mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-04 05:31:06 +00:00
ddfd1377d2
to finalize MI bundles (i.e. add BUNDLE instruction and computing register def and use lists of the BUNDLE instruction) and a pass to unpack bundles. - Teach more of MachineBasic and MachineInstr methods to be bundle aware. - Switch Thumb2 IT block to MI bundles and delete the hazard recognizer hack to prevent IT blocks from being broken apart. git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@146542 91177308-0d34-0410-b5e6-96231b3b80d8
3760 lines
153 KiB
C++
3760 lines
153 KiB
C++
//===- X86InstrInfo.cpp - X86 Instruction Information -----------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains the X86 implementation of the TargetInstrInfo class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "X86InstrInfo.h"
|
|
#include "X86.h"
|
|
#include "X86InstrBuilder.h"
|
|
#include "X86MachineFunctionInfo.h"
|
|
#include "X86Subtarget.h"
|
|
#include "X86TargetMachine.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/LLVMContext.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/CodeGen/MachineConstantPool.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/LiveVariables.h"
|
|
#include "llvm/MC/MCInst.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetOptions.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include <limits>
|
|
|
|
#define GET_INSTRINFO_CTOR
|
|
#include "X86GenInstrInfo.inc"
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool>
|
|
NoFusing("disable-spill-fusing",
|
|
cl::desc("Disable fusing of spill code into instructions"));
|
|
static cl::opt<bool>
|
|
PrintFailedFusing("print-failed-fuse-candidates",
|
|
cl::desc("Print instructions that the allocator wants to"
|
|
" fuse, but the X86 backend currently can't"),
|
|
cl::Hidden);
|
|
static cl::opt<bool>
|
|
ReMatPICStubLoad("remat-pic-stub-load",
|
|
cl::desc("Re-materialize load from stub in PIC mode"),
|
|
cl::init(false), cl::Hidden);
|
|
|
|
enum {
|
|
// Select which memory operand is being unfolded.
|
|
// (stored in bits 0 - 7)
|
|
TB_INDEX_0 = 0,
|
|
TB_INDEX_1 = 1,
|
|
TB_INDEX_2 = 2,
|
|
TB_INDEX_MASK = 0xff,
|
|
|
|
// Minimum alignment required for load/store.
|
|
// Used for RegOp->MemOp conversion.
|
|
// (stored in bits 8 - 15)
|
|
TB_ALIGN_SHIFT = 8,
|
|
TB_ALIGN_NONE = 0 << TB_ALIGN_SHIFT,
|
|
TB_ALIGN_16 = 16 << TB_ALIGN_SHIFT,
|
|
TB_ALIGN_32 = 32 << TB_ALIGN_SHIFT,
|
|
TB_ALIGN_MASK = 0xff << TB_ALIGN_SHIFT,
|
|
|
|
// Do not insert the reverse map (MemOp -> RegOp) into the table.
|
|
// This may be needed because there is a many -> one mapping.
|
|
TB_NO_REVERSE = 1 << 16,
|
|
|
|
// Do not insert the forward map (RegOp -> MemOp) into the table.
|
|
// This is needed for Native Client, which prohibits branch
|
|
// instructions from using a memory operand.
|
|
TB_NO_FORWARD = 1 << 17,
|
|
|
|
TB_FOLDED_LOAD = 1 << 18,
|
|
TB_FOLDED_STORE = 1 << 19
|
|
};
|
|
|
|
X86InstrInfo::X86InstrInfo(X86TargetMachine &tm)
|
|
: X86GenInstrInfo((tm.getSubtarget<X86Subtarget>().is64Bit()
|
|
? X86::ADJCALLSTACKDOWN64
|
|
: X86::ADJCALLSTACKDOWN32),
|
|
(tm.getSubtarget<X86Subtarget>().is64Bit()
|
|
? X86::ADJCALLSTACKUP64
|
|
: X86::ADJCALLSTACKUP32)),
|
|
TM(tm), RI(tm, *this) {
|
|
|
|
static const unsigned OpTbl2Addr[][3] = {
|
|
{ X86::ADC32ri, X86::ADC32mi, 0 },
|
|
{ X86::ADC32ri8, X86::ADC32mi8, 0 },
|
|
{ X86::ADC32rr, X86::ADC32mr, 0 },
|
|
{ X86::ADC64ri32, X86::ADC64mi32, 0 },
|
|
{ X86::ADC64ri8, X86::ADC64mi8, 0 },
|
|
{ X86::ADC64rr, X86::ADC64mr, 0 },
|
|
{ X86::ADD16ri, X86::ADD16mi, 0 },
|
|
{ X86::ADD16ri8, X86::ADD16mi8, 0 },
|
|
{ X86::ADD16ri_DB, X86::ADD16mi, TB_NO_REVERSE },
|
|
{ X86::ADD16ri8_DB, X86::ADD16mi8, TB_NO_REVERSE },
|
|
{ X86::ADD16rr, X86::ADD16mr, 0 },
|
|
{ X86::ADD16rr_DB, X86::ADD16mr, TB_NO_REVERSE },
|
|
{ X86::ADD32ri, X86::ADD32mi, 0 },
|
|
{ X86::ADD32ri8, X86::ADD32mi8, 0 },
|
|
{ X86::ADD32ri_DB, X86::ADD32mi, TB_NO_REVERSE },
|
|
{ X86::ADD32ri8_DB, X86::ADD32mi8, TB_NO_REVERSE },
|
|
{ X86::ADD32rr, X86::ADD32mr, 0 },
|
|
{ X86::ADD32rr_DB, X86::ADD32mr, TB_NO_REVERSE },
|
|
{ X86::ADD64ri32, X86::ADD64mi32, 0 },
|
|
{ X86::ADD64ri8, X86::ADD64mi8, 0 },
|
|
{ X86::ADD64ri32_DB,X86::ADD64mi32, TB_NO_REVERSE },
|
|
{ X86::ADD64ri8_DB, X86::ADD64mi8, TB_NO_REVERSE },
|
|
{ X86::ADD64rr, X86::ADD64mr, 0 },
|
|
{ X86::ADD64rr_DB, X86::ADD64mr, TB_NO_REVERSE },
|
|
{ X86::ADD8ri, X86::ADD8mi, 0 },
|
|
{ X86::ADD8rr, X86::ADD8mr, 0 },
|
|
{ X86::AND16ri, X86::AND16mi, 0 },
|
|
{ X86::AND16ri8, X86::AND16mi8, 0 },
|
|
{ X86::AND16rr, X86::AND16mr, 0 },
|
|
{ X86::AND32ri, X86::AND32mi, 0 },
|
|
{ X86::AND32ri8, X86::AND32mi8, 0 },
|
|
{ X86::AND32rr, X86::AND32mr, 0 },
|
|
{ X86::AND64ri32, X86::AND64mi32, 0 },
|
|
{ X86::AND64ri8, X86::AND64mi8, 0 },
|
|
{ X86::AND64rr, X86::AND64mr, 0 },
|
|
{ X86::AND8ri, X86::AND8mi, 0 },
|
|
{ X86::AND8rr, X86::AND8mr, 0 },
|
|
{ X86::DEC16r, X86::DEC16m, 0 },
|
|
{ X86::DEC32r, X86::DEC32m, 0 },
|
|
{ X86::DEC64_16r, X86::DEC64_16m, 0 },
|
|
{ X86::DEC64_32r, X86::DEC64_32m, 0 },
|
|
{ X86::DEC64r, X86::DEC64m, 0 },
|
|
{ X86::DEC8r, X86::DEC8m, 0 },
|
|
{ X86::INC16r, X86::INC16m, 0 },
|
|
{ X86::INC32r, X86::INC32m, 0 },
|
|
{ X86::INC64_16r, X86::INC64_16m, 0 },
|
|
{ X86::INC64_32r, X86::INC64_32m, 0 },
|
|
{ X86::INC64r, X86::INC64m, 0 },
|
|
{ X86::INC8r, X86::INC8m, 0 },
|
|
{ X86::NEG16r, X86::NEG16m, 0 },
|
|
{ X86::NEG32r, X86::NEG32m, 0 },
|
|
{ X86::NEG64r, X86::NEG64m, 0 },
|
|
{ X86::NEG8r, X86::NEG8m, 0 },
|
|
{ X86::NOT16r, X86::NOT16m, 0 },
|
|
{ X86::NOT32r, X86::NOT32m, 0 },
|
|
{ X86::NOT64r, X86::NOT64m, 0 },
|
|
{ X86::NOT8r, X86::NOT8m, 0 },
|
|
{ X86::OR16ri, X86::OR16mi, 0 },
|
|
{ X86::OR16ri8, X86::OR16mi8, 0 },
|
|
{ X86::OR16rr, X86::OR16mr, 0 },
|
|
{ X86::OR32ri, X86::OR32mi, 0 },
|
|
{ X86::OR32ri8, X86::OR32mi8, 0 },
|
|
{ X86::OR32rr, X86::OR32mr, 0 },
|
|
{ X86::OR64ri32, X86::OR64mi32, 0 },
|
|
{ X86::OR64ri8, X86::OR64mi8, 0 },
|
|
{ X86::OR64rr, X86::OR64mr, 0 },
|
|
{ X86::OR8ri, X86::OR8mi, 0 },
|
|
{ X86::OR8rr, X86::OR8mr, 0 },
|
|
{ X86::ROL16r1, X86::ROL16m1, 0 },
|
|
{ X86::ROL16rCL, X86::ROL16mCL, 0 },
|
|
{ X86::ROL16ri, X86::ROL16mi, 0 },
|
|
{ X86::ROL32r1, X86::ROL32m1, 0 },
|
|
{ X86::ROL32rCL, X86::ROL32mCL, 0 },
|
|
{ X86::ROL32ri, X86::ROL32mi, 0 },
|
|
{ X86::ROL64r1, X86::ROL64m1, 0 },
|
|
{ X86::ROL64rCL, X86::ROL64mCL, 0 },
|
|
{ X86::ROL64ri, X86::ROL64mi, 0 },
|
|
{ X86::ROL8r1, X86::ROL8m1, 0 },
|
|
{ X86::ROL8rCL, X86::ROL8mCL, 0 },
|
|
{ X86::ROL8ri, X86::ROL8mi, 0 },
|
|
{ X86::ROR16r1, X86::ROR16m1, 0 },
|
|
{ X86::ROR16rCL, X86::ROR16mCL, 0 },
|
|
{ X86::ROR16ri, X86::ROR16mi, 0 },
|
|
{ X86::ROR32r1, X86::ROR32m1, 0 },
|
|
{ X86::ROR32rCL, X86::ROR32mCL, 0 },
|
|
{ X86::ROR32ri, X86::ROR32mi, 0 },
|
|
{ X86::ROR64r1, X86::ROR64m1, 0 },
|
|
{ X86::ROR64rCL, X86::ROR64mCL, 0 },
|
|
{ X86::ROR64ri, X86::ROR64mi, 0 },
|
|
{ X86::ROR8r1, X86::ROR8m1, 0 },
|
|
{ X86::ROR8rCL, X86::ROR8mCL, 0 },
|
|
{ X86::ROR8ri, X86::ROR8mi, 0 },
|
|
{ X86::SAR16r1, X86::SAR16m1, 0 },
|
|
{ X86::SAR16rCL, X86::SAR16mCL, 0 },
|
|
{ X86::SAR16ri, X86::SAR16mi, 0 },
|
|
{ X86::SAR32r1, X86::SAR32m1, 0 },
|
|
{ X86::SAR32rCL, X86::SAR32mCL, 0 },
|
|
{ X86::SAR32ri, X86::SAR32mi, 0 },
|
|
{ X86::SAR64r1, X86::SAR64m1, 0 },
|
|
{ X86::SAR64rCL, X86::SAR64mCL, 0 },
|
|
{ X86::SAR64ri, X86::SAR64mi, 0 },
|
|
{ X86::SAR8r1, X86::SAR8m1, 0 },
|
|
{ X86::SAR8rCL, X86::SAR8mCL, 0 },
|
|
{ X86::SAR8ri, X86::SAR8mi, 0 },
|
|
{ X86::SBB32ri, X86::SBB32mi, 0 },
|
|
{ X86::SBB32ri8, X86::SBB32mi8, 0 },
|
|
{ X86::SBB32rr, X86::SBB32mr, 0 },
|
|
{ X86::SBB64ri32, X86::SBB64mi32, 0 },
|
|
{ X86::SBB64ri8, X86::SBB64mi8, 0 },
|
|
{ X86::SBB64rr, X86::SBB64mr, 0 },
|
|
{ X86::SHL16rCL, X86::SHL16mCL, 0 },
|
|
{ X86::SHL16ri, X86::SHL16mi, 0 },
|
|
{ X86::SHL32rCL, X86::SHL32mCL, 0 },
|
|
{ X86::SHL32ri, X86::SHL32mi, 0 },
|
|
{ X86::SHL64rCL, X86::SHL64mCL, 0 },
|
|
{ X86::SHL64ri, X86::SHL64mi, 0 },
|
|
{ X86::SHL8rCL, X86::SHL8mCL, 0 },
|
|
{ X86::SHL8ri, X86::SHL8mi, 0 },
|
|
{ X86::SHLD16rrCL, X86::SHLD16mrCL, 0 },
|
|
{ X86::SHLD16rri8, X86::SHLD16mri8, 0 },
|
|
{ X86::SHLD32rrCL, X86::SHLD32mrCL, 0 },
|
|
{ X86::SHLD32rri8, X86::SHLD32mri8, 0 },
|
|
{ X86::SHLD64rrCL, X86::SHLD64mrCL, 0 },
|
|
{ X86::SHLD64rri8, X86::SHLD64mri8, 0 },
|
|
{ X86::SHR16r1, X86::SHR16m1, 0 },
|
|
{ X86::SHR16rCL, X86::SHR16mCL, 0 },
|
|
{ X86::SHR16ri, X86::SHR16mi, 0 },
|
|
{ X86::SHR32r1, X86::SHR32m1, 0 },
|
|
{ X86::SHR32rCL, X86::SHR32mCL, 0 },
|
|
{ X86::SHR32ri, X86::SHR32mi, 0 },
|
|
{ X86::SHR64r1, X86::SHR64m1, 0 },
|
|
{ X86::SHR64rCL, X86::SHR64mCL, 0 },
|
|
{ X86::SHR64ri, X86::SHR64mi, 0 },
|
|
{ X86::SHR8r1, X86::SHR8m1, 0 },
|
|
{ X86::SHR8rCL, X86::SHR8mCL, 0 },
|
|
{ X86::SHR8ri, X86::SHR8mi, 0 },
|
|
{ X86::SHRD16rrCL, X86::SHRD16mrCL, 0 },
|
|
{ X86::SHRD16rri8, X86::SHRD16mri8, 0 },
|
|
{ X86::SHRD32rrCL, X86::SHRD32mrCL, 0 },
|
|
{ X86::SHRD32rri8, X86::SHRD32mri8, 0 },
|
|
{ X86::SHRD64rrCL, X86::SHRD64mrCL, 0 },
|
|
{ X86::SHRD64rri8, X86::SHRD64mri8, 0 },
|
|
{ X86::SUB16ri, X86::SUB16mi, 0 },
|
|
{ X86::SUB16ri8, X86::SUB16mi8, 0 },
|
|
{ X86::SUB16rr, X86::SUB16mr, 0 },
|
|
{ X86::SUB32ri, X86::SUB32mi, 0 },
|
|
{ X86::SUB32ri8, X86::SUB32mi8, 0 },
|
|
{ X86::SUB32rr, X86::SUB32mr, 0 },
|
|
{ X86::SUB64ri32, X86::SUB64mi32, 0 },
|
|
{ X86::SUB64ri8, X86::SUB64mi8, 0 },
|
|
{ X86::SUB64rr, X86::SUB64mr, 0 },
|
|
{ X86::SUB8ri, X86::SUB8mi, 0 },
|
|
{ X86::SUB8rr, X86::SUB8mr, 0 },
|
|
{ X86::XOR16ri, X86::XOR16mi, 0 },
|
|
{ X86::XOR16ri8, X86::XOR16mi8, 0 },
|
|
{ X86::XOR16rr, X86::XOR16mr, 0 },
|
|
{ X86::XOR32ri, X86::XOR32mi, 0 },
|
|
{ X86::XOR32ri8, X86::XOR32mi8, 0 },
|
|
{ X86::XOR32rr, X86::XOR32mr, 0 },
|
|
{ X86::XOR64ri32, X86::XOR64mi32, 0 },
|
|
{ X86::XOR64ri8, X86::XOR64mi8, 0 },
|
|
{ X86::XOR64rr, X86::XOR64mr, 0 },
|
|
{ X86::XOR8ri, X86::XOR8mi, 0 },
|
|
{ X86::XOR8rr, X86::XOR8mr, 0 }
|
|
};
|
|
|
|
for (unsigned i = 0, e = array_lengthof(OpTbl2Addr); i != e; ++i) {
|
|
unsigned RegOp = OpTbl2Addr[i][0];
|
|
unsigned MemOp = OpTbl2Addr[i][1];
|
|
unsigned Flags = OpTbl2Addr[i][2];
|
|
AddTableEntry(RegOp2MemOpTable2Addr, MemOp2RegOpTable,
|
|
RegOp, MemOp,
|
|
// Index 0, folded load and store, no alignment requirement.
|
|
Flags | TB_INDEX_0 | TB_FOLDED_LOAD | TB_FOLDED_STORE);
|
|
}
|
|
|
|
static const unsigned OpTbl0[][3] = {
|
|
{ X86::BT16ri8, X86::BT16mi8, TB_FOLDED_LOAD },
|
|
{ X86::BT32ri8, X86::BT32mi8, TB_FOLDED_LOAD },
|
|
{ X86::BT64ri8, X86::BT64mi8, TB_FOLDED_LOAD },
|
|
{ X86::CALL32r, X86::CALL32m, TB_FOLDED_LOAD },
|
|
{ X86::CALL64r, X86::CALL64m, TB_FOLDED_LOAD },
|
|
{ X86::WINCALL64r, X86::WINCALL64m, TB_FOLDED_LOAD },
|
|
{ X86::CMP16ri, X86::CMP16mi, TB_FOLDED_LOAD },
|
|
{ X86::CMP16ri8, X86::CMP16mi8, TB_FOLDED_LOAD },
|
|
{ X86::CMP16rr, X86::CMP16mr, TB_FOLDED_LOAD },
|
|
{ X86::CMP32ri, X86::CMP32mi, TB_FOLDED_LOAD },
|
|
{ X86::CMP32ri8, X86::CMP32mi8, TB_FOLDED_LOAD },
|
|
{ X86::CMP32rr, X86::CMP32mr, TB_FOLDED_LOAD },
|
|
{ X86::CMP64ri32, X86::CMP64mi32, TB_FOLDED_LOAD },
|
|
{ X86::CMP64ri8, X86::CMP64mi8, TB_FOLDED_LOAD },
|
|
{ X86::CMP64rr, X86::CMP64mr, TB_FOLDED_LOAD },
|
|
{ X86::CMP8ri, X86::CMP8mi, TB_FOLDED_LOAD },
|
|
{ X86::CMP8rr, X86::CMP8mr, TB_FOLDED_LOAD },
|
|
{ X86::DIV16r, X86::DIV16m, TB_FOLDED_LOAD },
|
|
{ X86::DIV32r, X86::DIV32m, TB_FOLDED_LOAD },
|
|
{ X86::DIV64r, X86::DIV64m, TB_FOLDED_LOAD },
|
|
{ X86::DIV8r, X86::DIV8m, TB_FOLDED_LOAD },
|
|
{ X86::EXTRACTPSrr, X86::EXTRACTPSmr, TB_FOLDED_STORE | TB_ALIGN_16 },
|
|
{ X86::FsMOVAPDrr, X86::MOVSDmr, TB_FOLDED_STORE | TB_NO_REVERSE },
|
|
{ X86::FsMOVAPSrr, X86::MOVSSmr, TB_FOLDED_STORE | TB_NO_REVERSE },
|
|
{ X86::IDIV16r, X86::IDIV16m, TB_FOLDED_LOAD },
|
|
{ X86::IDIV32r, X86::IDIV32m, TB_FOLDED_LOAD },
|
|
{ X86::IDIV64r, X86::IDIV64m, TB_FOLDED_LOAD },
|
|
{ X86::IDIV8r, X86::IDIV8m, TB_FOLDED_LOAD },
|
|
{ X86::IMUL16r, X86::IMUL16m, TB_FOLDED_LOAD },
|
|
{ X86::IMUL32r, X86::IMUL32m, TB_FOLDED_LOAD },
|
|
{ X86::IMUL64r, X86::IMUL64m, TB_FOLDED_LOAD },
|
|
{ X86::IMUL8r, X86::IMUL8m, TB_FOLDED_LOAD },
|
|
{ X86::JMP32r, X86::JMP32m, TB_FOLDED_LOAD },
|
|
{ X86::JMP64r, X86::JMP64m, TB_FOLDED_LOAD },
|
|
{ X86::MOV16ri, X86::MOV16mi, TB_FOLDED_STORE },
|
|
{ X86::MOV16rr, X86::MOV16mr, TB_FOLDED_STORE },
|
|
{ X86::MOV32ri, X86::MOV32mi, TB_FOLDED_STORE },
|
|
{ X86::MOV32rr, X86::MOV32mr, TB_FOLDED_STORE },
|
|
{ X86::MOV64ri32, X86::MOV64mi32, TB_FOLDED_STORE },
|
|
{ X86::MOV64rr, X86::MOV64mr, TB_FOLDED_STORE },
|
|
{ X86::MOV8ri, X86::MOV8mi, TB_FOLDED_STORE },
|
|
{ X86::MOV8rr, X86::MOV8mr, TB_FOLDED_STORE },
|
|
{ X86::MOV8rr_NOREX, X86::MOV8mr_NOREX, TB_FOLDED_STORE },
|
|
{ X86::MOVAPDrr, X86::MOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 },
|
|
{ X86::MOVAPSrr, X86::MOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 },
|
|
{ X86::MOVDQArr, X86::MOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 },
|
|
{ X86::MOVPDI2DIrr, X86::MOVPDI2DImr, TB_FOLDED_STORE },
|
|
{ X86::MOVPQIto64rr,X86::MOVPQI2QImr, TB_FOLDED_STORE },
|
|
{ X86::MOVSDto64rr, X86::MOVSDto64mr, TB_FOLDED_STORE },
|
|
{ X86::MOVSS2DIrr, X86::MOVSS2DImr, TB_FOLDED_STORE },
|
|
{ X86::MOVUPDrr, X86::MOVUPDmr, TB_FOLDED_STORE },
|
|
{ X86::MOVUPSrr, X86::MOVUPSmr, TB_FOLDED_STORE },
|
|
{ X86::MUL16r, X86::MUL16m, TB_FOLDED_LOAD },
|
|
{ X86::MUL32r, X86::MUL32m, TB_FOLDED_LOAD },
|
|
{ X86::MUL64r, X86::MUL64m, TB_FOLDED_LOAD },
|
|
{ X86::MUL8r, X86::MUL8m, TB_FOLDED_LOAD },
|
|
{ X86::SETAEr, X86::SETAEm, TB_FOLDED_STORE },
|
|
{ X86::SETAr, X86::SETAm, TB_FOLDED_STORE },
|
|
{ X86::SETBEr, X86::SETBEm, TB_FOLDED_STORE },
|
|
{ X86::SETBr, X86::SETBm, TB_FOLDED_STORE },
|
|
{ X86::SETEr, X86::SETEm, TB_FOLDED_STORE },
|
|
{ X86::SETGEr, X86::SETGEm, TB_FOLDED_STORE },
|
|
{ X86::SETGr, X86::SETGm, TB_FOLDED_STORE },
|
|
{ X86::SETLEr, X86::SETLEm, TB_FOLDED_STORE },
|
|
{ X86::SETLr, X86::SETLm, TB_FOLDED_STORE },
|
|
{ X86::SETNEr, X86::SETNEm, TB_FOLDED_STORE },
|
|
{ X86::SETNOr, X86::SETNOm, TB_FOLDED_STORE },
