PHI node as their operand.
TheCall->replaceAllUsesWith(PHI);
}
// Loop over all of the return instructions adding entries to the PHI node
// as appropriate.
if (PHI) {
for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
ReturnInst *RI = Returns[i];
assert(RI->getReturnValue()->getType() == PHI->getType() &&
"Ret value not consistent in function!");
PHI->addIncoming(RI->getReturnValue(), RI->getParent());
}
}
// Add a branch to the merge points and remove return instructions.
for (unsigned i = 0, e = Returns.size(); i != e; ++i) {
ReturnInst *RI = Returns[i];
BranchInst::Create(AfterCallBB, RI);
RI->eraseFromParent();
}
} else if (!Returns.empty()) {
// Otherwise, if there is exactly one return value, just replace anything
// using the return value of the call with the computed value.
if (!TheCall->use_empty()) {
if (TheCall == Returns[0]->getReturnValue())
TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
else
TheCall->replaceAllUsesWith(Returns[0]->getReturnValue());
}
// Update PHI nodes that use the ReturnBB to use the AfterCallBB.
BasicBlock *ReturnBB = Returns[0]->getParent();
ReturnBB->replaceAllUsesWith(AfterCallBB);
// Splice the code from the return block into the block that it will return
// to, which contains the code that was after the call.
AfterCallBB->getInstList().splice(AfterCallBB->begin(),
ReturnBB->getInstList());
// Delete the return instruction now and empty ReturnBB now.
Returns[0]->eraseFromParent();
ReturnBB->eraseFromParent();
} else if (!TheCall->use_empty()) {
// No returns, but something is using the return value of the call. Just
// nuke the result.
TheCall->replaceAllUsesWith(UndefValue::get(TheCall->getType()));
}
// Since we are now done with the Call/Invoke, we can delete it.
TheCall->eraseFromParent();
// We should always be able to fold the entry block of the function into the
// single predecessor of the block...
assert(cast<BranchInst>(Br)->isUnconditional() && "splitBasicBlock broken!");
BasicBlock *CalleeEntry = cast<BranchInst>(Br)->getSuccessor(0);
// Splice the code entry block into calling block, right before the
// unconditional branch.
CalleeEntry->replaceAllUsesWith(OrigBB); // Update PHI nodes
OrigBB->getInstList().splice(Br, CalleeEntry->getInstList());
// Remove the unconditional branch.
OrigBB->getInstList().erase(Br);
// Now we can remove the CalleeEntry block, which is now empty.
Caller->getBasicBlockList().erase(CalleeEntry);
// If we inserted a phi node, check to see if it has a single value (e.g. all
// the entries are the same or undef). If so, remove the PHI so it doesn't
// block other optimizations.
if (PHI)
if (Value *V = SimplifyInstruction(PHI, IFI.TD)) {
PHI->replaceAllUsesWith(V);
PHI->eraseFromParent();
}
return true;
}