|
|
{ X86::SETNPr, X86::SETNPm, TB_FOLDED_STORE },
|
|
{ X86::SETNSr, X86::SETNSm, TB_FOLDED_STORE },
|
|
{ X86::SETOr, X86::SETOm, TB_FOLDED_STORE },
|
|
{ X86::SETPr, X86::SETPm, TB_FOLDED_STORE },
|
|
{ X86::SETSr, X86::SETSm, TB_FOLDED_STORE },
|
|
{ X86::TAILJMPr, X86::TAILJMPm, TB_FOLDED_LOAD },
|
|
{ X86::TAILJMPr64, X86::TAILJMPm64, TB_FOLDED_LOAD },
|
|
{ X86::TEST16ri, X86::TEST16mi, TB_FOLDED_LOAD },
|
|
{ X86::TEST32ri, X86::TEST32mi, TB_FOLDED_LOAD },
|
|
{ X86::TEST64ri32, X86::TEST64mi32, TB_FOLDED_LOAD },
|
|
{ X86::TEST8ri, X86::TEST8mi, TB_FOLDED_LOAD },
|
|
// AVX 128-bit versions of foldable instructions
|
|
{ X86::VEXTRACTPSrr,X86::VEXTRACTPSmr, TB_FOLDED_STORE | TB_ALIGN_16 },
|
|
{ X86::FsVMOVAPDrr, X86::VMOVSDmr, TB_FOLDED_STORE | TB_NO_REVERSE },
|
|
{ X86::FsVMOVAPSrr, X86::VMOVSSmr, TB_FOLDED_STORE | TB_NO_REVERSE },
|
|
{ X86::VMOVAPDrr, X86::VMOVAPDmr, TB_FOLDED_STORE | TB_ALIGN_16 },
|
|
{ X86::VMOVAPSrr, X86::VMOVAPSmr, TB_FOLDED_STORE | TB_ALIGN_16 },
|
|
{ X86::VMOVDQArr, X86::VMOVDQAmr, TB_FOLDED_STORE | TB_ALIGN_16 },
|
|
{ X86::VMOVPDI2DIrr,X86::VMOVPDI2DImr, TB_FOLDED_STORE },
|
|
{ X86::VMOVPQIto64rr, X86::VMOVPQI2QImr,TB_FOLDED_STORE },
|
|
{ X86::VMOVSDto64rr,X86::VMOVSDto64mr, TB_FOLDED_STORE },
|
|
{ X86::VMOVSS2DIrr, X86::VMOVSS2DImr, TB_FOLDED_STORE },
|
|
{ X86::VMOVUPDrr, X86::VMOVUPDmr, TB_FOLDED_STORE },
|
|
{ X86::VMOVUPSrr, X86::VMOVUPSmr, TB_FOLDED_STORE },
|
|
// AVX 256-bit foldable instructions
|
|
{ X86::VMOVAPDYrr, X86::VMOVAPDYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
|
|
{ X86::VMOVAPSYrr, X86::VMOVAPSYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
|
|
{ X86::VMOVDQAYrr, X86::VMOVDQAYmr, TB_FOLDED_STORE | TB_ALIGN_32 },
|
|
{ X86::VMOVUPDYrr, X86::VMOVUPDYmr, TB_FOLDED_STORE },
|
|
{ X86::VMOVUPSYrr, X86::VMOVUPSYmr, TB_FOLDED_STORE }
|
|
};
|
|
|
|
for (unsigned i = 0, e = array_lengthof(OpTbl0); i != e; ++i) {
|
|
unsigned RegOp = OpTbl0[i][0];
|
|
unsigned MemOp = OpTbl0[i][1];
|
|
unsigned Flags = OpTbl0[i][2];
|
|
AddTableEntry(RegOp2MemOpTable0, MemOp2RegOpTable,
|
|
RegOp, MemOp, TB_INDEX_0 | Flags);
|
|
}
|
|
|
|
static const unsigned OpTbl1[][3] = {
|
|
{ X86::CMP16rr, X86::CMP16rm, 0 },
|
|
{ X86::CMP32rr, X86::CMP32rm, 0 },
|
|
{ X86::CMP64rr, X86::CMP64rm, 0 },
|
|
{ X86::CMP8rr, X86::CMP8rm, 0 },
|
|
{ X86::CVTSD2SSrr, X86::CVTSD2SSrm, 0 },
|
|
{ X86::CVTSI2SD64rr, X86::CVTSI2SD64rm, 0 },
|
|
{ X86::CVTSI2SDrr, X86::CVTSI2SDrm, 0 },
|
|
{ X86::CVTSI2SS64rr, X86::CVTSI2SS64rm, 0 },
|
|
{ X86::CVTSI2SSrr, X86::CVTSI2SSrm, 0 },
|
|
{ X86::CVTSS2SDrr, X86::CVTSS2SDrm, 0 },
|
|
{ X86::CVTTSD2SI64rr, X86::CVTTSD2SI64rm, 0 },
|
|
{ X86::CVTTSD2SIrr, X86::CVTTSD2SIrm, 0 },
|
|
{ X86::CVTTSS2SI64rr, X86::CVTTSS2SI64rm, 0 },
|
|
{ X86::CVTTSS2SIrr, X86::CVTTSS2SIrm, 0 },
|
|
{ X86::FsMOVAPDrr, X86::MOVSDrm, TB_NO_REVERSE },
|
|
{ X86::FsMOVAPSrr, X86::MOVSSrm, TB_NO_REVERSE },
|
|
{ X86::IMUL16rri, X86::IMUL16rmi, 0 },
|
|
{ X86::IMUL16rri8, X86::IMUL16rmi8, 0 },
|
|
{ X86::IMUL32rri, X86::IMUL32rmi, 0 },
|
|
{ X86::IMUL32rri8, X86::IMUL32rmi8, 0 },
|
|
{ X86::IMUL64rri32, X86::IMUL64rmi32, 0 },
|
|
{ X86::IMUL64rri8, X86::IMUL64rmi8, 0 },
|
|
{ X86::Int_COMISDrr, X86::Int_COMISDrm, 0 },
|
|
{ X86::Int_COMISSrr, X86::Int_COMISSrm, 0 },
|
|
{ X86::Int_CVTDQ2PDrr, X86::Int_CVTDQ2PDrm, TB_ALIGN_16 },
|
|
{ X86::Int_CVTDQ2PSrr, X86::Int_CVTDQ2PSrm, TB_ALIGN_16 },
|
|
{ X86::Int_CVTPD2DQrr, X86::Int_CVTPD2DQrm, TB_ALIGN_16 },
|
|
{ X86::Int_CVTPD2PSrr, X86::Int_CVTPD2PSrm, TB_ALIGN_16 },
|
|
{ X86::Int_CVTPS2DQrr, X86::Int_CVTPS2DQrm, TB_ALIGN_16 },
|
|
{ X86::Int_CVTPS2PDrr, X86::Int_CVTPS2PDrm, 0 },
|
|
{ X86::CVTSD2SI64rr, X86::CVTSD2SI64rm, 0 },
|
|
{ X86::CVTSD2SIrr, X86::CVTSD2SIrm, 0 },
|
|
{ X86::Int_CVTSD2SSrr, X86::Int_CVTSD2SSrm, 0 },
|
|
{ X86::Int_CVTSI2SD64rr,X86::Int_CVTSI2SD64rm, 0 },
|
|
{ X86::Int_CVTSI2SDrr, X86::Int_CVTSI2SDrm, 0 },
|
|
{ X86::Int_CVTSI2SS64rr,X86::Int_CVTSI2SS64rm, 0 },
|
|
{ X86::Int_CVTSI2SSrr, X86::Int_CVTSI2SSrm, 0 },
|
|
{ X86::Int_CVTSS2SDrr, X86::Int_CVTSS2SDrm, 0 },
|
|
{ X86::CVTTPD2DQrr, X86::CVTTPD2DQrm, TB_ALIGN_16 },
|
|
{ X86::CVTTPS2DQrr, X86::CVTTPS2DQrm, TB_ALIGN_16 },
|
|
{ X86::Int_CVTTSD2SI64rr,X86::Int_CVTTSD2SI64rm, 0 },
|
|
{ X86::Int_CVTTSD2SIrr, X86::Int_CVTTSD2SIrm, 0 },
|
|
{ X86::Int_CVTTSS2SI64rr,X86::Int_CVTTSS2SI64rm, 0 },
|
|
{ X86::Int_CVTTSS2SIrr, X86::Int_CVTTSS2SIrm, 0 },
|
|
{ X86::Int_UCOMISDrr, X86::Int_UCOMISDrm, 0 },
|
|
{ X86::Int_UCOMISSrr, X86::Int_UCOMISSrm, 0 },
|
|
{ X86::MOV16rr, X86::MOV16rm, 0 },
|
|
{ X86::MOV32rr, X86::MOV32rm, 0 },
|
|
{ X86::MOV64rr, X86::MOV64rm, 0 },
|
|
{ X86::MOV64toPQIrr, X86::MOVQI2PQIrm, 0 },
|
|
{ X86::MOV64toSDrr, X86::MOV64toSDrm, 0 },
|
|
{ X86::MOV8rr, X86::MOV8rm, 0 },
|
|
{ X86::MOVAPDrr, X86::MOVAPDrm, TB_ALIGN_16 },
|
|
{ X86::MOVAPSrr, X86::MOVAPSrm, TB_ALIGN_16 },
|
|
{ X86::MOVDDUPrr, X86::MOVDDUPrm, 0 },
|
|
{ X86::MOVDI2PDIrr, X86::MOVDI2PDIrm, 0 },
|
|
{ X86::MOVDI2SSrr, X86::MOVDI2SSrm, 0 },
|
|
{ X86::MOVDQArr, X86::MOVDQArm, TB_ALIGN_16 },
|
|
{ X86::MOVSHDUPrr, X86::MOVSHDUPrm, TB_ALIGN_16 },
|
|
{ X86::MOVSLDUPrr, X86::MOVSLDUPrm, TB_ALIGN_16 },
|
|
{ X86::MOVSX16rr8, X86::MOVSX16rm8, 0 },
|
|
{ X86::MOVSX32rr16, X86::MOVSX32rm16, 0 },
|
|
{ X86::MOVSX32rr8, X86::MOVSX32rm8, 0 },
|
|
{ X86::MOVSX64rr16, X86::MOVSX64rm16, 0 },
|
|
{ X86::MOVSX64rr32, X86::MOVSX64rm32, 0 },
|
|
{ X86::MOVSX64rr8, X86::MOVSX64rm8, 0 },
|
|
{ X86::MOVUPDrr, X86::MOVUPDrm, TB_ALIGN_16 },
|
|
{ X86::MOVUPSrr, X86::MOVUPSrm, 0 },
|
|
{ X86::MOVZDI2PDIrr, X86::MOVZDI2PDIrm, 0 },
|
|
{ X86::MOVZQI2PQIrr, X86::MOVZQI2PQIrm, 0 },
|
|
{ X86::MOVZPQILo2PQIrr, X86::MOVZPQILo2PQIrm, TB_ALIGN_16 },
|
|
{ X86::MOVZX16rr8, X86::MOVZX16rm8, 0 },
|
|
{ X86::MOVZX32rr16, X86::MOVZX32rm16, 0 },
|
|
{ X86::MOVZX32_NOREXrr8, X86::MOVZX32_NOREXrm8, 0 },
|
|
{ X86::MOVZX32rr8, X86::MOVZX32rm8, 0 },
|
|
{ X86::MOVZX64rr16, X86::MOVZX64rm16, 0 },
|
|
{ X86::MOVZX64rr32, X86::MOVZX64rm32, 0 },
|
|
{ X86::MOVZX64rr8, X86::MOVZX64rm8, 0 },
|
|
{ X86::PABSBrr128, X86::PABSBrm128, TB_ALIGN_16 },
|
|
{ X86::PABSDrr128, X86::PABSDrm128, TB_ALIGN_16 },
|
|
{ X86::PABSWrr128, X86::PABSWrm128, TB_ALIGN_16 },
|
|
{ X86::PSHUFDri, X86::PSHUFDmi, TB_ALIGN_16 },
|
|
{ X86::PSHUFHWri, X86::PSHUFHWmi, TB_ALIGN_16 },
|
|
{ X86::PSHUFLWri, X86::PSHUFLWmi, TB_ALIGN_16 },
|
|
{ X86::RCPPSr, X86::RCPPSm, TB_ALIGN_16 },
|
|
{ X86::RCPPSr_Int, X86::RCPPSm_Int, TB_ALIGN_16 },
|
|
{ X86::RSQRTPSr, X86::RSQRTPSm, TB_ALIGN_16 },
|
|
{ X86::RSQRTPSr_Int, X86::RSQRTPSm_Int, TB_ALIGN_16 },
|
|
{ X86::RSQRTSSr, X86::RSQRTSSm, 0 },
|
|
{ X86::RSQRTSSr_Int, X86::RSQRTSSm_Int, 0 },
|
|
{ X86::SQRTPDr, X86::SQRTPDm, TB_ALIGN_16 },
|
|
{ X86::SQRTPDr_Int, X86::SQRTPDm_Int, TB_ALIGN_16 },
|
|
{ X86::SQRTPSr, X86::SQRTPSm, TB_ALIGN_16 },
|
|
{ X86::SQRTPSr_Int, X86::SQRTPSm_Int, TB_ALIGN_16 },
|
|
{ X86::SQRTSDr, X86::SQRTSDm, 0 },
|
|
{ X86::SQRTSDr_Int, X86::SQRTSDm_Int, 0 },
|
|
{ X86::SQRTSSr, X86::SQRTSSm, 0 },
|
|
{ X86::SQRTSSr_Int, X86::SQRTSSm_Int, 0 },
|
|
{ X86::TEST16rr, X86::TEST16rm, 0 },
|
|
{ X86::TEST32rr, X86::TEST32rm, 0 },
|
|
{ X86::TEST64rr, X86::TEST64rm, 0 },
|
|
{ X86::TEST8rr, X86::TEST8rm, 0 },
|
|
// FIXME: TEST*rr EAX,EAX ---> CMP [mem], 0
|
|
{ X86::UCOMISDrr, X86::UCOMISDrm, 0 },
|
|
{ X86::UCOMISSrr, X86::UCOMISSrm, 0 },
|
|
// AVX 128-bit versions of foldable instructions
|
|
{ X86::Int_VCOMISDrr, X86::Int_VCOMISDrm, 0 },
|
|
{ X86::Int_VCOMISSrr, X86::Int_VCOMISSrm, 0 },
|
|
{ X86::Int_VCVTDQ2PDrr, X86::Int_VCVTDQ2PDrm, TB_ALIGN_16 },
|
|
{ X86::Int_VCVTDQ2PSrr, X86::Int_VCVTDQ2PSrm, TB_ALIGN_16 },
|
|
{ X86::Int_VCVTPD2DQrr, X86::Int_VCVTPD2DQrm, TB_ALIGN_16 },
|
|
{ X86::Int_VCVTPD2PSrr, X86::Int_VCVTPD2PSrm, TB_ALIGN_16 },
|
|
{ X86::Int_VCVTPS2DQrr, X86::Int_VCVTPS2DQrm, TB_ALIGN_16 },
|
|
{ X86::Int_VCVTPS2PDrr, X86::Int_VCVTPS2PDrm, 0 },
|
|
{ X86::Int_VUCOMISDrr, X86::Int_VUCOMISDrm, 0 },
|
|
{ X86::Int_VUCOMISSrr, X86::Int_VUCOMISSrm, 0 },
|
|
{ X86::FsVMOVAPDrr, X86::VMOVSDrm, TB_NO_REVERSE },
|
|
{ X86::FsVMOVAPSrr, X86::VMOVSSrm, TB_NO_REVERSE },
|
|
{ X86::VMOV64toPQIrr, X86::VMOVQI2PQIrm, 0 },
|
|
{ X86::VMOV64toSDrr, X86::VMOV64toSDrm, 0 },
|
|
{ X86::VMOVAPDrr, X86::VMOVAPDrm, TB_ALIGN_16 },
|
|
{ X86::VMOVAPSrr, X86::VMOVAPSrm, TB_ALIGN_16 },
|
|
{ X86::VMOVDDUPrr, X86::VMOVDDUPrm, 0 },
|
|
{ X86::VMOVDI2PDIrr, X86::VMOVDI2PDIrm, 0 },
|
|
{ X86::VMOVDI2SSrr, X86::VMOVDI2SSrm, 0 },
|
|
{ X86::VMOVDQArr, X86::VMOVDQArm, TB_ALIGN_16 },
|
|
{ X86::VMOVSLDUPrr, X86::VMOVSLDUPrm, TB_ALIGN_16 },
|
|
{ X86::VMOVSHDUPrr, X86::VMOVSHDUPrm, TB_ALIGN_16 },
|
|
{ X86::VMOVUPDrr, X86::VMOVUPDrm, TB_ALIGN_16 },
|
|
{ X86::VMOVUPSrr, X86::VMOVUPSrm, 0 },
|
|
{ X86::VMOVZDI2PDIrr, X86::VMOVZDI2PDIrm, 0 },
|
|
{ X86::VMOVZQI2PQIrr, X86::VMOVZQI2PQIrm, 0 },
|
|
{ X86::VMOVZPQILo2PQIrr,X86::VMOVZPQILo2PQIrm, TB_ALIGN_16 },
|
|
{ X86::VPABSBrr128, X86::VPABSBrm128, TB_ALIGN_16 },
|
|
{ X86::VPABSDrr128, X86::VPABSDrm128, TB_ALIGN_16 },
|
|
{ X86::VPABSWrr128, X86::VPABSWrm128, TB_ALIGN_16 },
|
|
{ X86::VPSHUFDri, X86::VPSHUFDmi, TB_ALIGN_16 },
|
|
{ X86::VPSHUFHWri, X86::VPSHUFHWmi, TB_ALIGN_16 },
|
|
{ X86::VPSHUFLWri, X86::VPSHUFLWmi, TB_ALIGN_16 },
|
|
{ X86::VRCPPSr, X86::VRCPPSm, TB_ALIGN_16 },
|
|
{ X86::VRCPPSr_Int, X86::VRCPPSm_Int, TB_ALIGN_16 },
|
|
{ X86::VRSQRTPSr, X86::VRSQRTPSm, TB_ALIGN_16 },
|
|
{ X86::VRSQRTPSr_Int, X86::VRSQRTPSm_Int, TB_ALIGN_16 },
|
|
{ X86::VSQRTPDr, X86::VSQRTPDm, TB_ALIGN_16 },
|
|
{ X86::VSQRTPDr_Int, X86::VSQRTPDm_Int, TB_ALIGN_16 },
|
|
{ X86::VSQRTPSr, X86::VSQRTPSm, TB_ALIGN_16 },
|
|
{ X86::VSQRTPSr_Int, X86::VSQRTPSm_Int, TB_ALIGN_16 },
|
|
{ X86::VUCOMISDrr, X86::VUCOMISDrm, 0 },
|
|
{ X86::VUCOMISSrr, X86::VUCOMISSrm, 0 },
|
|
// AVX 256-bit foldable instructions
|
|
{ X86::VMOVAPDYrr, X86::VMOVAPDYrm, TB_ALIGN_32 },
|
|
{ X86::VMOVAPSYrr, X86::VMOVAPSYrm, TB_ALIGN_32 },
|
|
{ X86::VMOVDQAYrr, X86::VMOVDQAYrm, TB_ALIGN_16 },
|
|
{ X86::VMOVUPDYrr, X86::VMOVUPDYrm, 0 },
|
|
{ X86::VMOVUPSYrr, X86::VMOVUPSYrm, 0 },
|
|
// AVX2 foldable instructions
|
|
{ X86::VPABSBrr256, X86::VPABSBrm256, TB_ALIGN_16 },
|
|
{ X86::VPABSDrr256, X86::VPABSDrm256, TB_ALIGN_16 },
|
|
{ X86::VPABSWrr256, X86::VPABSWrm256, TB_ALIGN_16 },
|
|
{ X86::VPSHUFDYri, X86::VPSHUFDYmi, TB_ALIGN_16 },
|
|
{ X86::VPSHUFHWYri, X86::VPSHUFHWYmi, TB_ALIGN_16 },
|
|
{ X86::VPSHUFLWYri, X86::VPSHUFLWYmi, TB_ALIGN_16 }
|
|
};
|
|
|
|
for (unsigned i = 0, e = array_lengthof(OpTbl1); i != e; ++i) {
|
|
unsigned RegOp = OpTbl1[i][0];
|
|
unsigned MemOp = OpTbl1[i][1];
|
|
unsigned Flags = OpTbl1[i][2];
|
|
AddTableEntry(RegOp2MemOpTable1, MemOp2RegOpTable,
|
|
RegOp, MemOp,
|
|
// Index 1, folded load
|
|
Flags | TB_INDEX_1 | TB_FOLDED_LOAD);
|
|
}
|
|
|
|
static const unsigned OpTbl2[][3] = {
|
|
{ X86::ADC32rr, X86::ADC32rm, 0 },
|
|
{ X86::ADC64rr, X86::ADC64rm, 0 },
|
|
{ X86::ADD16rr, X86::ADD16rm, 0 },
|
|
{ X86::ADD16rr_DB, X86::ADD16rm, TB_NO_REVERSE },
|
|
{ X86::ADD32rr, X86::ADD32rm, 0 },
|
|
{ X86::ADD32rr_DB, X86::ADD32rm, TB_NO_REVERSE },
|
|
{ X86::ADD64rr, X86::ADD64rm, 0 },
|
|
{ X86::ADD64rr_DB, X86::ADD64rm, TB_NO_REVERSE },
|
|
{ X86::ADD8rr, X86::ADD8rm, 0 },
|
|
{ X86::ADDPDrr, X86::ADDPDrm, TB_ALIGN_16 },
|
|
{ X86::ADDPSrr, X86::ADDPSrm, TB_ALIGN_16 },
|
|
{ X86::ADDSDrr, X86::ADDSDrm, 0 },
|
|
{ X86::ADDSSrr, X86::ADDSSrm, 0 },
|
|
{ X86::ADDSUBPDrr, X86::ADDSUBPDrm, TB_ALIGN_16 },
|
|
{ X86::ADDSUBPSrr, X86::ADDSUBPSrm, TB_ALIGN_16 },
|
|
{ X86::AND16rr, X86::AND16rm, 0 },
|
|
{ X86::AND32rr, X86::AND32rm, 0 },
|
|
{ X86::AND64rr, X86::AND64rm, 0 },
|
|
{ X86::AND8rr, X86::AND8rm, 0 },
|
|
{ X86::ANDNPDrr, X86::ANDNPDrm, TB_ALIGN_16 },
|
|
{ X86::ANDNPSrr, X86::ANDNPSrm, TB_ALIGN_16 },
|
|
{ X86::ANDPDrr, X86::ANDPDrm, TB_ALIGN_16 },
|
|
{ X86::ANDPSrr, X86::ANDPSrm, TB_ALIGN_16 },
|
|
{ X86::CMOVA16rr, X86::CMOVA16rm, 0 },
|
|
{ X86::CMOVA32rr, X86::CMOVA32rm, 0 },
|
|
{ X86::CMOVA64rr, X86::CMOVA64rm, 0 },
|
|
{ X86::CMOVAE16rr, X86::CMOVAE16rm, 0 },
|
|
{ X86::CMOVAE32rr, X86::CMOVAE32rm, 0 },
|
|
{ X86::CMOVAE64rr, X86::CMOVAE64rm, 0 },
|
|
{ X86::CMOVB16rr, X86::CMOVB16rm, 0 },
|
|
{ X86::CMOVB32rr, X86::CMOVB32rm, 0 },
|
|
{ X86::CMOVB64rr, X86::CMOVB64rm, 0 },
|
|
{ X86::CMOVBE16rr, X86::CMOVBE16rm, 0 },
|
|
{ X86::CMOVBE32rr, X86::CMOVBE32rm, 0 },
|
|
{ X86::CMOVBE64rr, X86::CMOVBE64rm, 0 },
|
|
{ X86::CMOVE16rr, X86::CMOVE16rm, 0 },
|
|
{ X86::CMOVE32rr, X86::CMOVE32rm, 0 },
|
|
{ X86::CMOVE64rr, X86::CMOVE64rm, 0 },
|
|
{ X86::CMOVG16rr, X86::CMOVG16rm, 0 },
|
|
{ X86::CMOVG32rr, X86::CMOVG32rm, 0 },
|
|
{ X86::CMOVG64rr, X86::CMOVG64rm, 0 },
|
|
{ X86::CMOVGE16rr, X86::CMOVGE16rm, 0 },
|
|
{ X86::CMOVGE32rr, X86::CMOVGE32rm, 0 },
|
|
{ X86::CMOVGE64rr, X86::CMOVGE64rm, 0 },
|
|
{ X86::CMOVL16rr, X86::CMOVL16rm, 0 },
|
|
{ X86::CMOVL32rr, X86::CMOVL32rm, 0 },
|
|
{ X86::CMOVL64rr, X86::CMOVL64rm, 0 },
|
|
{ X86::CMOVLE16rr, X86::CMOVLE16rm, 0 },
|
|
{ X86::CMOVLE32rr, X86::CMOVLE32rm, 0 },
|
|
{ X86::CMOVLE64rr, X86::CMOVLE64rm, 0 },
|
|
{ X86::CMOVNE16rr, X86::CMOVNE16rm, 0 },
|
|
{ X86::CMOVNE32rr, X86::CMOVNE32rm, 0 },
|
|
{ X86::CMOVNE64rr, X86::CMOVNE64rm, 0 },
|
|
{ X86::CMOVNO16rr, X86::CMOVNO16rm, 0 },
|
|
{ X86::CMOVNO32rr, X86::CMOVNO32rm, 0 },
|
|
{ X86::CMOVNO64rr, X86::CMOVNO64rm, 0 },
|
|
{ X86::CMOVNP16rr, X86::CMOVNP16rm, 0 },
|
|
{ X86::CMOVNP32rr, X86::CMOVNP32rm, 0 },
|
|
{ X86::CMOVNP64rr, X86::CMOVNP64rm, 0 },
|
|
{ X86::CMOVNS16rr, X86::CMOVNS16rm, 0 },
|
|
{ X86::CMOVNS32rr, X86::CMOVNS32rm, 0 },
|
|
{ X86::CMOVNS64rr, X86::CMOVNS64rm, 0 },
|
|
{ X86::CMOVO16rr, X86::CMOVO16rm, 0 },
|
|
{ X86::CMOVO32rr, X86::CMOVO32rm, 0 },
|
|
{ X86::CMOVO64rr, X86::CMOVO64rm, 0 },
|
|
{ X86::CMOVP16rr, X86::CMOVP16rm, 0 },
|
|
{ X86::CMOVP32rr, X86::CMOVP32rm, 0 },
|
|
{ X86::CMOVP64rr, X86::CMOVP64rm, 0 },
|
|
{ X86::CMOVS16rr, X86::CMOVS16rm, 0 },
|
|
{ X86::CMOVS32rr, X86::CMOVS32rm, 0 },
|
|
{ X86::CMOVS64rr, X86::CMOVS64rm, 0 },
|
|
{ X86::CMPPDrri, X86::CMPPDrmi, TB_ALIGN_16 },
|
|
{ X86::CMPPSrri, X86::CMPPSrmi, TB_ALIGN_16 },
|
|
{ X86::CMPSDrr, X86::CMPSDrm, 0 },
|
|
{ X86::CMPSSrr, X86::CMPSSrm, 0 },
|
|
{ X86::DIVPDrr, X86::DIVPDrm, TB_ALIGN_16 },
|
|
{ X86::DIVPSrr, X86::DIVPSrm, TB_ALIGN_16 },
|
|
{ X86::DIVSDrr, X86::DIVSDrm, 0 },
|
|
{ X86::DIVSSrr, X86::DIVSSrm, 0 },
|
|
{ X86::FsANDNPDrr, X86::FsANDNPDrm, TB_ALIGN_16 },
|
|
{ X86::FsANDNPSrr, X86::FsANDNPSrm, TB_ALIGN_16 },
|
|
{ X86::FsANDPDrr, X86::FsANDPDrm, TB_ALIGN_16 },
|
|
{ X86::FsANDPSrr, X86::FsANDPSrm, TB_ALIGN_16 },
|
|
{ X86::FsORPDrr, X86::FsORPDrm, TB_ALIGN_16 },
|
|
{ X86::FsORPSrr, X86::FsORPSrm, TB_ALIGN_16 },
|
|
{ X86::FsXORPDrr, X86::FsXORPDrm, TB_ALIGN_16 },
|
|
{ X86::FsXORPSrr, X86::FsXORPSrm, TB_ALIGN_16 },
|
|
{ X86::HADDPDrr, X86::HADDPDrm, TB_ALIGN_16 },
|
|
{ X86::HADDPSrr, X86::HADDPSrm, TB_ALIGN_16 },
|
|
{ X86::HSUBPDrr, X86::HSUBPDrm, TB_ALIGN_16 },
|
|
{ X86::HSUBPSrr, X86::HSUBPSrm, TB_ALIGN_16 },
|
|
{ X86::IMUL16rr, X86::IMUL16rm, 0 },
|
|
{ X86::IMUL32rr, X86::IMUL32rm, 0 },
|
|
{ X86::IMUL64rr, X86::IMUL64rm, 0 },
|
|
{ X86::Int_CMPSDrr, X86::Int_CMPSDrm, 0 },
|
|
{ X86::Int_CMPSSrr, X86::Int_CMPSSrm, 0 },
|
|
{ X86::MAXPDrr, X86::MAXPDrm, TB_ALIGN_16 },
|
|
{ X86::MAXPDrr_Int, X86::MAXPDrm_Int, TB_ALIGN_16 },
|
|
{ X86::MAXPSrr, X86::MAXPSrm, TB_ALIGN_16 },
|
|
{ X86::MAXPSrr_Int, X86::MAXPSrm_Int, TB_ALIGN_16 },
|
|
{ X86::MAXSDrr, X86::MAXSDrm, 0 },
|
|
{ X86::MAXSDrr_Int, X86::MAXSDrm_Int, 0 },
|
|
{ X86::MAXSSrr, X86::MAXSSrm, 0 },
|
|
{ X86::MAXSSrr_Int, X86::MAXSSrm_Int, 0 },
|
|
{ X86::MINPDrr, X86::MINPDrm, TB_ALIGN_16 },
|
|
{ X86::MINPDrr_Int, X86::MINPDrm_Int, TB_ALIGN_16 },
|
|
{ X86::MINPSrr, X86::MINPSrm, TB_ALIGN_16 },
|
|
{ X86::MINPSrr_Int, X86::MINPSrm_Int, TB_ALIGN_16 },
|
|
{ X86::MINSDrr, X86::MINSDrm, 0 },
|
|
{ X86::MINSDrr_Int, X86::MINSDrm_Int, 0 },
|
|
{ X86::MINSSrr, X86::MINSSrm, 0 },
|
|
{ X86::MINSSrr_Int, X86::MINSSrm_Int, 0 },
|
|
{ X86::MPSADBWrri, X86::MPSADBWrmi, TB_ALIGN_16 },
|
|
{ X86::MULPDrr, X86::MULPDrm, TB_ALIGN_16 },
|
|
{ X86::MULPSrr, X86::MULPSrm, TB_ALIGN_16 },
|
|
{ X86::MULSDrr, X86::MULSDrm, 0 },
|
|
{ X86::MULSSrr, X86::MULSSrm, 0 },
|
|
{ X86::OR16rr, X86::OR16rm, 0 },
|
|
{ X86::OR32rr, X86::OR32rm, 0 },
|
|
{ X86::OR64rr, X86::OR64rm, 0 },
|
|
{ X86::OR8rr, X86::OR8rm, 0 },
|
|
{ X86::ORPDrr, X86::ORPDrm, TB_ALIGN_16 },
|
|
{ X86::ORPSrr, X86::ORPSrm, TB_ALIGN_16 },
|
|
{ X86::PACKSSDWrr, X86::PACKSSDWrm, TB_ALIGN_16 },
|
|
{ X86::PACKSSWBrr, X86::PACKSSWBrm, TB_ALIGN_16 },
|
|
{ X86::PACKUSDWrr, X86::PACKUSDWrm, TB_ALIGN_16 },
|
|
{ X86::PACKUSWBrr, X86::PACKUSWBrm, TB_ALIGN_16 },
|
|
{ X86::PADDBrr, X86::PADDBrm, TB_ALIGN_16 },
|
|
{ X86::PADDDrr, X86::PADDDrm, TB_ALIGN_16 },
|
|
{ X86::PADDQrr, X86::PADDQrm, TB_ALIGN_16 },
|
|
{ X86::PADDSBrr, X86::PADDSBrm, TB_ALIGN_16 },
|
|
{ X86::PADDSWrr, X86::PADDSWrm, TB_ALIGN_16 },
|
|
{ X86::PADDUSBrr, X86::PADDUSBrm, TB_ALIGN_16 },
|
|
{ X86::PADDUSWrr, X86::PADDUSWrm, TB_ALIGN_16 },
|
|
{ X86::PADDWrr, X86::PADDWrm, TB_ALIGN_16 },
|
|
{ X86::PALIGNR128rr, X86::PALIGNR128rm, TB_ALIGN_16 },
|
|
{ X86::PANDNrr, X86::PANDNrm, TB_ALIGN_16 },
|
|
{ X86::PANDrr, X86::PANDrm, TB_ALIGN_16 },
|
|
{ X86::PAVGBrr, X86::PAVGBrm, TB_ALIGN_16 },
|
|
{ X86::PAVGWrr, X86::PAVGWrm, TB_ALIGN_16 },
|
|
{ X86::PCMPEQBrr, X86::PCMPEQBrm, TB_ALIGN_16 },
|
|
{ X86::PCMPEQDrr, X86::PCMPEQDrm, TB_ALIGN_16 },
|
|
{ X86::PCMPEQQrr, X86::PCMPEQQrm, TB_ALIGN_16 },
|
|
{ X86::PCMPEQWrr, X86::PCMPEQWrm, TB_ALIGN_16 },
|
|
{ X86::PCMPGTBrr, X86::PCMPGTBrm, TB_ALIGN_16 },
|
|
{ X86::PCMPGTDrr, X86::PCMPGTDrm, TB_ALIGN_16 },
|
|
{ X86::PCMPGTQrr, X86::PCMPGTQrm, TB_ALIGN_16 },
|
|
{ X86::PCMPGTWrr, X86::PCMPGTWrm, TB_ALIGN_16 },
|
|
{ X86::PHADDDrr128, X86::PHADDDrm128, TB_ALIGN_16 },
|
|
{ X86::PHADDWrr128, X86::PHADDWrm128, TB_ALIGN_16 },
|
|
{ X86::PHADDSWrr128, X86::PHADDSWrm128, TB_ALIGN_16 },
|
|
{ X86::PHSUBDrr128, X86::PHSUBDrm128, TB_ALIGN_16 },
|
|
{ X86::PHSUBSWrr128, X86::PHSUBSWrm128, TB_ALIGN_16 },
|
|
{ X86::PHSUBWrr128, X86::PHSUBWrm128, TB_ALIGN_16 },
|
|
{ X86::PINSRWrri, X86::PINSRWrmi, TB_ALIGN_16 },
|
|
{ X86::PMADDUBSWrr128, X86::PMADDUBSWrm128, TB_ALIGN_16 },
|
|
{ X86::PMADDWDrr, X86::PMADDWDrm, TB_ALIGN_16 },
|
|
{ X86::PMAXSWrr, X86::PMAXSWrm, TB_ALIGN_16 },
|
|
{ X86::PMAXUBrr, X86::PMAXUBrm, TB_ALIGN_16 },
|
|
{ X86::PMINSWrr, X86::PMINSWrm, TB_ALIGN_16 },
|
|
{ X86::PMINUBrr, X86::PMINUBrm, TB_ALIGN_16 },
|
|
{ X86::PMULDQrr, X86::PMULDQrm, TB_ALIGN_16 },
|
|
{ X86::PMULHRSWrr128, X86::PMULHRSWrm128, TB_ALIGN_16 },
|
|
{ X86::PMULHUWrr, X86::PMULHUWrm, TB_ALIGN_16 },
|
|
{ X86::PMULHWrr, X86::PMULHWrm, TB_ALIGN_16 },
|
|
{ X86::PMULLDrr, X86::PMULLDrm, TB_ALIGN_16 },
|
|
{ X86::PMULLWrr, X86::PMULLWrm, TB_ALIGN_16 },
|
|
{ X86::PMULUDQrr, X86::PMULUDQrm, TB_ALIGN_16 },
|
|
{ X86::PORrr, X86::PORrm, TB_ALIGN_16 },
|
|
{ X86::PSADBWrr, X86::PSADBWrm, TB_ALIGN_16 },
|
|
{ X86::PSHUFBrr128, X86::PSHUFBrm128, TB_ALIGN_16 },
|
|
{ X86::PSIGNBrr128, X86::PSIGNBrm128, TB_ALIGN_16 },
|
|
{ X86::PSIGNWrr128, X86::PSIGNWrm128, TB_ALIGN_16 },
|
|
{ X86::PSIGNDrr128, X86::PSIGNDrm128, TB_ALIGN_16 },
|
|
{ X86::PSLLDrr, X86::PSLLDrm, TB_ALIGN_16 },
|
|
{ X86::PSLLQrr, X86::PSLLQrm, TB_ALIGN_16 },
|
|
{ X86::PSLLWrr, X86::PSLLWrm, TB_ALIGN_16 },
|
|
{ X86::PSRADrr, X86::PSRADrm, TB_ALIGN_16 },
|
|
{ X86::PSRAWrr, X86::PSRAWrm, TB_ALIGN_16 },
|
|
{ X86::PSRLDrr, X86::PSRLDrm, TB_ALIGN_16 },
|
|
{ X86::PSRLQrr, X86::PSRLQrm, TB_ALIGN_16 },
|
|
{ X86::PSRLWrr, X86::PSRLWrm, TB_ALIGN_16 },
|
|
{ X86::PSUBBrr, X86::PSUBBrm, TB_ALIGN_16 },
|
|
{ X86::PSUBDrr, X86::PSUBDrm, TB_ALIGN_16 },
|
|
{ X86::PSUBSBrr, X86::PSUBSBrm, TB_ALIGN_16 },
|
|
{ X86::PSUBSWrr, X86::PSUBSWrm, TB_ALIGN_16 },
|
|
{ X86::PSUBWrr, X86::PSUBWrm, TB_ALIGN_16 },
|
|
{ X86::PUNPCKHBWrr, X86::PUNPCKHBWrm, TB_ALIGN_16 },
|
|
{ X86::PUNPCKHDQrr, X86::PUNPCKHDQrm, TB_ALIGN_16 },
|
|
{ X86::PUNPCKHQDQrr, X86::PUNPCKHQDQrm, TB_ALIGN_16 },
|
|
{ X86::PUNPCKHWDrr, X86::PUNPCKHWDrm, TB_ALIGN_16 },
|
|
{ X86::PUNPCKLBWrr, X86::PUNPCKLBWrm, TB_ALIGN_16 },
|
|
{ X86::PUNPCKLDQrr, X86::PUNPCKLDQrm, TB_ALIGN_16 },
|
|
{ X86::PUNPCKLQDQrr, X86::PUNPCKLQDQrm, TB_ALIGN_16 },
|
|
{ X86::PUNPCKLWDrr, X86::PUNPCKLWDrm, TB_ALIGN_16 },
|
|
{ X86::PXORrr, X86::PXORrm, TB_ALIGN_16 },
|
|
{ X86::SBB32rr, X86::SBB32rm, 0 },
|
|
{ X86::SBB64rr, X86::SBB64rm, 0 },
|
|
{ X86::SHUFPDrri, X86::SHUFPDrmi, TB_ALIGN_16 },
|
|
{ X86::SHUFPSrri, X86::SHUFPSrmi, TB_ALIGN_16 },
|
|
{ X86::SUB16rr, X86::SUB16rm, 0 },
|
|
{ X86::SUB32rr, X86::SUB32rm, 0 },
|
|
{ X86::SUB64rr, X86::SUB64rm, 0 },
|
|
{ X86::SUB8rr, X86::SUB8rm, 0 },
|
|
{ X86::SUBPDrr, X86::SUBPDrm, TB_ALIGN_16 },
|
|
{ X86::SUBPSrr, X86::SUBPSrm, TB_ALIGN_16 },
|
|
{ X86::SUBSDrr, X86::SUBSDrm, 0 },
|
|
{ X86::SUBSSrr, X86::SUBSSrm, 0 },
|
|
// FIXME: TEST*rr -> swapped operand of TEST*mr.
|
|
{ X86::UNPCKHPDrr, X86::UNPCKHPDrm, TB_ALIGN_16 },
|
|
{ X86::UNPCKHPSrr, X86::UNPCKHPSrm, TB_ALIGN_16 },
|
|
{ X86::UNPCKLPDrr, X86::UNPCKLPDrm, TB_ALIGN_16 },
|
|
{ X86::UNPCKLPSrr, X86::UNPCKLPSrm, TB_ALIGN_16 },
|
|
{ X86::XOR16rr, X86::XOR16rm, 0 },
|
|
{ X86::XOR32rr, X86::XOR32rm, 0 },
|
|
{ X86::XOR64rr, X86::XOR64rm, 0 },
|
|
{ X86::XOR8rr, X86::XOR8rm, 0 },
|
|
{ X86::XORPDrr, X86::XORPDrm, TB_ALIGN_16 },
|
|
{ X86::XORPSrr, X86::XORPSrm, TB_ALIGN_16 },
|
|
// AVX 128-bit versions of foldable instructions
|
|
{ X86::VCVTSD2SSrr, X86::VCVTSD2SSrm, 0 },
|
|
{ X86::Int_VCVTSD2SSrr, X86::Int_VCVTSD2SSrm, 0 },
|
|
{ X86::VCVTSI2SD64rr, X86::VCVTSI2SD64rm, 0 },
|
|
{ X86::Int_VCVTSI2SD64rr, X86::Int_VCVTSI2SD64rm, 0 },
|
|
{ X86::VCVTSI2SDrr, X86::VCVTSI2SDrm, 0 },
|
|
{ X86::Int_VCVTSI2SDrr, X86::Int_VCVTSI2SDrm, 0 },
|
|
{ X86::VCVTSI2SS64rr, X86::VCVTSI2SS64rm, 0 },
|
|
{ X86::Int_VCVTSI2SS64rr, X86::Int_VCVTSI2SS64rm, 0 },
|
|
{ X86::VCVTSI2SSrr, X86::VCVTSI2SSrm, 0 },
|
|
{ X86::Int_VCVTSI2SSrr, X86::Int_VCVTSI2SSrm, 0 },
|
|
{ X86::VCVTSS2SDrr, X86::VCVTSS2SDrm, 0 },
|
|
{ X86::Int_VCVTSS2SDrr, X86::Int_VCVTSS2SDrm, 0 },
|
|
{ X86::VCVTTSD2SI64rr, X86::VCVTTSD2SI64rm, 0 },
|
|
{ X86::Int_VCVTTSD2SI64rr,X86::Int_VCVTTSD2SI64rm, 0 },
|
|
{ X86::VCVTTSD2SIrr, X86::VCVTTSD2SIrm, 0 },
|
|
{ X86::Int_VCVTTSD2SIrr, X86::Int_VCVTTSD2SIrm, 0 },
|
|
{ X86::VCVTTSS2SI64rr, X86::VCVTTSS2SI64rm, 0 },
|
|
{ X86::Int_VCVTTSS2SI64rr,X86::Int_VCVTTSS2SI64rm, 0 },
|
|
{ X86::VCVTTSS2SIrr, X86::VCVTTSS2SIrm, 0 },
|
|
{ X86::Int_VCVTTSS2SIrr, X86::Int_VCVTTSS2SIrm, 0 },
|
|
{ X86::VCVTSD2SI64rr, X86::VCVTSD2SI64rm, 0 },
|
|
{ X86::VCVTSD2SIrr, X86::VCVTSD2SIrm, 0 },
|
|
{ X86::VCVTTPD2DQrr, X86::VCVTTPD2DQrm, TB_ALIGN_16 },
|
|
{ X86::VCVTTPS2DQrr, X86::VCVTTPS2DQrm, TB_ALIGN_16 },
|
|
{ X86::VRSQRTSSr, X86::VRSQRTSSm, 0 },
|
|
{ X86::VSQRTSDr, X86::VSQRTSDm, 0 },
|
|
{ X86::VSQRTSSr, X86::VSQRTSSm, 0 },
|
|
{ X86::VADDPDrr, X86::VADDPDrm, TB_ALIGN_16 },
|
|
{ X86::VADDPSrr, X86::VADDPSrm, TB_ALIGN_16 },
|
|
{ X86::VADDSDrr, X86::VADDSDrm, 0 },
|
|
{ X86::VADDSSrr, X86::VADDSSrm, 0 },
|
|
{ X86::VADDSUBPDrr, X86::VADDSUBPDrm, TB_ALIGN_16 },
|
|
{ X86::VADDSUBPSrr, X86::VADDSUBPSrm, TB_ALIGN_16 },
|
|
{ X86::VANDNPDrr, X86::VANDNPDrm, TB_ALIGN_16 },
|
|
{ X86::VANDNPSrr, X86::VANDNPSrm, TB_ALIGN_16 },
|
|
{ X86::VANDPDrr, X86::VANDPDrm, TB_ALIGN_16 },
|
|
{ X86::VANDPSrr, X86::VANDPSrm, TB_ALIGN_16 },
|
|
{ X86::VCMPPDrri, X86::VCMPPDrmi, TB_ALIGN_16 },
|
|
{ X86::VCMPPSrri, X86::VCMPPSrmi, TB_ALIGN_16 },
|
|
{ X86::VCMPSDrr, X86::VCMPSDrm, 0 },
|
|
{ X86::VCMPSSrr, X86::VCMPSSrm, 0 },
|
|
{ X86::VDIVPDrr, X86::VDIVPDrm, TB_ALIGN_16 },
|
|
{ X86::VDIVPSrr, X86::VDIVPSrm, TB_ALIGN_16 },
|
|
{ X86::VDIVSDrr, X86::VDIVSDrm, 0 },
|
|
{ X86::VDIVSSrr, X86::VDIVSSrm, 0 },
|
|
{ X86::VFsANDNPDrr, X86::VFsANDNPDrm, TB_ALIGN_16 },
|
|
{ X86::VFsANDNPSrr, X86::VFsANDNPSrm, TB_ALIGN_16 },
|
|
{ X86::VFsANDPDrr, X86::VFsANDPDrm, TB_ALIGN_16 },
|
|
{ X86::VFsANDPSrr, X86::VFsANDPSrm, TB_ALIGN_16 },
|
|
{ X86::VFsORPDrr, X86::VFsORPDrm, TB_ALIGN_16 },
|
|
{ X86::VFsORPSrr, X86::VFsORPSrm, TB_ALIGN_16 },
|
|
{ X86::VFsXORPDrr, X86::VFsXORPDrm, TB_ALIGN_16 },
|
|
{ X86::VFsXORPSrr, X86::VFsXORPSrm, TB_ALIGN_16 },
|
|
{ X86::VHADDPDrr, X86::VHADDPDrm, TB_ALIGN_16 },
|
|
{ X86::VHADDPSrr, X86::VHADDPSrm, TB_ALIGN_16 },
|
|
{ X86::VHSUBPDrr, X86::VHSUBPDrm, TB_ALIGN_16 },
|
|
{ X86::VHSUBPSrr, X86::VHSUBPSrm, TB_ALIGN_16 },
|
|
{ X86::Int_VCMPSDrr, X86::Int_VCMPSDrm, 0 },
|
|
{ X86::Int_VCMPSSrr, X86::Int_VCMPSSrm, 0 },
|
|
{ X86::VMAXPDrr, X86::VMAXPDrm, TB_ALIGN_16 },
|
|
{ X86::VMAXPDrr_Int, X86::VMAXPDrm_Int, TB_ALIGN_16 },
|
|
{ X86::VMAXPSrr, X86::VMAXPSrm, TB_ALIGN_16 },
|
|
{ X86::VMAXPSrr_Int, X86::VMAXPSrm_Int, TB_ALIGN_16 },
|
|
{ X86::VMAXSDrr, X86::VMAXSDrm, 0 },
|
|
{ X86::VMAXSDrr_Int, X86::VMAXSDrm_Int, 0 },
|
|
{ X86::VMAXSSrr, X86::VMAXSSrm, 0 },
|
|
{ X86::VMAXSSrr_Int, X86::VMAXSSrm_Int, 0 },
|
|
{ X86::VMINPDrr, X86::VMINPDrm, TB_ALIGN_16 },
|
|
{ X86::VMINPDrr_Int, X86::VMINPDrm_Int, TB_ALIGN_16 },
|
|
{ X86::VMINPSrr, X86::VMINPSrm, TB_ALIGN_16 },
|
|
{ X86::VMINPSrr_Int, X86::VMINPSrm_Int, TB_ALIGN_16 },
|
|
{ X86::VMINSDrr, X86::VMINSDrm, 0 },
|
|
{ X86::VMINSDrr_Int, X86::VMINSDrm_Int, 0 },
|
|
{ X86::VMINSSrr, X86::VMINSSrm, 0 },
|
|
{ X86::VMINSSrr_Int, X86::VMINSSrm_Int, 0 },
|
|
{ X86::VMPSADBWrri, X86::VMPSADBWrmi, TB_ALIGN_16 },
|
|
{ X86::VMULPDrr, X86::VMULPDrm, TB_ALIGN_16 },
|
|
{ X86::VMULPSrr, X86::VMULPSrm, TB_ALIGN_16 },
|
|
{ X86::VMULSDrr, X86::VMULSDrm, 0 },
|
|
{ X86::VMULSSrr, X86::VMULSSrm, 0 },
|
|
{ X86::VORPDrr, X86::VORPDrm, TB_ALIGN_16 },
|
|
{ X86::VORPSrr, X86::VORPSrm, TB_ALIGN_16 },
|
|
{ X86::VPACKSSDWrr, X86::VPACKSSDWrm, TB_ALIGN_16 },
|
|
{ X86::VPACKSSWBrr, X86::VPACKSSWBrm, TB_ALIGN_16 },
|
|
{ X86::VPACKUSDWrr, X86::VPACKUSDWrm, TB_ALIGN_16 },
|
|
{ X86::VPACKUSWBrr, X86::VPACKUSWBrm, TB_ALIGN_16 },
|
|
{ X86::VPADDBrr, X86::VPADDBrm, TB_ALIGN_16 },
|
|
{ X86::VPADDDrr, X86::VPADDDrm, TB_ALIGN_16 },
|
|
{ X86::VPADDQrr, X86::VPADDQrm, TB_ALIGN_16 },
|
|
{ X86::VPADDSBrr, X86::VPADDSBrm, TB_ALIGN_16 },
|
|
{ X86::VPADDSWrr, X86::VPADDSWrm, TB_ALIGN_16 },
|
|
{ X86::VPADDUSBrr, X86::VPADDUSBrm, TB_ALIGN_16 },
|
|
{ X86::VPADDUSWrr, X86::VPADDUSWrm, TB_ALIGN_16 },
|
|
{ X86::VPADDWrr, X86::VPADDWrm, TB_ALIGN_16 },
|
|
{ X86::VPALIGNR128rr, X86::VPALIGNR128rm, TB_ALIGN_16 },
|
|
{ X86::VPANDNrr, X86::VPANDNrm, TB_ALIGN_16 },
|
|
{ X86::VPANDrr, X86::VPANDrm, TB_ALIGN_16 },
|
|
{ X86::VPAVGBrr, X86::VPAVGBrm, TB_ALIGN_16 },
|
|
{ X86::VPAVGWrr, X86::VPAVGWrm, TB_ALIGN_16 },
|
|
{ X86::VPCMPEQBrr, X86::VPCMPEQBrm, TB_ALIGN_16 },
|
|
{ X86::VPCMPEQDrr, X86::VPCMPEQDrm, TB_ALIGN_16 },
|
|
{ X86::VPCMPEQQrr, X86::VPCMPEQQrm, TB_ALIGN_16 },
|
|
{ X86::VPCMPEQWrr, X86::VPCMPEQWrm, TB_ALIGN_16 },
|
|
{ X86::VPCMPGTBrr, X86::VPCMPGTBrm, TB_ALIGN_16 },
|
|
{ X86::VPCMPGTDrr, X86::VPCMPGTDrm, TB_ALIGN_16 },
|
|
{ X86::VPCMPGTQrr, X86::VPCMPGTQrm, TB_ALIGN_16 },
|
|
{ X86::VPCMPGTWrr, X86::VPCMPGTWrm, TB_ALIGN_16 },
|
|
{ X86::VPHADDDrr128, X86::VPHADDDrm128, TB_ALIGN_16 },
|
|
{ X86::VPHADDSWrr128, X86::VPHADDSWrm128, TB_ALIGN_16 },
|
|
{ X86::VPHADDWrr128, X86::VPHADDWrm128, TB_ALIGN_16 },
|
|
{ X86::VPHSUBDrr128, X86::VPHSUBDrm128, TB_ALIGN_16 },
|
|
{ X86::VPHSUBSWrr128, X86::VPHSUBSWrm128, TB_ALIGN_16 },
|
|
{ X86::VPHSUBWrr128, X86::VPHSUBWrm128, TB_ALIGN_16 },
|
|
{ X86::VPINSRWrri, X86::VPINSRWrmi, TB_ALIGN_16 },
|
|
{ X86::VPMADDUBSWrr128, X86::VPMADDUBSWrm128, TB_ALIGN_16 },
|
|
{ X86::VPMADDWDrr, X86::VPMADDWDrm, TB_ALIGN_16 },
|
|
{ X86::VPMAXSWrr, X86::VPMAXSWrm, TB_ALIGN_16 },
|
|
{ X86::VPMAXUBrr, X86::VPMAXUBrm, TB_ALIGN_16 },
|
|
{ X86::VPMINSWrr, X86::VPMINSWrm, TB_ALIGN_16 },
|
|
{ X86::VPMINUBrr, X86::VPMINUBrm, TB_ALIGN_16 },
|
|
{ X86::VPMULDQrr, X86::VPMULDQrm, TB_ALIGN_16 },
|
|
{ X86::VPMULHRSWrr128, X86::VPMULHRSWrm128, TB_ALIGN_16 },
|
|
{ X86::VPMULHUWrr, X86::VPMULHUWrm, TB_ALIGN_16 },
|
|
{ X86::VPMULHWrr, X86::VPMULHWrm, TB_ALIGN_16 },
|
|
{ X86::VPMULLDrr, X86::VPMULLDrm, TB_ALIGN_16 },
|
|
{ X86::VPMULLWrr, X86::VPMULLWrm, TB_ALIGN_16 },
|
|
{ X86::VPMULUDQrr, X86::VPMULUDQrm, TB_ALIGN_16 },
|
|
{ X86::VPORrr, X86::VPORrm, TB_ALIGN_16 },
|
|
{ X86::VPSADBWrr, X86::VPSADBWrm, TB_ALIGN_16 },
|
|
{ X86::VPSHUFBrr128, X86::VPSHUFBrm128, TB_ALIGN_16 },
|
|
{ X86::VPSIGNBrr128, X86::VPSIGNBrm128, TB_ALIGN_16 },
|
|
{ X86::VPSIGNWrr128, X86::VPSIGNWrm128, TB_ALIGN_16 },
|
|
{ X86::VPSIGNDrr128, X86::VPSIGNDrm128, TB_ALIGN_16 },
|
|
{ X86::VPSLLDrr, X86::VPSLLDrm, TB_ALIGN_16 },
|
|
{ X86::VPSLLQrr, X86::VPSLLQrm, TB_ALIGN_16 },
|
|
{ X86::VPSLLWrr, X86::VPSLLWrm, TB_ALIGN_16 },
|
|
{ X86::VPSRADrr, X86::VPSRADrm, TB_ALIGN_16 },
|
|
{ X86::VPSRAWrr, X86::VPSRAWrm, TB_ALIGN_16 },
|
|
{ X86::VPSRLDrr, X86::VPSRLDrm, TB_ALIGN_16 },
|
|
{ X86::VPSRLQrr, X86::VPSRLQrm, TB_ALIGN_16 },
|
|
{ X86::VPSRLWrr, X86::VPSRLWrm, TB_ALIGN_16 },
|
|
{ X86::VPSUBBrr, X86::VPSUBBrm, TB_ALIGN_16 },
|
|
{ X86::VPSUBDrr, X86::VPSUBDrm, TB_ALIGN_16 },
|
|
{ X86::VPSUBSBrr, X86::VPSUBSBrm, TB_ALIGN_16 },
|
|
{ X86::VPSUBSWrr, X86::VPSUBSWrm, TB_ALIGN_16 },
|
|
{ X86::VPSUBWrr, X86::VPSUBWrm, TB_ALIGN_16 },
|
|
{ X86::VPUNPCKHBWrr, X86::VPUNPCKHBWrm, TB_ALIGN_16 },
|
|
{ X86::VPUNPCKHDQrr, X86::VPUNPCKHDQrm, TB_ALIGN_16 },
|
|
{ X86::VPUNPCKHQDQrr, X86::VPUNPCKHQDQrm, TB_ALIGN_16 },
|
|
{ X86::VPUNPCKHWDrr, X86::VPUNPCKHWDrm, TB_ALIGN_16 },
|
|
{ X86::VPUNPCKLBWrr, X86::VPUNPCKLBWrm, TB_ALIGN_16 },
|
|
{ X86::VPUNPCKLDQrr, X86::VPUNPCKLDQrm, TB_ALIGN_16 },
|
|
{ X86::VPUNPCKLQDQrr, X86::VPUNPCKLQDQrm, TB_ALIGN_16 },
|
|
{ X86::VPUNPCKLWDrr, X86::VPUNPCKLWDrm, TB_ALIGN_16 },
|
|
{ X86::VPXORrr, X86::VPXORrm, TB_ALIGN_16 },
|
|
{ X86::VSHUFPDrri, X86::VSHUFPDrmi, TB_ALIGN_16 },
|
|
{ X86::VSHUFPSrri, X86::VSHUFPSrmi, TB_ALIGN_16 },
|
|
{ X86::VSUBPDrr, X86::VSUBPDrm, TB_ALIGN_16 },
|
|
{ X86::VSUBPSrr, X86::VSUBPSrm, TB_ALIGN_16 },
|
|
{ X86::VSUBSDrr, X86::VSUBSDrm, 0 },
|
|
{ X86::VSUBSSrr, X86::VSUBSSrm, 0 },
|
|
{ X86::VUNPCKHPDrr, X86::VUNPCKHPDrm, TB_ALIGN_16 },
|
|
{ X86::VUNPCKHPSrr, X86::VUNPCKHPSrm, TB_ALIGN_16 },
|
|
{ X86::VUNPCKLPDrr, X86::VUNPCKLPDrm, TB_ALIGN_16 },
|
|
{ X86::VUNPCKLPSrr, X86::VUNPCKLPSrm, TB_ALIGN_16 },
|
|
{ X86::VXORPDrr, X86::VXORPDrm, TB_ALIGN_16 },
|
|
{ X86::VXORPSrr, X86::VXORPSrm, TB_ALIGN_16 },
|
|
// AVX2 foldable instructions
|
|
{ X86::VPACKSSDWYrr, X86::VPACKSSDWYrm, TB_ALIGN_16 },
|
|
{ X86::VPACKSSWBYrr, X86::VPACKSSWBYrm, TB_ALIGN_16 },
|
|
{ X86::VPACKUSDWYrr, X86::VPACKUSDWYrm, TB_ALIGN_16 },
|
|
{ X86::VPACKUSWBYrr, X86::VPACKUSWBYrm, TB_ALIGN_16 },
|
|
{ X86::VPADDBYrr, X86::VPADDBYrm, TB_ALIGN_16 },
|
|
{ X86::VPADDDYrr, X86::VPADDDYrm, TB_ALIGN_16 },
|
|
{ X86::VPADDQYrr, X86::VPADDQYrm, TB_ALIGN_16 },
|
|
{ X86::VPADDSBYrr, X86::VPADDSBYrm, TB_ALIGN_16 },
|
|
{ X86::VPADDSWYrr, X86::VPADDSWYrm, TB_ALIGN_16 },
|
|
{ X86::VPADDUSBYrr, X86::VPADDUSBYrm, TB_ALIGN_16 },
|
|
{ X86::VPADDUSWYrr, X86::VPADDUSWYrm, TB_ALIGN_16 },
|
|
{ X86::VPADDWYrr, X86::VPADDWYrm, TB_ALIGN_16 },
|
|
{ X86::VPALIGNR256rr, X86::VPALIGNR256rm, TB_ALIGN_16 },
|
|
{ X86::VPANDNYrr, X86::VPANDNYrm, TB_ALIGN_16 },
|
|
{ X86::VPANDYrr, X86::VPANDYrm, TB_ALIGN_16 },
|
|
{ X86::VPAVGBYrr, X86::VPAVGBYrm, TB_ALIGN_16 },
|
|
{ X86::VPAVGWYrr, X86::VPAVGWYrm, TB_ALIGN_16 },
|
|
{ X86::VPCMPEQBYrr, X86::VPCMPEQBYrm, TB_ALIGN_16 },
|
|
{ X86::VPCMPEQDYrr, X86::VPCMPEQDYrm, TB_ALIGN_16 },
|
|
{ X86::VPCMPEQQYrr, X86::VPCMPEQQYrm, TB_ALIGN_16 },
|
|
{ X86::VPCMPEQWYrr, X86::VPCMPEQWYrm, TB_ALIGN_16 },
|
|
{ X86::VPCMPGTBYrr, X86::VPCMPGTBYrm, TB_ALIGN_16 },
|
|
{ X86::VPCMPGTDYrr, X86::VPCMPGTDYrm, TB_ALIGN_16 },
|
|
{ X86::VPCMPGTQYrr, X86::VPCMPGTQYrm, TB_ALIGN_16 },
|
|
{ X86::VPCMPGTWYrr, X86::VPCMPGTWYrm, TB_ALIGN_16 },
|
|
{ X86::VPHADDDrr256, X86::VPHADDDrm256, TB_ALIGN_16 },
|
|
{ X86::VPHADDSWrr256, X86::VPHADDSWrm256, TB_ALIGN_16 },
|
|
{ X86::VPHADDWrr256, X86::VPHADDWrm256, TB_ALIGN_16 },
|
|
{ X86::VPHSUBDrr256, X86::VPHSUBDrm256, TB_ALIGN_16 },
|
|
{ X86::VPHSUBSWrr256, X86::VPHSUBSWrm256, TB_ALIGN_16 },
|
|
{ X86::VPHSUBWrr256, X86::VPHSUBWrm256, TB_ALIGN_16 },
|
|
{ X86::VPMADDUBSWrr256, X86::VPMADDUBSWrm256, TB_ALIGN_16 },
|
|
{ X86::VPMADDWDYrr, X86::VPMADDWDYrm, TB_ALIGN_16 },
|
|
{ X86::VPMAXSWYrr, X86::VPMAXSWYrm, TB_ALIGN_16 },
|
|
{ X86::VPMAXUBYrr, X86::VPMAXUBYrm, TB_ALIGN_16 },
|
|
{ X86::VPMINSWYrr, X86::VPMINSWYrm, TB_ALIGN_16 },
|
|
{ X86::VPMINUBYrr, X86::VPMINUBYrm, TB_ALIGN_16 },
|
|
{ X86::VMPSADBWYrri, X86::VMPSADBWYrmi, TB_ALIGN_16 },
|
|
{ X86::VPMULDQYrr, X86::VPMULDQYrm, TB_ALIGN_16 },
|
|
{ X86::VPMULHRSWrr256, X86::VPMULHRSWrm256, TB_ALIGN_16 },
|
|
{ X86::VPMULHUWYrr, X86::VPMULHUWYrm, TB_ALIGN_16 },
|
|
{ X86::VPMULHWYrr, X86::VPMULHWYrm, TB_ALIGN_16 },
|
|
{ X86::VPMULLDYrr, X86::VPMULLDYrm, TB_ALIGN_16 },
|
|
{ X86::VPMULLWYrr, X86::VPMULLWYrm, TB_ALIGN_16 },
|
|
{ X86::VPMULUDQYrr, X86::VPMULUDQYrm, TB_ALIGN_16 },
|
|
{ X86::VPORYrr, X86::VPORYrm, TB_ALIGN_16 },
|
|
{ X86::VPSADBWYrr, X86::VPSADBWYrm, TB_ALIGN_16 },
|
|
{ X86::VPSHUFBrr256, X86::VPSHUFBrm256, TB_ALIGN_16 },
|
|
{ X86::VPSIGNBrr256, X86::VPSIGNBrm256, TB_ALIGN_16 },
|
|
{ X86::VPSIGNWrr256, X86::VPSIGNWrm256, TB_ALIGN_16 },
|
|
{ X86::VPSIGNDrr256, X86::VPSIGNDrm256, TB_ALIGN_16 },
|
|
{ X86::VPSLLDYrr, X86::VPSLLDYrm, TB_ALIGN_16 },
|
|
{ X86::VPSLLQYrr, X86::VPSLLQYrm, TB_ALIGN_16 },
|
|
{ X86::VPSLLWYrr, X86::VPSLLWYrm, TB_ALIGN_16 },
|
|
{ X86::VPSLLVDrr, X86::VPSLLVDrm, TB_ALIGN_16 },
|
|
{ X86::VPSLLVDYrr, X86::VPSLLVDYrm, TB_ALIGN_16 },
|
|
{ X86::VPSLLVQrr, X86::VPSLLVQrm, TB_ALIGN_16 },
|
|
{ X86::VPSLLVQYrr, X86::VPSLLVQYrm, TB_ALIGN_16 },
|
|
{ X86::VPSRADYrr, X86::VPSRADYrm, TB_ALIGN_16 },
|
|
{ X86::VPSRAWYrr, X86::VPSRAWYrm, TB_ALIGN_16 },
|
|
{ X86::VPSRAVDrr, X86::VPSRAVDrm, TB_ALIGN_16 },
|
|
{ X86::VPSRAVDYrr, X86::VPSRAVDYrm, TB_ALIGN_16 },
|
|
{ X86::VPSRLDYrr, X86::VPSRLDYrm, TB_ALIGN_16 },
|
|
{ X86::VPSRLQYrr, X86::VPSRLQYrm, TB_ALIGN_16 },
|
|
{ X86::VPSRLWYrr, X86::VPSRLWYrm, TB_ALIGN_16 },
|
|
{ X86::VPSRLVDrr, X86::VPSRLVDrm, TB_ALIGN_16 },
|
|
{ X86::VPSRLVDYrr, X86::VPSRLVDYrm, TB_ALIGN_16 },
|
|
{ X86::VPSRLVQrr, X86::VPSRLVQrm, TB_ALIGN_16 },
|
|
{ X86::VPSRLVQYrr, X86::VPSRLVQYrm, TB_ALIGN_16 },
|
|
{ X86::VPSUBBYrr, X86::VPSUBBYrm, TB_ALIGN_16 },
|
|
{ X86::VPSUBDYrr, X86::VPSUBDYrm, TB_ALIGN_16 },
|
|
{ X86::VPSUBSBYrr, X86::VPSUBSBYrm, TB_ALIGN_16 },
|
|
{ X86::VPSUBSWYrr, X86::VPSUBSWYrm, TB_ALIGN_16 },
|
|
{ X86::VPSUBWYrr, X86::VPSUBWYrm, TB_ALIGN_16 },
|
|
{ X86::VPUNPCKHBWYrr, X86::VPUNPCKHBWYrm, TB_ALIGN_16 },
|
|
{ X86::VPUNPCKHDQYrr, X86::VPUNPCKHDQYrm, TB_ALIGN_16 },
|
|
{ X86::VPUNPCKHQDQYrr, X86::VPUNPCKHQDQYrm, TB_ALIGN_16 },
|
|
{ X86::VPUNPCKHWDYrr, X86::VPUNPCKHWDYrm, TB_ALIGN_16 },
|
|
{ X86::VPUNPCKLBWYrr, X86::VPUNPCKLBWYrm, TB_ALIGN_16 },
|
|
{ X86::VPUNPCKLDQYrr, X86::VPUNPCKLDQYrm, TB_ALIGN_16 },
|
|
{ X86::VPUNPCKLQDQYrr, X86::VPUNPCKLQDQYrm, TB_ALIGN_16 },
|
|
{ X86::VPUNPCKLWDYrr, X86::VPUNPCKLWDYrm, TB_ALIGN_16 },
|
|
{ X86::VPXORYrr, X86::VPXORYrm, TB_ALIGN_16 },
|
|
// FIXME: add AVX 256-bit foldable instructions
|
|
};
|
|
|
|
for (unsigned i = 0, e = array_lengthof(OpTbl2); i != e; ++i) {
|
|
unsigned RegOp = OpTbl2[i][0];
|
|
unsigned MemOp = OpTbl2[i][1];
|
|
unsigned Flags = OpTbl2[i][2];
|
|
AddTableEntry(RegOp2MemOpTable2, MemOp2RegOpTable,
|
|
RegOp, MemOp,
|
|
// Index 2, folded load
|
|
Flags | TB_INDEX_2 | TB_FOLDED_LOAD);
|
|
}
|
|
}
|
|
|
|
void
|
|
X86InstrInfo::AddTableEntry(RegOp2MemOpTableType &R2MTable,
|
|
MemOp2RegOpTableType &M2RTable,
|
|
unsigned RegOp, unsigned MemOp, unsigned Flags) {
|
|
if ((Flags & TB_NO_FORWARD) == 0) {
|
|
assert(!R2MTable.count(RegOp) && "Duplicate entry!");
|
|
R2MTable[RegOp] = std::make_pair(MemOp, Flags);
|
|
}
|
|
if ((Flags & TB_NO_REVERSE) == 0) {
|
|
assert(!M2RTable.count(MemOp) &&
|
|
"Duplicated entries in unfolding maps?");
|
|
M2RTable[MemOp] = std::make_pair(RegOp, Flags);
|
|
}
|
|
}
|
|
|
|
bool
|
|
X86InstrInfo::isCoalescableExtInstr(const MachineInstr &MI,
|
|
unsigned &SrcReg, unsigned &DstReg,
|
|
unsigned &SubIdx) const {
|
|
switch (MI.getOpcode()) {
|
|
default: break;
|
|
case X86::MOVSX16rr8:
|
|
case X86::MOVZX16rr8:
|
|
case X86::MOVSX32rr8:
|
|
case X86::MOVZX32rr8:
|
|
case X86::MOVSX64rr8:
|
|
case X86::MOVZX64rr8:
|
|
if (!TM.getSubtarget<X86Subtarget>().is64Bit())
|
|
// It's not always legal to reference the low 8-bit of the larger
|
|
// register in 32-bit mode.
|
|
return false;
|
|
case X86::MOVSX32rr16:
|
|
case X86::MOVZX32rr16:
|
|
case X86::MOVSX64rr16:
|
|
case X86::MOVZX64rr16:
|
|
case X86::MOVSX64rr32:
|
|
case X86::MOVZX64rr32: {
|
|
if (MI.getOperand(0).getSubReg() || MI.getOperand(1).getSubReg())
|
|
// Be conservative.
|
|
return false;
|
|
SrcReg = MI.getOperand(1).getReg();
|
|
DstReg = MI.getOperand(0).getReg();
|
|
switch (MI.getOpcode()) {
|
|
default:
|
|
llvm_unreachable(0);
|
|
break;
|
|
case X86::MOVSX16rr8:
|
|
case X86::MOVZX16rr8:
|
|
case X86::MOVSX32rr8:
|
|
case X86::MOVZX32rr8:
|
|
case X86::MOVSX64rr8:
|
|
case X86::MOVZX64rr8:
|
|
SubIdx = X86::sub_8bit;
|
|
break;
|
|
case X86::MOVSX32rr16:
|
|
case X86::MOVZX32rr16:
|
|
case X86::MOVSX64rr16:
|
|
case X86::MOVZX64rr16:
|
|
SubIdx = X86::sub_16bit;
|
|
break;
|
|
case X86::MOVSX64rr32:
|
|
case X86::MOVZX64rr32:
|
|
SubIdx = X86::sub_32bit;
|
|
break;
|
|
}
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// isFrameOperand - Return true and the FrameIndex if the specified
|
|
/// operand and follow operands form a reference to the stack frame.
|
|
bool X86InstrInfo::isFrameOperand(const MachineInstr *MI, unsigned int Op,
|
|
int &FrameIndex) const {
|
|
if (MI->getOperand(Op).isFI() && MI->getOperand(Op+1).isImm() &&
|
|
MI->getOperand(Op+2).isReg() && MI->getOperand(Op+3).isImm() &&
|
|
MI->getOperand(Op+1).getImm() == 1 &&
|
|
MI->getOperand(Op+2).getReg() == 0 &&
|
|
MI->getOperand(Op+3).getImm() == 0) {
|
|
FrameIndex = MI->getOperand(Op).getIndex();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool isFrameLoadOpcode(int Opcode) {
|
|
switch (Opcode) {
|
|
default: break;
|
|
case X86::MOV8rm:
|
|
case X86::MOV16rm:
|
|
case X86::MOV32rm:
|
|
case X86::MOV64rm:
|
|
case X86::LD_Fp64m:
|
|
case X86::MOVSSrm:
|
|
case X86::MOVSDrm:
|
|
case X86::MOVAPSrm:
|
|
case X86::MOVAPDrm:
|
|
case X86::MOVDQArm:
|
|
case X86::VMOVSSrm:
|
|
case X86::VMOVSDrm:
|
|
case X86::VMOVAPSrm:
|
|
case X86::VMOVAPDrm:
|
|
case X86::VMOVDQArm:
|
|
case X86::VMOVAPSYrm:
|
|
case X86::VMOVAPDYrm:
|
|
case X86::VMOVDQAYrm:
|
|
case X86::MMX_MOVD64rm:
|
|
case X86::MMX_MOVQ64rm:
|
|
return true;
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool isFrameStoreOpcode(int Opcode) {
|
|
switch (Opcode) {
|
|
default: break;
|
|
case X86::MOV8mr:
|
|
case X86::MOV16mr:
|
|
case X86::MOV32mr:
|
|
case X86::MOV64mr:
|
|
case X86::ST_FpP64m:
|
|
case X86::MOVSSmr:
|
|
case X86::MOVSDmr:
|
|
case X86::MOVAPSmr:
|
|
case X86::MOVAPDmr:
|
|
case X86::MOVDQAmr:
|
|
case X86::VMOVSSmr:
|
|
case X86::VMOVSDmr:
|
|
case X86::VMOVAPSmr:
|
|
case X86::VMOVAPDmr:
|
|
case X86::VMOVDQAmr:
|
|
case X86::VMOVAPSYmr:
|
|
case X86::VMOVAPDYmr:
|
|
case X86::VMOVDQAYmr:
|
|
case X86::MMX_MOVD64mr:
|
|
case X86::MMX_MOVQ64mr:
|
|
case X86::MMX_MOVNTQmr:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
unsigned X86InstrInfo::isLoadFromStackSlot(const MachineInstr *MI,
|
|
int &FrameIndex) const {
|
|
if (isFrameLoadOpcode(MI->getOpcode()))
|
|
if (MI->getOperand(0).getSubReg() == 0 && isFrameOperand(MI, 1, FrameIndex))
|
|
return MI->getOperand(0).getReg();
|
|
return 0;
|
|
}
|
|
|
|
unsigned X86InstrInfo::isLoadFromStackSlotPostFE(const MachineInstr *MI,
|
|
int &FrameIndex) const {
|
|
if (isFrameLoadOpcode(MI->getOpcode())) {
|
|
unsigned Reg;
|
|
if ((Reg = isLoadFromStackSlot(MI, FrameIndex)))
|
|
return Reg;
|
|
// Check for post-frame index elimination operations
|
|
const MachineMemOperand *Dummy;
|
|
return hasLoadFromStackSlot(MI, Dummy, FrameIndex);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
unsigned X86InstrInfo::isStoreToStackSlot(const MachineInstr *MI,
|
|
int &FrameIndex) const {
|
|
if (isFrameStoreOpcode(MI->getOpcode()))
|
|
if (MI->getOperand(X86::AddrNumOperands).getSubReg() == 0 &&
|
|
isFrameOperand(MI, 0, FrameIndex))
|
|
return MI->getOperand(X86::AddrNumOperands).getReg();
|
|
return 0;
|
|
}
|
|
|
|
unsigned X86InstrInfo::isStoreToStackSlotPostFE(const MachineInstr *MI,
|
|
int &FrameIndex) const {
|
|
if (isFrameStoreOpcode(MI->getOpcode())) {
|
|
unsigned Reg;
|
|
if ((Reg = isStoreToStackSlot(MI, FrameIndex)))
|
|
return Reg;
|
|
// Check for post-frame index elimination operations
|
|
const MachineMemOperand *Dummy;
|
|
return hasStoreToStackSlot(MI, Dummy, FrameIndex);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
/// regIsPICBase - Return true if register is PIC base (i.e.g defined by
|
|
/// X86::MOVPC32r.
|
|
static bool regIsPICBase(unsigned BaseReg, const MachineRegisterInfo &MRI) {
|
|
bool isPICBase = false;
|
|
for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
|
|
E = MRI.def_end(); I != E; ++I) {
|
|
MachineInstr *DefMI = I.getOperand().getParent();
|
|
if (DefMI->getOpcode() != X86::MOVPC32r)
|
|
return false;
|
|
assert(!isPICBase && "More than one PIC base?");
|
|
isPICBase = true;
|
|
}
|
|
return isPICBase;
|
|
}
|
|
|
|
bool
|
|
X86InstrInfo::isReallyTriviallyReMaterializable(const MachineInstr *MI,
|
|
AliasAnalysis *AA) const {
|
|
switch (MI->getOpcode()) {
|
|
default: break;
|
|
case X86::MOV8rm:
|
|
case X86::MOV16rm:
|
|
case X86::MOV32rm:
|
|
case X86::MOV64rm:
|
|
case X86::LD_Fp64m:
|
|
case X86::MOVSSrm:
|
|
case X86::MOVSDrm:
|
|
case X86::MOVAPSrm:
|
|
case X86::MOVUPSrm:
|
|
case X86::MOVAPDrm:
|
|
case X86::MOVDQArm:
|
|
case X86::VMOVSSrm:
|
|
case X86::VMOVSDrm:
|
|
case X86::VMOVAPSrm:
|
|
case X86::VMOVUPSrm:
|
|
case X86::VMOVAPDrm:
|
|
case X86::VMOVDQArm:
|
|
case X86::VMOVAPSYrm:
|
|
case X86::VMOVUPSYrm:
|
|
case X86::VMOVAPDYrm:
|
|
case X86::VMOVDQAYrm:
|
|
case X86::MMX_MOVD64rm:
|
|
case X86::MMX_MOVQ64rm:
|
|
case X86::FsVMOVAPSrm:
|
|
case X86::FsVMOVAPDrm:
|
|
case X86::FsMOVAPSrm:
|
|
case X86::FsMOVAPDrm: {
|
|
// Loads from constant pools are trivially rematerializable.
|
|
if (MI->getOperand(1).isReg() &&
|
|
MI->getOperand(2).isImm() &&
|
|
MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
|
|
MI->isInvariantLoad(AA)) {
|
|
unsigned BaseReg = MI->getOperand(1).getReg();
|
|
if (BaseReg == 0 || BaseReg == X86::RIP)
|
|
return true;
|
|
// Allow re-materialization of PIC load.
|
|
if (!ReMatPICStubLoad && MI->getOperand(4).isGlobal())
|
|
return false;
|
|
const MachineFunction &MF = *MI->getParent()->getParent();
|
|
const MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
bool isPICBase = false;
|
|
for (MachineRegisterInfo::def_iterator I = MRI.def_begin(BaseReg),
|
|
E = MRI.def_end(); I != E; ++I) {
|
|
MachineInstr *DefMI = I.getOperand().getParent();
|
|
if (DefMI->getOpcode() != X86::MOVPC32r)
|
|
return false;
|
|
assert(!isPICBase && "More than one PIC base?");
|
|
isPICBase = true;
|
|
}
|
|
return isPICBase;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
case X86::LEA32r:
|
|
case X86::LEA64r: {
|
|
if (MI->getOperand(2).isImm() &&
|
|
MI->getOperand(3).isReg() && MI->getOperand(3).getReg() == 0 &&
|
|
!MI->getOperand(4).isReg()) {
|
|
// lea fi#, lea GV, etc. are all rematerializable.
|
|
if (!MI->getOperand(1).isReg())
|
|
return true;
|
|
unsigned BaseReg = MI->getOperand(1).getReg();
|
|
if (BaseReg == 0)
|
|
return true;
|
|
// Allow re-materialization of lea PICBase + x.
|
|
const MachineFunction &MF = *MI->getParent()->getParent();
|
|
const MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
return regIsPICBase(BaseReg, MRI);
|
|
}
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// All other instructions marked M_REMATERIALIZABLE are always trivially
|
|
// rematerializable.
|
|
return true;
|
|
}
|
|
|
|
/// isSafeToClobberEFLAGS - Return true if it's safe insert an instruction that
|
|
/// would clobber the EFLAGS condition register. Note the result may be
|
|
/// conservative. If it cannot definitely determine the safety after visiting
|
|
/// a few instructions in each direction it assumes it's not safe.
|
|
static bool isSafeToClobberEFLAGS(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I) {
|
|
MachineBasicBlock::iterator E = MBB.end();
|
|
|
|
// For compile time consideration, if we are not able to determine the
|
|
// safety after visiting 4 instructions in each direction, we will assume
|
|
// it's not safe.
|
|
MachineBasicBlock::iterator Iter = I;
|
|
for (unsigned i = 0; Iter != E && i < 4; ++i) {
|
|
bool SeenDef = false;
|
|
for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
|
|
MachineOperand &MO = Iter->getOperand(j);
|
|
if (!MO.isReg())
|
|
continue;
|
|
if (MO.getReg() == X86::EFLAGS) {
|
|
if (MO.isUse())
|
|
return false;
|
|
SeenDef = true;
|
|
}
|
|
}
|
|
|
|
if (SeenDef)
|
|
// This instruction defines EFLAGS, no need to look any further.
|
|
return true;
|
|
++Iter;
|
|
// Skip over DBG_VALUE.
|
|
while (Iter != E && Iter->isDebugValue())
|
|
++Iter;
|
|
}
|
|
|
|
// It is safe to clobber EFLAGS at the end of a block of no successor has it
|
|
// live in.
|
|
if (Iter == E) {
|
|
for (MachineBasicBlock::succ_iterator SI = MBB.succ_begin(),
|
|
SE = MBB.succ_end(); SI != SE; ++SI)
|
|
if ((*SI)->isLiveIn(X86::EFLAGS))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
MachineBasicBlock::iterator B = MBB.begin();
|
|
Iter = I;
|
|
for (unsigned i = 0; i < 4; ++i) {
|
|
// If we make it to the beginning of the block, it's safe to clobber
|
|
// EFLAGS iff EFLAGS is not live-in.
|
|
if (Iter == B)
|
|
return !MBB.isLiveIn(X86::EFLAGS);
|
|
|
|
--Iter;
|
|
// Skip over DBG_VALUE.
|
|
while (Iter != B && Iter->isDebugValue())
|
|
--Iter;
|
|
|
|
bool SawKill = false;
|
|
for (unsigned j = 0, e = Iter->getNumOperands(); j != e; ++j) {
|
|
MachineOperand &MO = Iter->getOperand(j);
|
|
if (MO.isReg() && MO.getReg() == X86::EFLAGS) {
|
|
if (MO.isDef()) return MO.isDead();
|
|
if (MO.isKill()) SawKill = true;
|
|
}
|
|
}
|
|
|
|
if (SawKill)
|
|
// This instruction kills EFLAGS and doesn't redefine it, so
|
|
// there's no need to look further.
|
|
return true;
|
|
}
|
|
|
|
// Conservative answer.
|
|
return false;
|
|
}
|
|
|
|
void X86InstrInfo::reMaterialize(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I,
|
|
unsigned DestReg, unsigned SubIdx,
|
|
const MachineInstr *Orig,
|
|
const TargetRegisterInfo &TRI) const {
|
|
DebugLoc DL = Orig->getDebugLoc();
|
|
|
|
// MOV32r0 etc. are implemented with xor which clobbers condition code.
|
|
// Re-materialize them as movri instructions to avoid side effects.
|
|
bool Clone = true;
|
|
unsigned Opc = Orig->getOpcode();
|
|
switch (Opc) {
|
|
default: break;
|
|
case X86::MOV8r0:
|
|
case X86::MOV16r0:
|
|
case X86::MOV32r0:
|
|
case X86::MOV64r0: {
|
|
if (!isSafeToClobberEFLAGS(MBB, I)) {
|
|
switch (Opc) {
|
|
default: break;
|
|
case X86::MOV8r0: Opc = X86::MOV8ri; break;
|
|
case X86::MOV16r0: Opc = X86::MOV16ri; break;
|
|
case X86::MOV32r0: Opc = X86::MOV32ri; break;
|
|
case X86::MOV64r0: Opc = X86::MOV64ri64i32; break;
|
|
}
|
|
Clone = false;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (Clone) {
|
|
MachineInstr *MI = MBB.getParent()->CloneMachineInstr(Orig);
|
|
MBB.insert(I, MI);
|
|
} else {
|
|
BuildMI(MBB, I, DL, get(Opc)).addOperand(Orig->getOperand(0)).addImm(0);
|
|
}
|
|
|
|
MachineInstr *NewMI = prior(I);
|
|
NewMI->substituteRegister(Orig->getOperand(0).getReg(), DestReg, SubIdx, TRI);
|
|
}
|
|
|
|
/// hasLiveCondCodeDef - True if MI has a condition code def, e.g. EFLAGS, that
|
|
/// is not marked dead.
|
|
static bool hasLiveCondCodeDef(MachineInstr *MI) {
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (MO.isReg() && MO.isDef() &&
|
|
MO.getReg() == X86::EFLAGS && !MO.isDead()) {
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// convertToThreeAddressWithLEA - Helper for convertToThreeAddress when
|
|
/// 16-bit LEA is disabled, use 32-bit LEA to form 3-address code by promoting
|
|
/// to a 32-bit superregister and then truncating back down to a 16-bit
|
|
/// subregister.
|
|
MachineInstr *
|
|
X86InstrInfo::convertToThreeAddressWithLEA(unsigned MIOpc,
|
|
MachineFunction::iterator &MFI,
|
|
MachineBasicBlock::iterator &MBBI,
|
|
LiveVariables *LV) const {
|
|
MachineInstr *MI = MBBI;
|
|
unsigned Dest = MI->getOperand(0).getReg();
|
|
unsigned Src = MI->getOperand(1).getReg();
|
|
bool isDead = MI->getOperand(0).isDead();
|
|
bool isKill = MI->getOperand(1).isKill();
|
|
|
|
unsigned Opc = TM.getSubtarget<X86Subtarget>().is64Bit()
|
|
? X86::LEA64_32r : X86::LEA32r;
|
|
MachineRegisterInfo &RegInfo = MFI->getParent()->getRegInfo();
|
|
unsigned leaInReg = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
|
|
unsigned leaOutReg = RegInfo.createVirtualRegister(&X86::GR32RegClass);
|
|
|
|
// Build and insert into an implicit UNDEF value. This is OK because
|
|
// well be shifting and then extracting the lower 16-bits.
|
|
// This has the potential to cause partial register stall. e.g.
|
|
// movw (%rbp,%rcx,2), %dx
|
|
// leal -65(%rdx), %esi
|
|
// But testing has shown this *does* help performance in 64-bit mode (at
|
|
// least on modern x86 machines).
|
|
BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(X86::IMPLICIT_DEF), leaInReg);
|
|
MachineInstr *InsMI =
|
|
BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
|
|
.addReg(leaInReg, RegState::Define, X86::sub_16bit)
|
|
.addReg(Src, getKillRegState(isKill));
|
|
|
|
MachineInstrBuilder MIB = BuildMI(*MFI, MBBI, MI->getDebugLoc(),
|
|
get(Opc), leaOutReg);
|
|
switch (MIOpc) {
|
|
default:
|
|
llvm_unreachable(0);
|
|
break;
|
|
case X86::SHL16ri: {
|
|
unsigned ShAmt = MI->getOperand(2).getImm();
|
|
MIB.addReg(0).addImm(1 << ShAmt)
|
|
.addReg(leaInReg, RegState::Kill).addImm(0).addReg(0);
|
|
break;
|
|
}
|
|
case X86::INC16r:
|
|
case X86::INC64_16r:
|
|
addRegOffset(MIB, leaInReg, true, 1);
|
|
break;
|
|
case X86::DEC16r:
|
|
case X86::DEC64_16r:
|
|
addRegOffset(MIB, leaInReg, true, -1);
|
|
break;
|
|
case X86::ADD16ri:
|
|
case X86::ADD16ri8:
|
|
case X86::ADD16ri_DB:
|
|
case X86::ADD16ri8_DB:
|
|
addRegOffset(MIB, leaInReg, true, MI->getOperand(2).getImm());
|
|
break;
|
|
case X86::ADD16rr:
|
|
case X86::ADD16rr_DB: {
|
|
unsigned Src2 = MI->getOperand(2).getReg();
|
|
bool isKill2 = MI->getOperand(2).isKill();
|
|
unsigned leaInReg2 = 0;
|
|
MachineInstr *InsMI2 = 0;
|
|
if (Src == Src2) {
|
|
// ADD16rr %reg1028<kill>, %reg1028
|
|
// just a single insert_subreg.
|
|
addRegReg(MIB, leaInReg, true, leaInReg, false);
|
|
} else {
|
|
leaInReg2 = RegInfo.createVirtualRegister(&X86::GR32_NOSPRegClass);
|
|
// Build and insert into an implicit UNDEF value. This is OK because
|
|
// well be shifting and then extracting the lower 16-bits.
|
|
BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(X86::IMPLICIT_DEF),leaInReg2);
|
|
InsMI2 =
|
|
BuildMI(*MFI, &*MIB, MI->getDebugLoc(), get(TargetOpcode::COPY))
|
|
.addReg(leaInReg2, RegState::Define, X86::sub_16bit)
|
|
.addReg(Src2, getKillRegState(isKill2));
|
|
addRegReg(MIB, leaInReg, true, leaInReg2, true);
|
|
}
|
|
if (LV && isKill2 && InsMI2)
|
|
LV->replaceKillInstruction(Src2, MI, InsMI2);
|
|
break;
|
|
}
|
|
}
|
|
|
|
MachineInstr *NewMI = MIB;
|
|
MachineInstr *ExtMI =
|
|
BuildMI(*MFI, MBBI, MI->getDebugLoc(), get(TargetOpcode::COPY))
|
|
.addReg(Dest, RegState::Define | getDeadRegState(isDead))
|
|
.addReg(leaOutReg, RegState::Kill, X86::sub_16bit);
|
|
|
|
if (LV) {
|
|
// Update live variables
|
|
LV->getVarInfo(leaInReg).Kills.push_back(NewMI);
|
|
LV->getVarInfo(leaOutReg).Kills.push_back(ExtMI);
|
|
if (isKill)
|
|
LV->replaceKillInstruction(Src, MI, InsMI);
|
|
if (isDead)
|
|
LV->replaceKillInstruction(Dest, MI, ExtMI);
|
|
}
|
|
|
|
return ExtMI;
|
|
}
|
|
|
|
/// convertToThreeAddress - This method must be implemented by targets that
|
|
/// set the M_CONVERTIBLE_TO_3_ADDR flag. When this flag is set, the target
|
|
/// may be able to convert a two-address instruction into a true
|
|
/// three-address instruction on demand. This allows the X86 target (for
|
|
/// example) to convert ADD and SHL instructions into LEA instructions if they
|
|
/// would require register copies due to two-addressness.
|
|
///
|
|
/// This method returns a null pointer if the transformation cannot be
|
|
/// performed, otherwise it returns the new instruction.
|
|
///
|
|
MachineInstr *
|
|
X86InstrInfo::convertToThreeAddress(MachineFunction::iterator &MFI,
|
|
MachineBasicBlock::iterator &MBBI,
|
|
LiveVariables *LV) const {
|
|
MachineInstr *MI = MBBI;
|
|
MachineFunction &MF = *MI->getParent()->getParent();
|
|
// All instructions input are two-addr instructions. Get the known operands.
|
|
unsigned Dest = MI->getOperand(0).getReg();
|
|
unsigned Src = MI->getOperand(1).getReg();
|
|
bool isDead = MI->getOperand(0).isDead();
|
|
bool isKill = MI->getOperand(1).isKill();
|
|
|
|
MachineInstr *NewMI = NULL;
|
|
// FIXME: 16-bit LEA's are really slow on Athlons, but not bad on P4's. When
|
|
// we have better subtarget support, enable the 16-bit LEA generation here.
|
|
// 16-bit LEA is also slow on Core2.
|
|
bool DisableLEA16 = true;
|
|
bool is64Bit = TM.getSubtarget<X86Subtarget>().is64Bit();
|
|
|
|
unsigned MIOpc = MI->getOpcode();
|
|
switch (MIOpc) {
|
|
case X86::SHUFPSrri: {
|
|
assert(MI->getNumOperands() == 4 && "Unknown shufps instruction!");
|
|
if (!TM.getSubtarget<X86Subtarget>().hasSSE2()) return 0;
|
|
|
|
unsigned B = MI->getOperand(1).getReg();
|
|
unsigned C = MI->getOperand(2).getReg();
|
|
if (B != C) return 0;
|
|
unsigned A = MI->getOperand(0).getReg();
|
|
unsigned M = MI->getOperand(3).getImm();
|
|
NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::PSHUFDri))
|
|
.addReg(A, RegState::Define | getDeadRegState(isDead))
|
|
.addReg(B, getKillRegState(isKill)).addImm(M);
|
|
break;
|
|
}
|
|
case X86::SHL64ri: {
|
|
assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
|
|
// NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
|
|
// the flags produced by a shift yet, so this is safe.
|
|
unsigned ShAmt = MI->getOperand(2).getImm();
|
|
if (ShAmt == 0 || ShAmt >= 4) return 0;
|
|
|
|
// LEA can't handle RSP.
|
|
if (TargetRegisterInfo::isVirtualRegister(Src) &&
|
|
!MF.getRegInfo().constrainRegClass(Src, &X86::GR64_NOSPRegClass))
|
|
return 0;
|
|
|
|
NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
|
|
.addReg(Dest, RegState::Define | getDeadRegState(isDead))
|
|
.addReg(0).addImm(1 << ShAmt)
|
|
.addReg(Src, getKillRegState(isKill))
|
|
.addImm(0).addReg(0);
|
|
break;
|
|
}
|
|
case X86::SHL32ri: {
|
|
assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
|
|
// NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
|
|
// the flags produced by a shift yet, so this is safe.
|
|
unsigned ShAmt = MI->getOperand(2).getImm();
|
|
if (ShAmt == 0 || ShAmt >= 4) return 0;
|
|
|
|
// LEA can't handle ESP.
|
|
if (TargetRegisterInfo::isVirtualRegister(Src) &&
|
|
!MF.getRegInfo().constrainRegClass(Src, &X86::GR32_NOSPRegClass))
|
|
return 0;
|
|
|
|
unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
|
|
NewMI = BuildMI(MF, MI->getDebugLoc(), get(Opc))
|
|
.addReg(Dest, RegState::Define | getDeadRegState(isDead))
|
|
.addReg(0).addImm(1 << ShAmt)
|
|
.addReg(Src, getKillRegState(isKill)).addImm(0).addReg(0);
|
|
break;
|
|
}
|
|
case X86::SHL16ri: {
|
|
assert(MI->getNumOperands() >= 3 && "Unknown shift instruction!");
|
|
// NOTE: LEA doesn't produce flags like shift does, but LLVM never uses
|
|
// the flags produced by a shift yet, so this is safe.
|
|
unsigned ShAmt = MI->getOperand(2).getImm();
|
|
if (ShAmt == 0 || ShAmt >= 4) return 0;
|
|
|
|
if (DisableLEA16)
|
|
return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
|
|
NewMI = BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
|
|
.addReg(Dest, RegState::Define | getDeadRegState(isDead))
|
|
.addReg(0).addImm(1 << ShAmt)
|
|
.addReg(Src, getKillRegState(isKill))
|
|
.addImm(0).addReg(0);
|
|
break;
|
|
}
|
|
default: {
|
|
// The following opcodes also sets the condition code register(s). Only
|
|
// convert them to equivalent lea if the condition code register def's
|
|
// are dead!
|
|
if (hasLiveCondCodeDef(MI))
|
|
return 0;
|
|
|
|
switch (MIOpc) {
|
|
default: return 0;
|
|
case X86::INC64r:
|
|
case X86::INC32r:
|
|
case X86::INC64_32r: {
|
|
assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
|
|
unsigned Opc = MIOpc == X86::INC64r ? X86::LEA64r
|
|
: (is64Bit ? X86::LEA64_32r : X86::LEA32r);
|
|
|
|
// LEA can't handle RSP.
|
|
if (TargetRegisterInfo::isVirtualRegister(Src) &&
|
|
!MF.getRegInfo().constrainRegClass(Src,
|
|
MIOpc == X86::INC64r ? X86::GR64_NOSPRegisterClass :
|
|
X86::GR32_NOSPRegisterClass))
|
|
return 0;
|
|
|
|
NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
|
|
.addReg(Dest, RegState::Define |
|
|
getDeadRegState(isDead)),
|
|
Src, isKill, 1);
|
|
break;
|
|
}
|
|
case X86::INC16r:
|
|
case X86::INC64_16r:
|
|
if (DisableLEA16)
|
|
return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
|
|
assert(MI->getNumOperands() >= 2 && "Unknown inc instruction!");
|
|
NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
|
|
.addReg(Dest, RegState::Define |
|
|
getDeadRegState(isDead)),
|
|
Src, isKill, 1);
|
|
break;
|
|
case X86::DEC64r:
|
|
case X86::DEC32r:
|
|
case X86::DEC64_32r: {
|
|
assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
|
|
unsigned Opc = MIOpc == X86::DEC64r ? X86::LEA64r
|
|
: (is64Bit ? X86::LEA64_32r : X86::LEA32r);
|
|
// LEA can't handle RSP.
|
|
if (TargetRegisterInfo::isVirtualRegister(Src) &&
|
|
!MF.getRegInfo().constrainRegClass(Src,
|
|
MIOpc == X86::DEC64r ? X86::GR64_NOSPRegisterClass :
|
|
X86::GR32_NOSPRegisterClass))
|
|
return 0;
|
|
|
|
NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
|
|
.addReg(Dest, RegState::Define |
|
|
getDeadRegState(isDead)),
|
|
Src, isKill, -1);
|
|
break;
|
|
}
|
|
case X86::DEC16r:
|
|
case X86::DEC64_16r:
|
|
if (DisableLEA16)
|
|
return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
|
|
assert(MI->getNumOperands() >= 2 && "Unknown dec instruction!");
|
|
NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
|
|
.addReg(Dest, RegState::Define |
|
|
getDeadRegState(isDead)),
|
|
Src, isKill, -1);
|
|
break;
|
|
case X86::ADD64rr:
|
|
case X86::ADD64rr_DB:
|
|
case X86::ADD32rr:
|
|
case X86::ADD32rr_DB: {
|
|
assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
|
|
unsigned Opc;
|
|
TargetRegisterClass *RC;
|
|
if (MIOpc == X86::ADD64rr || MIOpc == X86::ADD64rr_DB) {
|
|
Opc = X86::LEA64r;
|
|
RC = X86::GR64_NOSPRegisterClass;
|
|
} else {
|
|
Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
|
|
RC = X86::GR32_NOSPRegisterClass;
|
|
}
|
|
|
|
|
|
unsigned Src2 = MI->getOperand(2).getReg();
|
|
bool isKill2 = MI->getOperand(2).isKill();
|
|
|
|
// LEA can't handle RSP.
|
|
if (TargetRegisterInfo::isVirtualRegister(Src2) &&
|
|
!MF.getRegInfo().constrainRegClass(Src2, RC))
|
|
return 0;
|
|
|
|
NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(Opc))
|
|
.addReg(Dest, RegState::Define |
|
|
getDeadRegState(isDead)),
|
|
Src, isKill, Src2, isKill2);
|
|
if (LV && isKill2)
|
|
LV->replaceKillInstruction(Src2, MI, NewMI);
|
|
break;
|
|
}
|
|
case X86::ADD16rr:
|
|
case X86::ADD16rr_DB: {
|
|
if (DisableLEA16)
|
|
return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
|
|
assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
|
|
unsigned Src2 = MI->getOperand(2).getReg();
|
|
bool isKill2 = MI->getOperand(2).isKill();
|
|
NewMI = addRegReg(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
|
|
.addReg(Dest, RegState::Define |
|
|
getDeadRegState(isDead)),
|
|
Src, isKill, Src2, isKill2);
|
|
if (LV && isKill2)
|
|
LV->replaceKillInstruction(Src2, MI, NewMI);
|
|
break;
|
|
}
|
|
case X86::ADD64ri32:
|
|
case X86::ADD64ri8:
|
|
case X86::ADD64ri32_DB:
|
|
case X86::ADD64ri8_DB:
|
|
assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
|
|
NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA64r))
|
|
.addReg(Dest, RegState::Define |
|
|
getDeadRegState(isDead)),
|
|
Src, isKill, MI->getOperand(2).getImm());
|
|
break;
|
|
case X86::ADD32ri:
|
|
case X86::ADD32ri8:
|
|
case X86::ADD32ri_DB:
|
|
case X86::ADD32ri8_DB: {
|
|
assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
|
|
unsigned Opc = is64Bit ? X86::LEA64_32r : X86::LEA32r;
|
|
NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(Opc))
|
|
.addReg(Dest, RegState::Define |
|
|
getDeadRegState(isDead)),
|
|
Src, isKill, MI->getOperand(2).getImm());
|
|
break;
|
|
}
|
|
case X86::ADD16ri:
|
|
case X86::ADD16ri8:
|
|
case X86::ADD16ri_DB:
|
|
case X86::ADD16ri8_DB:
|
|
if (DisableLEA16)
|
|
return is64Bit ? convertToThreeAddressWithLEA(MIOpc, MFI, MBBI, LV) : 0;
|
|
assert(MI->getNumOperands() >= 3 && "Unknown add instruction!");
|
|
NewMI = addRegOffset(BuildMI(MF, MI->getDebugLoc(), get(X86::LEA16r))
|
|
.addReg(Dest, RegState::Define |
|
|
getDeadRegState(isDead)),
|
|
Src, isKill, MI->getOperand(2).getImm());
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!NewMI) return 0;
|
|
|
|
if (LV) { // Update live variables
|
|
if (isKill)
|
|
LV->replaceKillInstruction(Src, MI, NewMI);
|
|
if (isDead)
|
|
LV->replaceKillInstruction(Dest, MI, NewMI);
|
|
}
|
|
|
|
MFI->insert(MBBI, NewMI); // Insert the new inst
|
|
return NewMI;
|
|
}
|
|
|
|
/// commuteInstruction - We have a few instructions that must be hacked on to
|
|
/// commute them.
|
|
///
|
|
MachineInstr *
|
|
X86InstrInfo::commuteInstruction(MachineInstr *MI, bool NewMI) const {
|
|
switch (MI->getOpcode()) {
|
|
case X86::SHRD16rri8: // A = SHRD16rri8 B, C, I -> A = SHLD16rri8 C, B, (16-I)
|
|
case X86::SHLD16rri8: // A = SHLD16rri8 B, C, I -> A = SHRD16rri8 C, B, (16-I)
|
|
case X86::SHRD32rri8: // A = SHRD32rri8 B, C, I -> A = SHLD32rri8 C, B, (32-I)
|
|
case X86::SHLD32rri8: // A = SHLD32rri8 B, C, I -> A = SHRD32rri8 C, B, (32-I)
|
|
case X86::SHRD64rri8: // A = SHRD64rri8 B, C, I -> A = SHLD64rri8 C, B, (64-I)
|
|
case X86::SHLD64rri8:{// A = SHLD64rri8 B, C, I -> A = SHRD64rri8 C, B, (64-I)
|
|
unsigned Opc;
|
|
unsigned Size;
|
|
switch (MI->getOpcode()) {
|
|
default: llvm_unreachable("Unreachable!");
|
|
case X86::SHRD16rri8: Size = 16; Opc = X86::SHLD16rri8; break;
|
|
case X86::SHLD16rri8: Size = 16; Opc = X86::SHRD16rri8; break;
|
|
case X86::SHRD32rri8: Size = 32; Opc = X86::SHLD32rri8; break;
|
|
case X86::SHLD32rri8: Size = 32; Opc = X86::SHRD32rri8; break;
|
|
case X86::SHRD64rri8: Size = 64; Opc = X86::SHLD64rri8; break;
|
|
case X86::SHLD64rri8: Size = 64; Opc = X86::SHRD64rri8; break;
|
|
}
|
|
unsigned Amt = MI->getOperand(3).getImm();
|
|
if (NewMI) {
|
|
MachineFunction &MF = *MI->getParent()->getParent();
|
|
MI = MF.CloneMachineInstr(MI);
|
|
NewMI = false;
|
|
}
|
|
MI->setDesc(get(Opc));
|
|
MI->getOperand(3).setImm(Size-Amt);
|
|
return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
|
|
}
|
|
case X86::CMOVB16rr:
|
|
case X86::CMOVB32rr:
|
|
case X86::CMOVB64rr:
|
|
case X86::CMOVAE16rr:
|
|
case X86::CMOVAE32rr:
|
|
case X86::CMOVAE64rr:
|
|
case X86::CMOVE16rr:
|
|
case X86::CMOVE32rr:
|
|
case X86::CMOVE64rr:
|
|
case X86::CMOVNE16rr:
|
|
case X86::CMOVNE32rr:
|
|
case X86::CMOVNE64rr:
|
|
case X86::CMOVBE16rr:
|
|
case X86::CMOVBE32rr:
|
|
case X86::CMOVBE64rr:
|
|
case X86::CMOVA16rr:
|
|
case X86::CMOVA32rr:
|
|
case X86::CMOVA64rr:
|
|
case X86::CMOVL16rr:
|
|
case X86::CMOVL32rr:
|
|
case X86::CMOVL64rr:
|
|
case X86::CMOVGE16rr:
|
|
case X86::CMOVGE32rr:
|
|
case X86::CMOVGE64rr:
|
|
case X86::CMOVLE16rr:
|
|
case X86::CMOVLE32rr:
|
|
case X86::CMOVLE64rr:
|
|
case X86::CMOVG16rr:
|
|
case X86::CMOVG32rr:
|
|
case X86::CMOVG64rr:
|
|
case X86::CMOVS16rr:
|
|
case X86::CMOVS32rr:
|
|
case X86::CMOVS64rr:
|
|
case X86::CMOVNS16rr:
|
|
case X86::CMOVNS32rr:
|
|
case X86::CMOVNS64rr:
|
|
case X86::CMOVP16rr:
|
|
case X86::CMOVP32rr:
|
|
case X86::CMOVP64rr:
|
|
case X86::CMOVNP16rr:
|
|
case X86::CMOVNP32rr:
|
|
case X86::CMOVNP64rr:
|
|
case X86::CMOVO16rr:
|
|
case X86::CMOVO32rr:
|
|
case X86::CMOVO64rr:
|
|
case X86::CMOVNO16rr:
|
|
case X86::CMOVNO32rr:
|
|
case X86::CMOVNO64rr: {
|
|
unsigned Opc = 0;
|
|
switch (MI->getOpcode()) {
|
|
default: break;
|
|
case X86::CMOVB16rr: Opc = X86::CMOVAE16rr; break;
|
|
case X86::CMOVB32rr: Opc = X86::CMOVAE32rr; break;
|
|
case X86::CMOVB64rr: Opc = X86::CMOVAE64rr; break;
|
|
case X86::CMOVAE16rr: Opc = X86::CMOVB16rr; break;
|
|
case X86::CMOVAE32rr: Opc = X86::CMOVB32rr; break;
|
|
case X86::CMOVAE64rr: Opc = X86::CMOVB64rr; break;
|
|
case X86::CMOVE16rr: Opc = X86::CMOVNE16rr; break;
|
|
case X86::CMOVE32rr: Opc = X86::CMOVNE32rr; break;
|
|
case X86::CMOVE64rr: Opc = X86::CMOVNE64rr; break;
|
|
case X86::CMOVNE16rr: Opc = X86::CMOVE16rr; break;
|
|
case X86::CMOVNE32rr: Opc = X86::CMOVE32rr; break;
|
|
case X86::CMOVNE64rr: Opc = X86::CMOVE64rr; break;
|
|
case X86::CMOVBE16rr: Opc = X86::CMOVA16rr; break;
|
|
case X86::CMOVBE32rr: Opc = X86::CMOVA32rr; break;
|
|
case X86::CMOVBE64rr: Opc = X86::CMOVA64rr; break;
|
|
case X86::CMOVA16rr: Opc = X86::CMOVBE16rr; break;
|
|
case X86::CMOVA32rr: Opc = X86::CMOVBE32rr; break;
|
|
case X86::CMOVA64rr: Opc = X86::CMOVBE64rr; break;
|
|
case X86::CMOVL16rr: Opc = X86::CMOVGE16rr; break;
|
|
case X86::CMOVL32rr: Opc = X86::CMOVGE32rr; break;
|
|
case X86::CMOVL64rr: Opc = X86::CMOVGE64rr; break;
|
|
case X86::CMOVGE16rr: Opc = X86::CMOVL16rr; break;
|
|
case X86::CMOVGE32rr: Opc = X86::CMOVL32rr; break;
|
|
case X86::CMOVGE64rr: Opc = X86::CMOVL64rr; break;
|
|
case X86::CMOVLE16rr: Opc = X86::CMOVG16rr; break;
|
|
case X86::CMOVLE32rr: Opc = X86::CMOVG32rr; break;
|
|
case X86::CMOVLE64rr: Opc = X86::CMOVG64rr; break;
|
|
case X86::CMOVG16rr: Opc = X86::CMOVLE16rr; break;
|
|
case X86::CMOVG32rr: Opc = X86::CMOVLE32rr; break;
|
|
case X86::CMOVG64rr: Opc = X86::CMOVLE64rr; break;
|
|
case X86::CMOVS16rr: Opc = X86::CMOVNS16rr; break;
|
|
case X86::CMOVS32rr: Opc = X86::CMOVNS32rr; break;
|
|
case X86::CMOVS64rr: Opc = X86::CMOVNS64rr; break;
|
|
case X86::CMOVNS16rr: Opc = X86::CMOVS16rr; break;
|
|
case X86::CMOVNS32rr: Opc = X86::CMOVS32rr; break;
|
|
case X86::CMOVNS64rr: Opc = X86::CMOVS64rr; break;
|
|
case X86::CMOVP16rr: Opc = X86::CMOVNP16rr; break;
|
|
case X86::CMOVP32rr: Opc = X86::CMOVNP32rr; break;
|
|
case X86::CMOVP64rr: Opc = X86::CMOVNP64rr; break;
|
|
case X86::CMOVNP16rr: Opc = X86::CMOVP16rr; break;
|
|
case X86::CMOVNP32rr: Opc = X86::CMOVP32rr; break;
|
|
case X86::CMOVNP64rr: Opc = X86::CMOVP64rr; break;
|
|
case X86::CMOVO16rr: Opc = X86::CMOVNO16rr; break;
|
|
case X86::CMOVO32rr: Opc = X86::CMOVNO32rr; break;
|
|
case X86::CMOVO64rr: Opc = X86::CMOVNO64rr; break;
|
|
case X86::CMOVNO16rr: Opc = X86::CMOVO16rr; break;
|
|
case X86::CMOVNO32rr: Opc = X86::CMOVO32rr; break;
|
|
case X86::CMOVNO64rr: Opc = X86::CMOVO64rr; break;
|
|
}
|
|
if (NewMI) {
|
|
MachineFunction &MF = *MI->getParent()->getParent();
|
|
MI = MF.CloneMachineInstr(MI);
|
|
NewMI = false;
|
|
}
|
|
MI->setDesc(get(Opc));
|
|
// Fallthrough intended.
|
|
}
|
|
default:
|
|
return TargetInstrInfoImpl::commuteInstruction(MI, NewMI);
|
|
}
|
|
}
|
|
|
|
static X86::CondCode GetCondFromBranchOpc(unsigned BrOpc) {
|
|
switch (BrOpc) {
|
|
default: return X86::COND_INVALID;
|
|
case X86::JE_4: return X86::COND_E;
|
|
case X86::JNE_4: return X86::COND_NE;
|
|
case X86::JL_4: return X86::COND_L;
|
|
case X86::JLE_4: return X86::COND_LE;
|
|
case X86::JG_4: return X86::COND_G;
|
|
case X86::JGE_4: return X86::COND_GE;
|
|
case X86::JB_4: return X86::COND_B;
|
|
case X86::JBE_4: return X86::COND_BE;
|
|
case X86::JA_4: return X86::COND_A;
|
|
case X86::JAE_4: return X86::COND_AE;
|
|
case X86::JS_4: return X86::COND_S;
|
|
case X86::JNS_4: return X86::COND_NS;
|
|
case X86::JP_4: return X86::COND_P;
|
|
case X86::JNP_4: return X86::COND_NP;
|
|
case X86::JO_4: return X86::COND_O;
|
|
case X86::JNO_4: return X86::COND_NO;
|
|
}
|
|
}
|
|
|
|
unsigned X86::GetCondBranchFromCond(X86::CondCode CC) {
|
|
switch (CC) {
|
|
default: llvm_unreachable("Illegal condition code!");
|
|
case X86::COND_E: return X86::JE_4;
|
|
case X86::COND_NE: return X86::JNE_4;
|
|
case X86::COND_L: return X86::JL_4;
|
|
case X86::COND_LE: return X86::JLE_4;
|
|
case X86::COND_G: return X86::JG_4;
|
|
case X86::COND_GE: return X86::JGE_4;
|
|
case X86::COND_B: return X86::JB_4;
|
|
case X86::COND_BE: return X86::JBE_4;
|
|
case X86::COND_A: return X86::JA_4;
|
|
case X86::COND_AE: return X86::JAE_4;
|
|
case X86::COND_S: return X86::JS_4;
|
|
case X86::COND_NS: return X86::JNS_4;
|
|
case X86::COND_P: return X86::JP_4;
|
|
case X86::COND_NP: return X86::JNP_4;
|
|
case X86::COND_O: return X86::JO_4;
|
|
case X86::COND_NO: return X86::JNO_4;
|
|
}
|
|
}
|
|
|
|
/// GetOppositeBranchCondition - Return the inverse of the specified condition,
|
|
/// e.g. turning COND_E to COND_NE.
|
|
X86::CondCode X86::GetOppositeBranchCondition(X86::CondCode CC) {
|
|
switch (CC) {
|
|
default: llvm_unreachable("Illegal condition code!");
|
|
case X86::COND_E: return X86::COND_NE;
|
|
case X86::COND_NE: return X86::COND_E;
|
|
case X86::COND_L: return X86::COND_GE;
|
|
case X86::COND_LE: return X86::COND_G;
|
|
case X86::COND_G: return X86::COND_LE;
|
|
case X86::COND_GE: return X86::COND_L;
|
|
case X86::COND_B: return X86::COND_AE;
|
|
case X86::COND_BE: return X86::COND_A;
|
|
case X86::COND_A: return X86::COND_BE;
|
|
case X86::COND_AE: return X86::COND_B;
|
|
case X86::COND_S: return X86::COND_NS;
|
|
case X86::COND_NS: return X86::COND_S;
|
|
case X86::COND_P: return X86::COND_NP;
|
|
case X86::COND_NP: return X86::COND_P;
|
|
case X86::COND_O: return X86::COND_NO;
|
|
case X86::COND_NO: return X86::COND_O;
|
|
}
|
|
}
|
|
|
|
bool X86InstrInfo::isUnpredicatedTerminator(const MachineInstr *MI) const {
|
|
if (!MI->isTerminator()) return false;
|
|
|
|
// Conditional branch is a special case.
|
|
if (MI->isBranch() && !MI->isBarrier())
|
|
return true;
|
|
if (!MI->isPredicable())
|
|
return true;
|
|
return !isPredicated(MI);
|
|
}
|
|
|
|
bool X86InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
|
|
MachineBasicBlock *&TBB,
|
|
MachineBasicBlock *&FBB,
|
|
SmallVectorImpl<MachineOperand> &Cond,
|
|
bool AllowModify) const {
|
|
// Start from the bottom of the block and work up, examining the
|
|
// terminator instructions.
|
|
MachineBasicBlock::iterator I = MBB.end();
|
|
MachineBasicBlock::iterator UnCondBrIter = MBB.end();
|
|
while (I != MBB.begin()) {
|
|
--I;
|
|
if (I->isDebugValue())
|
|
continue;
|
|
|
|
// Working from the bottom, when we see a non-terminator instruction, we're
|
|
// done.
|
|
if (!isUnpredicatedTerminator(I))
|
|
break;
|
|
|
|
// A terminator that isn't a branch can't easily be handled by this
|
|
// analysis.
|
|
if (!I->isBranch())
|
|
return true;
|
|
|
|
// Handle unconditional branches.
|
|
if (I->getOpcode() == X86::JMP_4) {
|
|
UnCondBrIter = I;
|
|
|
|
if (!AllowModify) {
|
|
TBB = I->getOperand(0).getMBB();
|
|
continue;
|
|
}
|
|
|
|
// If the block has any instructions after a JMP, delete them.
|
|
while (llvm::next(I) != MBB.end())
|
|
llvm::next(I)->eraseFromParent();
|
|
|
|
Cond.clear();
|
|
FBB = 0;
|
|
|
|
// Delete the JMP if it's equivalent to a fall-through.
|
|
if (MBB.isLayoutSuccessor(I->getOperand(0).getMBB())) {
|
|
TBB = 0;
|
|
I->eraseFromParent();
|
|
I = MBB.end();
|
|
UnCondBrIter = MBB.end();
|
|
continue;
|
|
}
|
|
|
|
// TBB is used to indicate the unconditional destination.
|
|
TBB = I->getOperand(0).getMBB();
|
|
continue;
|
|
}
|
|
|
|
// Handle conditional branches.
|
|
X86::CondCode BranchCode = GetCondFromBranchOpc(I->getOpcode());
|
|
if (BranchCode == X86::COND_INVALID)
|
|
return true; // Can't handle indirect branch.
|
|
|
|
// Working from the bottom, handle the first conditional branch.
|
|
if (Cond.empty()) {
|
|
MachineBasicBlock *TargetBB = I->getOperand(0).getMBB();
|
|
if (AllowModify && UnCondBrIter != MBB.end() &&
|
|
MBB.isLayoutSuccessor(TargetBB)) {
|
|
// If we can modify the code and it ends in something like:
|
|
//
|
|
// jCC L1
|
|
// jmp L2
|
|
// L1:
|
|
// ...
|
|
// L2:
|
|
//
|
|
// Then we can change this to:
|
|
//
|
|
// jnCC L2
|
|
// L1:
|
|
// ...
|
|
// L2:
|
|
//
|
|
// Which is a bit more efficient.
|
|
// We conditionally jump to the fall-through block.
|
|
BranchCode = GetOppositeBranchCondition(BranchCode);
|
|
unsigned JNCC = GetCondBranchFromCond(BranchCode);
|
|
MachineBasicBlock::iterator OldInst = I;
|
|
|
|
BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(JNCC))
|
|
.addMBB(UnCondBrIter->getOperand(0).getMBB());
|
|
BuildMI(MBB, UnCondBrIter, MBB.findDebugLoc(I), get(X86::JMP_4))
|
|
.addMBB(TargetBB);
|
|
|
|
OldInst->eraseFromParent();
|
|
UnCondBrIter->eraseFromParent();
|
|
|
|
// Restart the analysis.
|
|
UnCondBrIter = MBB.end();
|
|
I = MBB.end();
|
|
continue;
|
|
}
|
|
|
|
FBB = TBB;
|
|
TBB = I->getOperand(0).getMBB();
|
|
Cond.push_back(MachineOperand::CreateImm(BranchCode));
|
|
continue;
|
|
}
|
|
|
|
// Handle subsequent conditional branches. Only handle the case where all
|
|
// conditional branches branch to the same destination and their condition
|
|
// opcodes fit one of the special multi-branch idioms.
|
|
assert(Cond.size() == 1);
|
|
assert(TBB);
|
|
|
|
// Only handle the case where all conditional branches branch to the same
|
|
// destination.
|
|
if (TBB != I->getOperand(0).getMBB())
|
|
return true;
|
|
|
|
// If the conditions are the same, we can leave them alone.
|
|
X86::CondCode OldBranchCode = (X86::CondCode)Cond[0].getImm();
|
|
if (OldBranchCode == BranchCode)
|
|
continue;
|
|
|
|
// If they differ, see if they fit one of the known patterns. Theoretically,
|
|
// we could handle more patterns here, but we shouldn't expect to see them
|
|
// if instruction selection has done a reasonable job.
|
|
if ((OldBranchCode == X86::COND_NP &&
|
|
BranchCode == X86::COND_E) ||
|
|
(OldBranchCode == X86::COND_E &&
|
|
BranchCode == X86::COND_NP))
|
|
BranchCode = X86::COND_NP_OR_E;
|
|
else if ((OldBranchCode == X86::COND_P &&
|
|
BranchCode == X86::COND_NE) ||
|
|
(OldBranchCode == X86::COND_NE &&
|
|
BranchCode == X86::COND_P))
|
|
BranchCode = X86::COND_NE_OR_P;
|
|
else
|
|
return true;
|
|
|
|
// Update the MachineOperand.
|
|
Cond[0].setImm(BranchCode);
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
unsigned X86InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
|
|
MachineBasicBlock::iterator I = MBB.end();
|
|
unsigned Count = 0;
|
|
|
|
while (I != MBB.begin()) {
|
|
--I;
|
|
if (I->isDebugValue())
|
|
continue;
|
|
if (I->getOpcode() != X86::JMP_4 &&
|
|
GetCondFromBranchOpc(I->getOpcode()) == X86::COND_INVALID)
|
|
break;
|
|
// Remove the branch.
|
|
I->eraseFromParent();
|
|
I = MBB.end();
|
|
++Count;
|
|
}
|
|
|
|
return Count;
|
|
}
|
|
|
|
unsigned
|
|
X86InstrInfo::InsertBranch(MachineBasicBlock &MBB, MachineBasicBlock *TBB,
|
|
MachineBasicBlock *FBB,
|
|
const SmallVectorImpl<MachineOperand> &Cond,
|
|
DebugLoc DL) const {
|
|
// Shouldn't be a fall through.
|
|
assert(TBB && "InsertBranch must not be told to insert a fallthrough");
|
|
assert((Cond.size() == 1 || Cond.size() == 0) &&
|
|
"X86 branch conditions have one component!");
|
|
|
|
if (Cond.empty()) {
|
|
// Unconditional branch?
|
|
assert(!FBB && "Unconditional branch with multiple successors!");
|
|
BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(TBB);
|
|
return 1;
|
|
}
|
|
|
|
// Conditional branch.
|
|
unsigned Count = 0;
|
|
X86::CondCode CC = (X86::CondCode)Cond[0].getImm();
|
|
switch (CC) {
|
|
case X86::COND_NP_OR_E:
|
|
// Synthesize NP_OR_E with two branches.
|
|
BuildMI(&MBB, DL, get(X86::JNP_4)).addMBB(TBB);
|
|
++Count;
|
|
BuildMI(&MBB, DL, get(X86::JE_4)).addMBB(TBB);
|
|
++Count;
|
|
break;
|
|
case X86::COND_NE_OR_P:
|
|
// Synthesize NE_OR_P with two branches.
|
|
BuildMI(&MBB, DL, get(X86::JNE_4)).addMBB(TBB);
|
|
++Count;
|
|
BuildMI(&MBB, DL, get(X86::JP_4)).addMBB(TBB);
|
|
++Count;
|
|
break;
|
|
default: {
|
|
unsigned Opc = GetCondBranchFromCond(CC);
|
|
BuildMI(&MBB, DL, get(Opc)).addMBB(TBB);
|
|
++Count;
|
|
}
|
|
}
|
|
if (FBB) {
|
|
// Two-way Conditional branch. Insert the second branch.
|
|
BuildMI(&MBB, DL, get(X86::JMP_4)).addMBB(FBB);
|
|
++Count;
|
|
}
|
|
return Count;
|
|
}
|
|
|
|
/// isHReg - Test if the given register is a physical h register.
|
|
static bool isHReg(unsigned Reg) {
|
|
return X86::GR8_ABCD_HRegClass.contains(Reg);
|
|
}
|
|
|
|
// Try and copy between VR128/VR64 and GR64 registers.
|
|
static unsigned CopyToFromAsymmetricReg(unsigned DestReg, unsigned SrcReg,
|
|
bool HasAVX) {
|
|
// SrcReg(VR128) -> DestReg(GR64)
|
|
// SrcReg(VR64) -> DestReg(GR64)
|
|
// SrcReg(GR64) -> DestReg(VR128)
|
|
// SrcReg(GR64) -> DestReg(VR64)
|
|
|
|
if (X86::GR64RegClass.contains(DestReg)) {
|
|
if (X86::VR128RegClass.contains(SrcReg)) {
|
|
// Copy from a VR128 register to a GR64 register.
|
|
return HasAVX ? X86::VMOVPQIto64rr : X86::MOVPQIto64rr;
|
|
} else if (X86::VR64RegClass.contains(SrcReg)) {
|
|
// Copy from a VR64 register to a GR64 register.
|
|
return X86::MOVSDto64rr;
|
|
}
|
|
} else if (X86::GR64RegClass.contains(SrcReg)) {
|
|
// Copy from a GR64 register to a VR128 register.
|
|
if (X86::VR128RegClass.contains(DestReg))
|
|
return HasAVX ? X86::VMOV64toPQIrr : X86::MOV64toPQIrr;
|
|
// Copy from a GR64 register to a VR64 register.
|
|
else if (X86::VR64RegClass.contains(DestReg))
|
|
return X86::MOV64toSDrr;
|
|
}
|
|
|
|
// SrcReg(FR32) -> DestReg(GR32)
|
|
// SrcReg(GR32) -> DestReg(FR32)
|
|
|
|
if (X86::GR32RegClass.contains(DestReg) && X86::FR32RegClass.contains(SrcReg))
|
|
// Copy from a FR32 register to a GR32 register.
|
|
return HasAVX ? X86::VMOVSS2DIrr : X86::MOVSS2DIrr;
|
|
|
|
if (X86::FR32RegClass.contains(DestReg) && X86::GR32RegClass.contains(SrcReg))
|
|
// Copy from a GR32 register to a FR32 register.
|
|
return HasAVX ? X86::VMOVDI2SSrr : X86::MOVDI2SSrr;
|
|
|
|
return 0;
|
|
}
|
|
|
|
void X86InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI, DebugLoc DL,
|
|
unsigned DestReg, unsigned SrcReg,
|
|
bool KillSrc) const {
|
|
// First deal with the normal symmetric copies.
|
|
bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
|
|
unsigned Opc = 0;
|
|
if (X86::GR64RegClass.contains(DestReg, SrcReg))
|
|
Opc = X86::MOV64rr;
|
|
else if (X86::GR32RegClass.contains(DestReg, SrcReg))
|
|
Opc = X86::MOV32rr;
|
|
else if (X86::GR16RegClass.contains(DestReg, SrcReg))
|
|
Opc = X86::MOV16rr;
|
|
else if (X86::GR8RegClass.contains(DestReg, SrcReg)) {
|
|
// Copying to or from a physical H register on x86-64 requires a NOREX
|
|
// move. Otherwise use a normal move.
|
|
if ((isHReg(DestReg) || isHReg(SrcReg)) &&
|
|
TM.getSubtarget<X86Subtarget>().is64Bit()) {
|
|
Opc = X86::MOV8rr_NOREX;
|
|
// Both operands must be encodable without an REX prefix.
|
|
assert(X86::GR8_NOREXRegClass.contains(SrcReg, DestReg) &&
|
|
"8-bit H register can not be copied outside GR8_NOREX");
|
|
} else
|
|
Opc = X86::MOV8rr;
|
|
} else if (X86::VR128RegClass.contains(DestReg, SrcReg))
|
|
Opc = HasAVX ? X86::VMOVAPSrr : X86::MOVAPSrr;
|
|
else if (X86::VR256RegClass.contains(DestReg, SrcReg))
|
|
Opc = X86::VMOVAPSYrr;
|
|
else if (X86::VR64RegClass.contains(DestReg, SrcReg))
|
|
Opc = X86::MMX_MOVQ64rr;
|
|
else
|
|
Opc = CopyToFromAsymmetricReg(DestReg, SrcReg, HasAVX);
|
|
|
|
if (Opc) {
|
|
BuildMI(MBB, MI, DL, get(Opc), DestReg)
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
return;
|
|
}
|
|
|
|
// Moving EFLAGS to / from another register requires a push and a pop.
|
|
if (SrcReg == X86::EFLAGS) {
|
|
if (X86::GR64RegClass.contains(DestReg)) {
|
|
BuildMI(MBB, MI, DL, get(X86::PUSHF64));
|
|
BuildMI(MBB, MI, DL, get(X86::POP64r), DestReg);
|
|
return;
|
|
} else if (X86::GR32RegClass.contains(DestReg)) {
|
|
BuildMI(MBB, MI, DL, get(X86::PUSHF32));
|
|
BuildMI(MBB, MI, DL, get(X86::POP32r), DestReg);
|
|
return;
|
|
}
|
|
}
|
|
if (DestReg == X86::EFLAGS) {
|
|
if (X86::GR64RegClass.contains(SrcReg)) {
|
|
BuildMI(MBB, MI, DL, get(X86::PUSH64r))
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
BuildMI(MBB, MI, DL, get(X86::POPF64));
|
|
return;
|
|
} else if (X86::GR32RegClass.contains(SrcReg)) {
|
|
BuildMI(MBB, MI, DL, get(X86::PUSH32r))
|
|
.addReg(SrcReg, getKillRegState(KillSrc));
|
|
BuildMI(MBB, MI, DL, get(X86::POPF32));
|
|
return;
|
|
}
|
|
}
|
|
|
|
DEBUG(dbgs() << "Cannot copy " << RI.getName(SrcReg)
|
|
<< " to " << RI.getName(DestReg) << '\n');
|
|
llvm_unreachable("Cannot emit physreg copy instruction");
|
|
}
|
|
|
|
static unsigned getLoadStoreRegOpcode(unsigned Reg,
|
|
const TargetRegisterClass *RC,
|
|
bool isStackAligned,
|
|
const TargetMachine &TM,
|
|
bool load) {
|
|
bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
|
|
switch (RC->getSize()) {
|
|
default:
|
|
llvm_unreachable("Unknown spill size");
|
|
case 1:
|
|
assert(X86::GR8RegClass.hasSubClassEq(RC) && "Unknown 1-byte regclass");
|
|
if (TM.getSubtarget<X86Subtarget>().is64Bit())
|
|
// Copying to or from a physical H register on x86-64 requires a NOREX
|
|
// move. Otherwise use a normal move.
|
|
if (isHReg(Reg) || X86::GR8_ABCD_HRegClass.hasSubClassEq(RC))
|
|
return load ? X86::MOV8rm_NOREX : X86::MOV8mr_NOREX;
|
|
return load ? X86::MOV8rm : X86::MOV8mr;
|
|
case 2:
|
|
assert(X86::GR16RegClass.hasSubClassEq(RC) && "Unknown 2-byte regclass");
|
|
return load ? X86::MOV16rm : X86::MOV16mr;
|
|
case 4:
|
|
if (X86::GR32RegClass.hasSubClassEq(RC))
|
|
return load ? X86::MOV32rm : X86::MOV32mr;
|
|
if (X86::FR32RegClass.hasSubClassEq(RC))
|
|
return load ?
|
|
(HasAVX ? X86::VMOVSSrm : X86::MOVSSrm) :
|
|
(HasAVX ? X86::VMOVSSmr : X86::MOVSSmr);
|
|
if (X86::RFP32RegClass.hasSubClassEq(RC))
|
|
return load ? X86::LD_Fp32m : X86::ST_Fp32m;
|
|
llvm_unreachable("Unknown 4-byte regclass");
|
|
case 8:
|
|
if (X86::GR64RegClass.hasSubClassEq(RC))
|
|
return load ? X86::MOV64rm : X86::MOV64mr;
|
|
if (X86::FR64RegClass.hasSubClassEq(RC))
|
|
return load ?
|
|
(HasAVX ? X86::VMOVSDrm : X86::MOVSDrm) :
|
|
(HasAVX ? X86::VMOVSDmr : X86::MOVSDmr);
|
|
if (X86::VR64RegClass.hasSubClassEq(RC))
|
|
return load ? X86::MMX_MOVQ64rm : X86::MMX_MOVQ64mr;
|
|
if (X86::RFP64RegClass.hasSubClassEq(RC))
|
|
return load ? X86::LD_Fp64m : X86::ST_Fp64m;
|
|
llvm_unreachable("Unknown 8-byte regclass");
|
|
case 10:
|
|
assert(X86::RFP80RegClass.hasSubClassEq(RC) && "Unknown 10-byte regclass");
|
|
return load ? X86::LD_Fp80m : X86::ST_FpP80m;
|
|
case 16: {
|
|
assert(X86::VR128RegClass.hasSubClassEq(RC) && "Unknown 16-byte regclass");
|
|
// If stack is realigned we can use aligned stores.
|
|
if (isStackAligned)
|
|
return load ?
|
|
(HasAVX ? X86::VMOVAPSrm : X86::MOVAPSrm) :
|
|
(HasAVX ? X86::VMOVAPSmr : X86::MOVAPSmr);
|
|
else
|
|
return load ?
|
|
(HasAVX ? X86::VMOVUPSrm : X86::MOVUPSrm) :
|
|
(HasAVX ? X86::VMOVUPSmr : X86::MOVUPSmr);
|
|
}
|
|
case 32:
|
|
assert(X86::VR256RegClass.hasSubClassEq(RC) && "Unknown 32-byte regclass");
|
|
// If stack is realigned we can use aligned stores.
|
|
if (isStackAligned)
|
|
return load ? X86::VMOVAPSYrm : X86::VMOVAPSYmr;
|
|
else
|
|
return load ? X86::VMOVUPSYrm : X86::VMOVUPSYmr;
|
|
}
|
|
}
|
|
|
|
static unsigned getStoreRegOpcode(unsigned SrcReg,
|
|
const TargetRegisterClass *RC,
|
|
bool isStackAligned,
|
|
TargetMachine &TM) {
|
|
return getLoadStoreRegOpcode(SrcReg, RC, isStackAligned, TM, false);
|
|
}
|
|
|
|
|
|
static unsigned getLoadRegOpcode(unsigned DestReg,
|
|
const TargetRegisterClass *RC,
|
|
bool isStackAligned,
|
|
const TargetMachine &TM) {
|
|
return getLoadStoreRegOpcode(DestReg, RC, isStackAligned, TM, true);
|
|
}
|
|
|
|
void X86InstrInfo::storeRegToStackSlot(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
unsigned SrcReg, bool isKill, int FrameIdx,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const {
|
|
const MachineFunction &MF = *MBB.getParent();
|
|
assert(MF.getFrameInfo()->getObjectSize(FrameIdx) >= RC->getSize() &&
|
|
"Stack slot too small for store");
|
|
unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
|
|
bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) ||
|
|
RI.canRealignStack(MF);
|
|
unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
|
|
DebugLoc DL = MBB.findDebugLoc(MI);
|
|
addFrameReference(BuildMI(MBB, MI, DL, get(Opc)), FrameIdx)
|
|
.addReg(SrcReg, getKillRegState(isKill));
|
|
}
|
|
|
|
void X86InstrInfo::storeRegToAddr(MachineFunction &MF, unsigned SrcReg,
|
|
bool isKill,
|
|
SmallVectorImpl<MachineOperand> &Addr,
|
|
const TargetRegisterClass *RC,
|
|
MachineInstr::mmo_iterator MMOBegin,
|
|
MachineInstr::mmo_iterator MMOEnd,
|
|
SmallVectorImpl<MachineInstr*> &NewMIs) const {
|
|
unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
|
|
bool isAligned = MMOBegin != MMOEnd &&
|
|
(*MMOBegin)->getAlignment() >= Alignment;
|
|
unsigned Opc = getStoreRegOpcode(SrcReg, RC, isAligned, TM);
|
|
DebugLoc DL;
|
|
MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc));
|
|
for (unsigned i = 0, e = Addr.size(); i != e; ++i)
|
|
MIB.addOperand(Addr[i]);
|
|
MIB.addReg(SrcReg, getKillRegState(isKill));
|
|
(*MIB).setMemRefs(MMOBegin, MMOEnd);
|
|
NewMIs.push_back(MIB);
|
|
}
|
|
|
|
|
|
void X86InstrInfo::loadRegFromStackSlot(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator MI,
|
|
unsigned DestReg, int FrameIdx,
|
|
const TargetRegisterClass *RC,
|
|
const TargetRegisterInfo *TRI) const {
|
|
const MachineFunction &MF = *MBB.getParent();
|
|
unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
|
|
bool isAligned = (TM.getFrameLowering()->getStackAlignment() >= Alignment) ||
|
|
RI.canRealignStack(MF);
|
|
unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
|
|
DebugLoc DL = MBB.findDebugLoc(MI);
|
|
addFrameReference(BuildMI(MBB, MI, DL, get(Opc), DestReg), FrameIdx);
|
|
}
|
|
|
|
void X86InstrInfo::loadRegFromAddr(MachineFunction &MF, unsigned DestReg,
|
|
SmallVectorImpl<MachineOperand> &Addr,
|
|
const TargetRegisterClass *RC,
|
|
MachineInstr::mmo_iterator MMOBegin,
|
|
MachineInstr::mmo_iterator MMOEnd,
|
|
SmallVectorImpl<MachineInstr*> &NewMIs) const {
|
|
unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
|
|
bool isAligned = MMOBegin != MMOEnd &&
|
|
(*MMOBegin)->getAlignment() >= Alignment;
|
|
unsigned Opc = getLoadRegOpcode(DestReg, RC, isAligned, TM);
|
|
DebugLoc DL;
|
|
MachineInstrBuilder MIB = BuildMI(MF, DL, get(Opc), DestReg);
|
|
for (unsigned i = 0, e = Addr.size(); i != e; ++i)
|
|
MIB.addOperand(Addr[i]);
|
|
(*MIB).setMemRefs(MMOBegin, MMOEnd);
|
|
NewMIs.push_back(MIB);
|
|
}
|
|
|
|
/// Expand2AddrUndef - Expand a single-def pseudo instruction to a two-addr
|
|
/// instruction with two undef reads of the register being defined. This is
|
|
/// used for mapping:
|
|
/// %xmm4 = V_SET0
|
|
/// to:
|
|
/// %xmm4 = PXORrr %xmm4<undef>, %xmm4<undef>
|
|
///
|
|
static bool Expand2AddrUndef(MachineInstr *MI, const MCInstrDesc &Desc) {
|
|
assert(Desc.getNumOperands() == 3 && "Expected two-addr instruction.");
|
|
unsigned Reg = MI->getOperand(0).getReg();
|
|
MI->setDesc(Desc);
|
|
|
|
// MachineInstr::addOperand() will insert explicit operands before any
|
|
// implicit operands.
|
|
MachineInstrBuilder(MI).addReg(Reg, RegState::Undef)
|
|
.addReg(Reg, RegState::Undef);
|
|
// But we don't trust that.
|
|
assert(MI->getOperand(1).getReg() == Reg &&
|
|
MI->getOperand(2).getReg() == Reg && "Misplaced operand");
|
|
return true;
|
|
}
|
|
|
|
bool X86InstrInfo::expandPostRAPseudo(MachineBasicBlock::iterator MI) const {
|
|
bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
|
|
switch (MI->getOpcode()) {
|
|
case X86::V_SET0:
|
|
case X86::FsFLD0SS:
|
|
case X86::FsFLD0SD:
|
|
return Expand2AddrUndef(MI, get(HasAVX ? X86::VXORPSrr : X86::XORPSrr));
|
|
case X86::TEST8ri_NOREX:
|
|
MI->setDesc(get(X86::TEST8ri));
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
MachineInstr*
|
|
X86InstrInfo::emitFrameIndexDebugValue(MachineFunction &MF,
|
|
int FrameIx, uint64_t Offset,
|
|
const MDNode *MDPtr,
|
|
DebugLoc DL) const {
|
|
X86AddressMode AM;
|
|
AM.BaseType = X86AddressMode::FrameIndexBase;
|
|
AM.Base.FrameIndex = FrameIx;
|
|
MachineInstrBuilder MIB = BuildMI(MF, DL, get(X86::DBG_VALUE));
|
|
addFullAddress(MIB, AM).addImm(Offset).addMetadata(MDPtr);
|
|
return &*MIB;
|
|
}
|
|
|
|
static MachineInstr *FuseTwoAddrInst(MachineFunction &MF, unsigned Opcode,
|
|
const SmallVectorImpl<MachineOperand> &MOs,
|
|
MachineInstr *MI,
|
|
const TargetInstrInfo &TII) {
|
|
// Create the base instruction with the memory operand as the first part.
|
|
MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
|
|
MI->getDebugLoc(), true);
|
|
MachineInstrBuilder MIB(NewMI);
|
|
unsigned NumAddrOps = MOs.size();
|
|
for (unsigned i = 0; i != NumAddrOps; ++i)
|
|
MIB.addOperand(MOs[i]);
|
|
if (NumAddrOps < 4) // FrameIndex only
|
|
addOffset(MIB, 0);
|
|
|
|
// Loop over the rest of the ri operands, converting them over.
|
|
unsigned NumOps = MI->getDesc().getNumOperands()-2;
|
|
for (unsigned i = 0; i != NumOps; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i+2);
|
|
MIB.addOperand(MO);
|
|
}
|
|
for (unsigned i = NumOps+2, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
MIB.addOperand(MO);
|
|
}
|
|
return MIB;
|
|
}
|
|
|
|
static MachineInstr *FuseInst(MachineFunction &MF,
|
|
unsigned Opcode, unsigned OpNo,
|
|
const SmallVectorImpl<MachineOperand> &MOs,
|
|
MachineInstr *MI, const TargetInstrInfo &TII) {
|
|
MachineInstr *NewMI = MF.CreateMachineInstr(TII.get(Opcode),
|
|
MI->getDebugLoc(), true);
|
|
MachineInstrBuilder MIB(NewMI);
|
|
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (i == OpNo) {
|
|
assert(MO.isReg() && "Expected to fold into reg operand!");
|
|
unsigned NumAddrOps = MOs.size();
|
|
for (unsigned i = 0; i != NumAddrOps; ++i)
|
|
MIB.addOperand(MOs[i]);
|
|
if (NumAddrOps < 4) // FrameIndex only
|
|
addOffset(MIB, 0);
|
|
} else {
|
|
MIB.addOperand(MO);
|
|
}
|
|
}
|
|
return MIB;
|
|
}
|
|
|
|
static MachineInstr *MakeM0Inst(const TargetInstrInfo &TII, unsigned Opcode,
|
|
const SmallVectorImpl<MachineOperand> &MOs,
|
|
MachineInstr *MI) {
|
|
MachineFunction &MF = *MI->getParent()->getParent();
|
|
MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), TII.get(Opcode));
|
|
|
|
unsigned NumAddrOps = MOs.size();
|
|
for (unsigned i = 0; i != NumAddrOps; ++i)
|
|
MIB.addOperand(MOs[i]);
|
|
if (NumAddrOps < 4) // FrameIndex only
|
|
addOffset(MIB, 0);
|
|
return MIB.addImm(0);
|
|
}
|
|
|
|
MachineInstr*
|
|
X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
|
|
MachineInstr *MI, unsigned i,
|
|
const SmallVectorImpl<MachineOperand> &MOs,
|
|
unsigned Size, unsigned Align) const {
|
|
const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
|
|
bool isTwoAddrFold = false;
|
|
unsigned NumOps = MI->getDesc().getNumOperands();
|
|
bool isTwoAddr = NumOps > 1 &&
|
|
MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
|
|
|
|
// FIXME: AsmPrinter doesn't know how to handle
|
|
// X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
|
|
if (MI->getOpcode() == X86::ADD32ri &&
|
|
MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
|
|
return NULL;
|
|
|
|
MachineInstr *NewMI = NULL;
|
|
// Folding a memory location into the two-address part of a two-address
|
|
// instruction is different than folding it other places. It requires
|
|
// replacing the *two* registers with the memory location.
|
|
if (isTwoAddr && NumOps >= 2 && i < 2 &&
|
|
MI->getOperand(0).isReg() &&
|
|
MI->getOperand(1).isReg() &&
|
|
MI->getOperand(0).getReg() == MI->getOperand(1).getReg()) {
|
|
OpcodeTablePtr = &RegOp2MemOpTable2Addr;
|
|
isTwoAddrFold = true;
|
|
} else if (i == 0) { // If operand 0
|
|
if (MI->getOpcode() == X86::MOV64r0)
|
|
NewMI = MakeM0Inst(*this, X86::MOV64mi32, MOs, MI);
|
|
else if (MI->getOpcode() == X86::MOV32r0)
|
|
NewMI = MakeM0Inst(*this, X86::MOV32mi, MOs, MI);
|
|
else if (MI->getOpcode() == X86::MOV16r0)
|
|
NewMI = MakeM0Inst(*this, X86::MOV16mi, MOs, MI);
|
|
else if (MI->getOpcode() == X86::MOV8r0)
|
|
NewMI = MakeM0Inst(*this, X86::MOV8mi, MOs, MI);
|
|
if (NewMI)
|
|
return NewMI;
|
|
|
|
OpcodeTablePtr = &RegOp2MemOpTable0;
|
|
} else if (i == 1) {
|
|
OpcodeTablePtr = &RegOp2MemOpTable1;
|
|
} else if (i == 2) {
|
|
OpcodeTablePtr = &RegOp2MemOpTable2;
|
|
}
|
|
|
|
// If table selected...
|
|
if (OpcodeTablePtr) {
|
|
// Find the Opcode to fuse
|
|
DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
|
|
OpcodeTablePtr->find(MI->getOpcode());
|
|
if (I != OpcodeTablePtr->end()) {
|
|
unsigned Opcode = I->second.first;
|
|
unsigned MinAlign = (I->second.second & TB_ALIGN_MASK) >> TB_ALIGN_SHIFT;
|
|
if (Align < MinAlign)
|
|
return NULL;
|
|
bool NarrowToMOV32rm = false;
|
|
if (Size) {
|
|
unsigned RCSize = getRegClass(MI->getDesc(), i, &RI)->getSize();
|
|
if (Size < RCSize) {
|
|
// Check if it's safe to fold the load. If the size of the object is
|
|
// narrower than the load width, then it's not.
|
|
if (Opcode != X86::MOV64rm || RCSize != 8 || Size != 4)
|
|
return NULL;
|
|
// If this is a 64-bit load, but the spill slot is 32, then we can do
|
|
// a 32-bit load which is implicitly zero-extended. This likely is due
|
|
// to liveintervalanalysis remat'ing a load from stack slot.
|
|
if (MI->getOperand(0).getSubReg() || MI->getOperand(1).getSubReg())
|
|
return NULL;
|
|
Opcode = X86::MOV32rm;
|
|
NarrowToMOV32rm = true;
|
|
}
|
|
}
|
|
|
|
if (isTwoAddrFold)
|
|
NewMI = FuseTwoAddrInst(MF, Opcode, MOs, MI, *this);
|
|
else
|
|
NewMI = FuseInst(MF, Opcode, i, MOs, MI, *this);
|
|
|
|
if (NarrowToMOV32rm) {
|
|
// If this is the special case where we use a MOV32rm to load a 32-bit
|
|
// value and zero-extend the top bits. Change the destination register
|
|
// to a 32-bit one.
|
|
unsigned DstReg = NewMI->getOperand(0).getReg();
|
|
if (TargetRegisterInfo::isPhysicalRegister(DstReg))
|
|
NewMI->getOperand(0).setReg(RI.getSubReg(DstReg,
|
|
X86::sub_32bit));
|
|
else
|
|
NewMI->getOperand(0).setSubReg(X86::sub_32bit);
|
|
}
|
|
return NewMI;
|
|
}
|
|
}
|
|
|
|
// No fusion
|
|
if (PrintFailedFusing && !MI->isCopy())
|
|
dbgs() << "We failed to fuse operand " << i << " in " << *MI;
|
|
return NULL;
|
|
}
|
|
|
|
/// hasPartialRegUpdate - Return true for all instructions that only update
|
|
/// the first 32 or 64-bits of the destination register and leave the rest
|
|
/// unmodified. This can be used to avoid folding loads if the instructions
|
|
/// only update part of the destination register, and the non-updated part is
|
|
/// not needed. e.g. cvtss2sd, sqrtss. Unfolding the load from these
|
|
/// instructions breaks the partial register dependency and it can improve
|
|
/// performance. e.g.:
|
|
///
|
|
/// movss (%rdi), %xmm0
|
|
/// cvtss2sd %xmm0, %xmm0
|
|
///
|
|
/// Instead of
|
|
/// cvtss2sd (%rdi), %xmm0
|
|
///
|
|
/// FIXME: This should be turned into a TSFlags.
|
|
///
|
|
static bool hasPartialRegUpdate(unsigned Opcode) {
|
|
switch (Opcode) {
|
|
case X86::CVTSI2SSrr:
|
|
case X86::CVTSI2SS64rr:
|
|
case X86::CVTSI2SDrr:
|
|
case X86::CVTSI2SD64rr:
|
|
case X86::CVTSD2SSrr:
|
|
case X86::Int_CVTSD2SSrr:
|
|
case X86::CVTSS2SDrr:
|
|
case X86::Int_CVTSS2SDrr:
|
|
case X86::RCPSSr:
|
|
case X86::RCPSSr_Int:
|
|
case X86::ROUNDSDr:
|
|
case X86::ROUNDSDr_Int:
|
|
case X86::ROUNDSSr:
|
|
case X86::ROUNDSSr_Int:
|
|
case X86::RSQRTSSr:
|
|
case X86::RSQRTSSr_Int:
|
|
case X86::SQRTSSr:
|
|
case X86::SQRTSSr_Int:
|
|
// AVX encoded versions
|
|
case X86::VCVTSD2SSrr:
|
|
case X86::Int_VCVTSD2SSrr:
|
|
case X86::VCVTSS2SDrr:
|
|
case X86::Int_VCVTSS2SDrr:
|
|
case X86::VRCPSSr:
|
|
case X86::VROUNDSDr:
|
|
case X86::VROUNDSDr_Int:
|
|
case X86::VROUNDSSr:
|
|
case X86::VROUNDSSr_Int:
|
|
case X86::VRSQRTSSr:
|
|
case X86::VSQRTSSr:
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
/// getPartialRegUpdateClearance - Inform the ExeDepsFix pass how many idle
|
|
/// instructions we would like before a partial register update.
|
|
unsigned X86InstrInfo::
|
|
getPartialRegUpdateClearance(const MachineInstr *MI, unsigned OpNum,
|
|
const TargetRegisterInfo *TRI) const {
|
|
if (OpNum != 0 || !hasPartialRegUpdate(MI->getOpcode()))
|
|
return 0;
|
|
|
|
// If MI is marked as reading Reg, the partial register update is wanted.
|
|
const MachineOperand &MO = MI->getOperand(0);
|
|
unsigned Reg = MO.getReg();
|
|
if (TargetRegisterInfo::isVirtualRegister(Reg)) {
|
|
if (MO.readsReg() || MI->readsVirtualRegister(Reg))
|
|
return 0;
|
|
} else {
|
|
if (MI->readsRegister(Reg, TRI))
|
|
return 0;
|
|
}
|
|
|
|
// If any of the preceding 16 instructions are reading Reg, insert a
|
|
// dependency breaking instruction. The magic number is based on a few
|
|
// Nehalem experiments.
|
|
return 16;
|
|
}
|
|
|
|
void X86InstrInfo::
|
|
breakPartialRegDependency(MachineBasicBlock::iterator MI, unsigned OpNum,
|
|
const TargetRegisterInfo *TRI) const {
|
|
unsigned Reg = MI->getOperand(OpNum).getReg();
|
|
if (X86::VR128RegClass.contains(Reg)) {
|
|
// These instructions are all floating point domain, so xorps is the best
|
|
// choice.
|
|
bool HasAVX = TM.getSubtarget<X86Subtarget>().hasAVX();
|
|
unsigned Opc = HasAVX ? X86::VXORPSrr : X86::XORPSrr;
|
|
BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(Opc), Reg)
|
|
.addReg(Reg, RegState::Undef).addReg(Reg, RegState::Undef);
|
|
} else if (X86::VR256RegClass.contains(Reg)) {
|
|
// Use vxorps to clear the full ymm register.
|
|
// It wants to read and write the xmm sub-register.
|
|
unsigned XReg = TRI->getSubReg(Reg, X86::sub_xmm);
|
|
BuildMI(*MI->getParent(), MI, MI->getDebugLoc(), get(X86::VXORPSrr), XReg)
|
|
.addReg(XReg, RegState::Undef).addReg(XReg, RegState::Undef)
|
|
.addReg(Reg, RegState::ImplicitDefine);
|
|
} else
|
|
return;
|
|
MI->addRegisterKilled(Reg, TRI, true);
|
|
}
|
|
|
|
MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
|
|
MachineInstr *MI,
|
|
const SmallVectorImpl<unsigned> &Ops,
|
|
int FrameIndex) const {
|
|
// Check switch flag
|
|
if (NoFusing) return NULL;
|
|
|
|
// Unless optimizing for size, don't fold to avoid partial
|
|
// register update stalls
|
|
if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize) &&
|
|
hasPartialRegUpdate(MI->getOpcode()))
|
|
return 0;
|
|
|
|
const MachineFrameInfo *MFI = MF.getFrameInfo();
|
|
unsigned Size = MFI->getObjectSize(FrameIndex);
|
|
unsigned Alignment = MFI->getObjectAlignment(FrameIndex);
|
|
if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
|
|
unsigned NewOpc = 0;
|
|
unsigned RCSize = 0;
|
|
switch (MI->getOpcode()) {
|
|
default: return NULL;
|
|
case X86::TEST8rr: NewOpc = X86::CMP8ri; RCSize = 1; break;
|
|
case X86::TEST16rr: NewOpc = X86::CMP16ri8; RCSize = 2; break;
|
|
case X86::TEST32rr: NewOpc = X86::CMP32ri8; RCSize = 4; break;
|
|
case X86::TEST64rr: NewOpc = X86::CMP64ri8; RCSize = 8; break;
|
|
}
|
|
// Check if it's safe to fold the load. If the size of the object is
|
|
// narrower than the load width, then it's not.
|
|
if (Size < RCSize)
|
|
return NULL;
|
|
// Change to CMPXXri r, 0 first.
|
|
MI->setDesc(get(NewOpc));
|
|
MI->getOperand(1).ChangeToImmediate(0);
|
|
} else if (Ops.size() != 1)
|
|
return NULL;
|
|
|
|
SmallVector<MachineOperand,4> MOs;
|
|
MOs.push_back(MachineOperand::CreateFI(FrameIndex));
|
|
return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, Size, Alignment);
|
|
}
|
|
|
|
MachineInstr* X86InstrInfo::foldMemoryOperandImpl(MachineFunction &MF,
|
|
MachineInstr *MI,
|
|
const SmallVectorImpl<unsigned> &Ops,
|
|
MachineInstr *LoadMI) const {
|
|
// Check switch flag
|
|
if (NoFusing) return NULL;
|
|
|
|
// Unless optimizing for size, don't fold to avoid partial
|
|
// register update stalls
|
|
if (!MF.getFunction()->hasFnAttr(Attribute::OptimizeForSize) &&
|
|
hasPartialRegUpdate(MI->getOpcode()))
|
|
return 0;
|
|
|
|
// Determine the alignment of the load.
|
|
unsigned Alignment = 0;
|
|
if (LoadMI->hasOneMemOperand())
|
|
Alignment = (*LoadMI->memoperands_begin())->getAlignment();
|
|
else
|
|
switch (LoadMI->getOpcode()) {
|
|
case X86::AVX_SET0PSY:
|
|
case X86::AVX_SET0PDY:
|
|
case X86::AVX2_SETALLONES:
|
|
Alignment = 32;
|
|
break;
|
|
case X86::V_SET0:
|
|
case X86::V_SETALLONES:
|
|
case X86::AVX_SETALLONES:
|
|
Alignment = 16;
|
|
break;
|
|
case X86::FsFLD0SD:
|
|
Alignment = 8;
|
|
break;
|
|
case X86::FsFLD0SS:
|
|
Alignment = 4;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
|
|
unsigned NewOpc = 0;
|
|
switch (MI->getOpcode()) {
|
|
default: return NULL;
|
|
case X86::TEST8rr: NewOpc = X86::CMP8ri; break;
|
|
case X86::TEST16rr: NewOpc = X86::CMP16ri8; break;
|
|
case X86::TEST32rr: NewOpc = X86::CMP32ri8; break;
|
|
case X86::TEST64rr: NewOpc = X86::CMP64ri8; break;
|
|
}
|
|
// Change to CMPXXri r, 0 first.
|
|
MI->setDesc(get(NewOpc));
|
|
MI->getOperand(1).ChangeToImmediate(0);
|
|
} else if (Ops.size() != 1)
|
|
return NULL;
|
|
|
|
// Make sure the subregisters match.
|
|
// Otherwise we risk changing the size of the load.
|
|
if (LoadMI->getOperand(0).getSubReg() != MI->getOperand(Ops[0]).getSubReg())
|
|
return NULL;
|
|
|
|
SmallVector<MachineOperand,X86::AddrNumOperands> MOs;
|
|
switch (LoadMI->getOpcode()) {
|
|
case X86::V_SET0:
|
|
case X86::V_SETALLONES:
|
|
case X86::AVX_SET0PSY:
|
|
case X86::AVX_SET0PDY:
|
|
case X86::AVX_SETALLONES:
|
|
case X86::AVX2_SETALLONES:
|
|
case X86::FsFLD0SD:
|
|
case X86::FsFLD0SS: {
|
|
// Folding a V_SET0 or V_SETALLONES as a load, to ease register pressure.
|
|
// Create a constant-pool entry and operands to load from it.
|
|
|
|
// Medium and large mode can't fold loads this way.
|
|
if (TM.getCodeModel() != CodeModel::Small &&
|
|
TM.getCodeModel() != CodeModel::Kernel)
|
|
return NULL;
|
|
|
|
// x86-32 PIC requires a PIC base register for constant pools.
|
|
unsigned PICBase = 0;
|
|
if (TM.getRelocationModel() == Reloc::PIC_) {
|
|
if (TM.getSubtarget<X86Subtarget>().is64Bit())
|
|
PICBase = X86::RIP;
|
|
else
|
|
// FIXME: PICBase = getGlobalBaseReg(&MF);
|
|
// This doesn't work for several reasons.
|
|
// 1. GlobalBaseReg may have been spilled.
|
|
// 2. It may not be live at MI.
|
|
return NULL;
|
|
}
|
|
|
|
// Create a constant-pool entry.
|
|
MachineConstantPool &MCP = *MF.getConstantPool();
|
|
Type *Ty;
|
|
unsigned Opc = LoadMI->getOpcode();
|
|
if (Opc == X86::FsFLD0SS)
|
|
Ty = Type::getFloatTy(MF.getFunction()->getContext());
|
|
else if (Opc == X86::FsFLD0SD)
|
|
Ty = Type::getDoubleTy(MF.getFunction()->getContext());
|
|
else if (Opc == X86::AVX_SET0PSY || Opc == X86::AVX_SET0PDY)
|
|
Ty = VectorType::get(Type::getFloatTy(MF.getFunction()->getContext()), 8);
|
|
else
|
|
Ty = VectorType::get(Type::getInt32Ty(MF.getFunction()->getContext()), 4);
|
|
|
|
bool IsAllOnes = (Opc == X86::V_SETALLONES || Opc == X86::AVX_SETALLONES ||
|
|
Opc == X86::AVX2_SETALLONES);
|
|
const Constant *C = IsAllOnes ? Constant::getAllOnesValue(Ty) :
|
|
Constant::getNullValue(Ty);
|
|
unsigned CPI = MCP.getConstantPoolIndex(C, Alignment);
|
|
|
|
// Create operands to load from the constant pool entry.
|
|
MOs.push_back(MachineOperand::CreateReg(PICBase, false));
|
|
MOs.push_back(MachineOperand::CreateImm(1));
|
|
MOs.push_back(MachineOperand::CreateReg(0, false));
|
|
MOs.push_back(MachineOperand::CreateCPI(CPI, 0));
|
|
MOs.push_back(MachineOperand::CreateReg(0, false));
|
|
break;
|
|
}
|
|
default: {
|
|
// Folding a normal load. Just copy the load's address operands.
|
|
unsigned NumOps = LoadMI->getDesc().getNumOperands();
|
|
for (unsigned i = NumOps - X86::AddrNumOperands; i != NumOps; ++i)
|
|
MOs.push_back(LoadMI->getOperand(i));
|
|
break;
|
|
}
|
|
}
|
|
return foldMemoryOperandImpl(MF, MI, Ops[0], MOs, 0, Alignment);
|
|
}
|
|
|
|
|
|
bool X86InstrInfo::canFoldMemoryOperand(const MachineInstr *MI,
|
|
const SmallVectorImpl<unsigned> &Ops) const {
|
|
// Check switch flag
|
|
if (NoFusing) return 0;
|
|
|
|
if (Ops.size() == 2 && Ops[0] == 0 && Ops[1] == 1) {
|
|
switch (MI->getOpcode()) {
|
|
default: return false;
|
|
case X86::TEST8rr:
|
|
case X86::TEST16rr:
|
|
case X86::TEST32rr:
|
|
case X86::TEST64rr:
|
|
return true;
|
|
case X86::ADD32ri:
|
|
// FIXME: AsmPrinter doesn't know how to handle
|
|
// X86II::MO_GOT_ABSOLUTE_ADDRESS after folding.
|
|
if (MI->getOperand(2).getTargetFlags() == X86II::MO_GOT_ABSOLUTE_ADDRESS)
|
|
return false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (Ops.size() != 1)
|
|
return false;
|
|
|
|
unsigned OpNum = Ops[0];
|
|
unsigned Opc = MI->getOpcode();
|
|
unsigned NumOps = MI->getDesc().getNumOperands();
|
|
bool isTwoAddr = NumOps > 1 &&
|
|
MI->getDesc().getOperandConstraint(1, MCOI::TIED_TO) != -1;
|
|
|
|
// Folding a memory location into the two-address part of a two-address
|
|
// instruction is different than folding it other places. It requires
|
|
// replacing the *two* registers with the memory location.
|
|
const DenseMap<unsigned, std::pair<unsigned,unsigned> > *OpcodeTablePtr = 0;
|
|
if (isTwoAddr && NumOps >= 2 && OpNum < 2) {
|
|
OpcodeTablePtr = &RegOp2MemOpTable2Addr;
|
|
} else if (OpNum == 0) { // If operand 0
|
|
switch (Opc) {
|
|
case X86::MOV8r0:
|
|
case X86::MOV16r0:
|
|
case X86::MOV32r0:
|
|
case X86::MOV64r0: return true;
|
|
default: break;
|
|
}
|
|
OpcodeTablePtr = &RegOp2MemOpTable0;
|
|
} else if (OpNum == 1) {
|
|
OpcodeTablePtr = &RegOp2MemOpTable1;
|
|
} else if (OpNum == 2) {
|
|
OpcodeTablePtr = &RegOp2MemOpTable2;
|
|
}
|
|
|
|
if (OpcodeTablePtr && OpcodeTablePtr->count(Opc))
|
|
return true;
|
|
return TargetInstrInfoImpl::canFoldMemoryOperand(MI, Ops);
|
|
}
|
|
|
|
bool X86InstrInfo::unfoldMemoryOperand(MachineFunction &MF, MachineInstr *MI,
|
|
unsigned Reg, bool UnfoldLoad, bool UnfoldStore,
|
|
SmallVectorImpl<MachineInstr*> &NewMIs) const {
|
|
DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
|
|
MemOp2RegOpTable.find(MI->getOpcode());
|
|
if (I == MemOp2RegOpTable.end())
|
|
return false;
|
|
unsigned Opc = I->second.first;
|
|
unsigned Index = I->second.second & TB_INDEX_MASK;
|
|
bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
|
|
bool FoldedStore = I->second.second & TB_FOLDED_STORE;
|
|
if (UnfoldLoad && !FoldedLoad)
|
|
return false;
|
|
UnfoldLoad &= FoldedLoad;
|
|
if (UnfoldStore && !FoldedStore)
|
|
return false;
|
|
UnfoldStore &= FoldedStore;
|
|
|
|
const MCInstrDesc &MCID = get(Opc);
|
|
const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI);
|
|
if (!MI->hasOneMemOperand() &&
|
|
RC == &X86::VR128RegClass &&
|
|
!TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
|
|
// Without memoperands, loadRegFromAddr and storeRegToStackSlot will
|
|
// conservatively assume the address is unaligned. That's bad for
|
|
// performance.
|
|
return false;
|
|
SmallVector<MachineOperand, X86::AddrNumOperands> AddrOps;
|
|
SmallVector<MachineOperand,2> BeforeOps;
|
|
SmallVector<MachineOperand,2> AfterOps;
|
|
SmallVector<MachineOperand,4> ImpOps;
|
|
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
|
|
MachineOperand &Op = MI->getOperand(i);
|
|
if (i >= Index && i < Index + X86::AddrNumOperands)
|
|
AddrOps.push_back(Op);
|
|
else if (Op.isReg() && Op.isImplicit())
|
|
ImpOps.push_back(Op);
|
|
else if (i < Index)
|
|
BeforeOps.push_back(Op);
|
|
else if (i > Index)
|
|
AfterOps.push_back(Op);
|
|
}
|
|
|
|
// Emit the load instruction.
|
|
if (UnfoldLoad) {
|
|
std::pair<MachineInstr::mmo_iterator,
|
|
MachineInstr::mmo_iterator> MMOs =
|
|
MF.extractLoadMemRefs(MI->memoperands_begin(),
|
|
MI->memoperands_end());
|
|
loadRegFromAddr(MF, Reg, AddrOps, RC, MMOs.first, MMOs.second, NewMIs);
|
|
if (UnfoldStore) {
|
|
// Address operands cannot be marked isKill.
|
|
for (unsigned i = 1; i != 1 + X86::AddrNumOperands; ++i) {
|
|
MachineOperand &MO = NewMIs[0]->getOperand(i);
|
|
if (MO.isReg())
|
|
MO.setIsKill(false);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Emit the data processing instruction.
|
|
MachineInstr *DataMI = MF.CreateMachineInstr(MCID, MI->getDebugLoc(), true);
|
|
MachineInstrBuilder MIB(DataMI);
|
|
|
|
if (FoldedStore)
|
|
MIB.addReg(Reg, RegState::Define);
|
|
for (unsigned i = 0, e = BeforeOps.size(); i != e; ++i)
|
|
MIB.addOperand(BeforeOps[i]);
|
|
if (FoldedLoad)
|
|
MIB.addReg(Reg);
|
|
for (unsigned i = 0, e = AfterOps.size(); i != e; ++i)
|
|
MIB.addOperand(AfterOps[i]);
|
|
for (unsigned i = 0, e = ImpOps.size(); i != e; ++i) {
|
|
MachineOperand &MO = ImpOps[i];
|
|
MIB.addReg(MO.getReg(),
|
|
getDefRegState(MO.isDef()) |
|
|
RegState::Implicit |
|
|
getKillRegState(MO.isKill()) |
|
|
getDeadRegState(MO.isDead()) |
|
|
getUndefRegState(MO.isUndef()));
|
|
}
|
|
// Change CMP32ri r, 0 back to TEST32rr r, r, etc.
|
|
unsigned NewOpc = 0;
|
|
switch (DataMI->getOpcode()) {
|
|
default: break;
|
|
case X86::CMP64ri32:
|
|
case X86::CMP64ri8:
|
|
case X86::CMP32ri:
|
|
case X86::CMP32ri8:
|
|
case X86::CMP16ri:
|
|
case X86::CMP16ri8:
|
|
case X86::CMP8ri: {
|
|
MachineOperand &MO0 = DataMI->getOperand(0);
|
|
MachineOperand &MO1 = DataMI->getOperand(1);
|
|
if (MO1.getImm() == 0) {
|
|
switch (DataMI->getOpcode()) {
|
|
default: break;
|
|
case X86::CMP64ri8:
|
|
case X86::CMP64ri32: NewOpc = X86::TEST64rr; break;
|
|
case X86::CMP32ri8:
|
|
case X86::CMP32ri: NewOpc = X86::TEST32rr; break;
|
|
case X86::CMP16ri8:
|
|
case X86::CMP16ri: NewOpc = X86::TEST16rr; break;
|
|
case X86::CMP8ri: NewOpc = X86::TEST8rr; break;
|
|
}
|
|
DataMI->setDesc(get(NewOpc));
|
|
MO1.ChangeToRegister(MO0.getReg(), false);
|
|
}
|
|
}
|
|
}
|
|
NewMIs.push_back(DataMI);
|
|
|
|
// Emit the store instruction.
|
|
if (UnfoldStore) {
|
|
const TargetRegisterClass *DstRC = getRegClass(MCID, 0, &RI);
|
|
std::pair<MachineInstr::mmo_iterator,
|
|
MachineInstr::mmo_iterator> MMOs =
|
|
MF.extractStoreMemRefs(MI->memoperands_begin(),
|
|
MI->memoperands_end());
|
|
storeRegToAddr(MF, Reg, true, AddrOps, DstRC, MMOs.first, MMOs.second, NewMIs);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
X86InstrInfo::unfoldMemoryOperand(SelectionDAG &DAG, SDNode *N,
|
|
SmallVectorImpl<SDNode*> &NewNodes) const {
|
|
if (!N->isMachineOpcode())
|
|
return false;
|
|
|
|
DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
|
|
MemOp2RegOpTable.find(N->getMachineOpcode());
|
|
if (I == MemOp2RegOpTable.end())
|
|
return false;
|
|
unsigned Opc = I->second.first;
|
|
unsigned Index = I->second.second & TB_INDEX_MASK;
|
|
bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
|
|
bool FoldedStore = I->second.second & TB_FOLDED_STORE;
|
|
const MCInstrDesc &MCID = get(Opc);
|
|
const TargetRegisterClass *RC = getRegClass(MCID, Index, &RI);
|
|
unsigned NumDefs = MCID.NumDefs;
|
|
std::vector<SDValue> AddrOps;
|
|
std::vector<SDValue> BeforeOps;
|
|
std::vector<SDValue> AfterOps;
|
|
DebugLoc dl = N->getDebugLoc();
|
|
unsigned NumOps = N->getNumOperands();
|
|
for (unsigned i = 0; i != NumOps-1; ++i) {
|
|
SDValue Op = N->getOperand(i);
|
|
if (i >= Index-NumDefs && i < Index-NumDefs + X86::AddrNumOperands)
|
|
AddrOps.push_back(Op);
|
|
else if (i < Index-NumDefs)
|
|
BeforeOps.push_back(Op);
|
|
else if (i > Index-NumDefs)
|
|
AfterOps.push_back(Op);
|
|
}
|
|
SDValue Chain = N->getOperand(NumOps-1);
|
|
AddrOps.push_back(Chain);
|
|
|
|
// Emit the load instruction.
|
|
SDNode *Load = 0;
|
|
MachineFunction &MF = DAG.getMachineFunction();
|
|
if (FoldedLoad) {
|
|
EVT VT = *RC->vt_begin();
|
|
std::pair<MachineInstr::mmo_iterator,
|
|
MachineInstr::mmo_iterator> MMOs =
|
|
MF.extractLoadMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
|
|
cast<MachineSDNode>(N)->memoperands_end());
|
|
if (!(*MMOs.first) &&
|
|
RC == &X86::VR128RegClass &&
|
|
!TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
|
|
// Do not introduce a slow unaligned load.
|
|
return false;
|
|
unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
|
|
bool isAligned = (*MMOs.first) &&
|
|
(*MMOs.first)->getAlignment() >= Alignment;
|
|
Load = DAG.getMachineNode(getLoadRegOpcode(0, RC, isAligned, TM), dl,
|
|
VT, MVT::Other, &AddrOps[0], AddrOps.size());
|
|
NewNodes.push_back(Load);
|
|
|
|
// Preserve memory reference information.
|
|
cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
|
|
}
|
|
|
|
// Emit the data processing instruction.
|
|
std::vector<EVT> VTs;
|
|
const TargetRegisterClass *DstRC = 0;
|
|
if (MCID.getNumDefs() > 0) {
|
|
DstRC = getRegClass(MCID, 0, &RI);
|
|
VTs.push_back(*DstRC->vt_begin());
|
|
}
|
|
for (unsigned i = 0, e = N->getNumValues(); i != e; ++i) {
|
|
EVT VT = N->getValueType(i);
|
|
if (VT != MVT::Other && i >= (unsigned)MCID.getNumDefs())
|
|
VTs.push_back(VT);
|
|
}
|
|
if (Load)
|
|
BeforeOps.push_back(SDValue(Load, 0));
|
|
std::copy(AfterOps.begin(), AfterOps.end(), std::back_inserter(BeforeOps));
|
|
SDNode *NewNode= DAG.getMachineNode(Opc, dl, VTs, &BeforeOps[0],
|
|
BeforeOps.size());
|
|
NewNodes.push_back(NewNode);
|
|
|
|
// Emit the store instruction.
|
|
if (FoldedStore) {
|
|
AddrOps.pop_back();
|
|
AddrOps.push_back(SDValue(NewNode, 0));
|
|
AddrOps.push_back(Chain);
|
|
std::pair<MachineInstr::mmo_iterator,
|
|
MachineInstr::mmo_iterator> MMOs =
|
|
MF.extractStoreMemRefs(cast<MachineSDNode>(N)->memoperands_begin(),
|
|
cast<MachineSDNode>(N)->memoperands_end());
|
|
if (!(*MMOs.first) &&
|
|
RC == &X86::VR128RegClass &&
|
|
!TM.getSubtarget<X86Subtarget>().isUnalignedMemAccessFast())
|
|
// Do not introduce a slow unaligned store.
|
|
return false;
|
|
unsigned Alignment = RC->getSize() == 32 ? 32 : 16;
|
|
bool isAligned = (*MMOs.first) &&
|
|
(*MMOs.first)->getAlignment() >= Alignment;
|
|
SDNode *Store = DAG.getMachineNode(getStoreRegOpcode(0, DstRC,
|
|
isAligned, TM),
|
|
dl, MVT::Other,
|
|
&AddrOps[0], AddrOps.size());
|
|
NewNodes.push_back(Store);
|
|
|
|
// Preserve memory reference information.
|
|
cast<MachineSDNode>(Load)->setMemRefs(MMOs.first, MMOs.second);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
unsigned X86InstrInfo::getOpcodeAfterMemoryUnfold(unsigned Opc,
|
|
bool UnfoldLoad, bool UnfoldStore,
|
|
unsigned *LoadRegIndex) const {
|
|
DenseMap<unsigned, std::pair<unsigned,unsigned> >::const_iterator I =
|
|
MemOp2RegOpTable.find(Opc);
|
|
if (I == MemOp2RegOpTable.end())
|
|
return 0;
|
|
bool FoldedLoad = I->second.second & TB_FOLDED_LOAD;
|
|
bool FoldedStore = I->second.second & TB_FOLDED_STORE;
|
|
if (UnfoldLoad && !FoldedLoad)
|
|
return 0;
|
|
if (UnfoldStore && !FoldedStore)
|
|
return 0;
|
|
if (LoadRegIndex)
|
|
*LoadRegIndex = I->second.second & TB_INDEX_MASK;
|
|
return I->second.first;
|
|
}
|
|
|
|
bool
|
|
X86InstrInfo::areLoadsFromSameBasePtr(SDNode *Load1, SDNode *Load2,
|
|
int64_t &Offset1, int64_t &Offset2) const {
|
|
if (!Load1->isMachineOpcode() || !Load2->isMachineOpcode())
|
|
return false;
|
|
unsigned Opc1 = Load1->getMachineOpcode();
|
|
unsigned Opc2 = Load2->getMachineOpcode();
|
|
switch (Opc1) {
|
|
default: return false;
|
|
case X86::MOV8rm:
|
|
case X86::MOV16rm:
|
|
case X86::MOV32rm:
|
|
case X86::MOV64rm:
|
|
case X86::LD_Fp32m:
|
|
case X86::LD_Fp64m:
|
|
case X86::LD_Fp80m:
|
|
case X86::MOVSSrm:
|
|
case X86::MOVSDrm:
|
|
case X86::MMX_MOVD64rm:
|
|
case X86::MMX_MOVQ64rm:
|
|
case X86::FsMOVAPSrm:
|
|
case X86::FsMOVAPDrm:
|
|
case X86::MOVAPSrm:
|
|
case X86::MOVUPSrm:
|
|
case X86::MOVAPDrm:
|
|
case X86::MOVDQArm:
|
|
case X86::MOVDQUrm:
|
|
// AVX load instructions
|
|
case X86::VMOVSSrm:
|
|
case X86::VMOVSDrm:
|
|
case X86::FsVMOVAPSrm:
|
|
case X86::FsVMOVAPDrm:
|
|
case X86::VMOVAPSrm:
|
|
case X86::VMOVUPSrm:
|
|
case X86::VMOVAPDrm:
|
|
case X86::VMOVDQArm:
|
|
case X86::VMOVDQUrm:
|
|
case X86::VMOVAPSYrm:
|
|
case X86::VMOVUPSYrm:
|
|
case X86::VMOVAPDYrm:
|
|
case X86::VMOVDQAYrm:
|
|
case X86::VMOVDQUYrm:
|
|
break;
|
|
}
|
|
switch (Opc2) {
|
|
default: return false;
|
|
case X86::MOV8rm:
|
|
case X86::MOV16rm:
|
|
case X86::MOV32rm:
|
|
case X86::MOV64rm:
|
|
case X86::LD_Fp32m:
|
|
case X86::LD_Fp64m:
|
|
case X86::LD_Fp80m:
|
|
case X86::MOVSSrm:
|
|
case X86::MOVSDrm:
|
|
case X86::MMX_MOVD64rm:
|
|
case X86::MMX_MOVQ64rm:
|
|
case X86::FsMOVAPSrm:
|
|
case X86::FsMOVAPDrm:
|
|
case X86::MOVAPSrm:
|
|
case X86::MOVUPSrm:
|
|
case X86::MOVAPDrm:
|
|
case X86::MOVDQArm:
|
|
case X86::MOVDQUrm:
|
|
// AVX load instructions
|
|
case X86::VMOVSSrm:
|
|
case X86::VMOVSDrm:
|
|
case X86::FsVMOVAPSrm:
|
|
case X86::FsVMOVAPDrm:
|
|
case X86::VMOVAPSrm:
|
|
case X86::VMOVUPSrm:
|
|
case X86::VMOVAPDrm:
|
|
case X86::VMOVDQArm:
|
|
case X86::VMOVDQUrm:
|
|
case X86::VMOVAPSYrm:
|
|
case X86::VMOVUPSYrm:
|
|
case X86::VMOVAPDYrm:
|
|
case X86::VMOVDQAYrm:
|
|
case X86::VMOVDQUYrm:
|
|
break;
|
|
}
|
|
|
|
// Check if chain operands and base addresses match.
|
|
if (Load1->getOperand(0) != Load2->getOperand(0) ||
|
|
Load1->getOperand(5) != Load2->getOperand(5))
|
|
return false;
|
|
// Segment operands should match as well.
|
|
if (Load1->getOperand(4) != Load2->getOperand(4))
|
|
return false;
|
|
// Scale should be 1, Index should be Reg0.
|
|
if (Load1->getOperand(1) == Load2->getOperand(1) &&
|
|
Load1->getOperand(2) == Load2->getOperand(2)) {
|
|
if (cast<ConstantSDNode>(Load1->getOperand(1))->getZExtValue() != 1)
|
|
return false;
|
|
|
|
// Now let's examine the displacements.
|
|
if (isa<ConstantSDNode>(Load1->getOperand(3)) &&
|
|
isa<ConstantSDNode>(Load2->getOperand(3))) {
|
|
Offset1 = cast<ConstantSDNode>(Load1->getOperand(3))->getSExtValue();
|
|
Offset2 = cast<ConstantSDNode>(Load2->getOperand(3))->getSExtValue();
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool X86InstrInfo::shouldScheduleLoadsNear(SDNode *Load1, SDNode *Load2,
|
|
int64_t Offset1, int64_t Offset2,
|
|
unsigned NumLoads) const {
|
|
assert(Offset2 > Offset1);
|
|
if ((Offset2 - Offset1) / 8 > 64)
|
|
return false;
|
|
|
|
unsigned Opc1 = Load1->getMachineOpcode();
|
|
unsigned Opc2 = Load2->getMachineOpcode();
|
|
if (Opc1 != Opc2)
|
|
return false; // FIXME: overly conservative?
|
|
|
|
switch (Opc1) {
|
|
default: break;
|
|
case X86::LD_Fp32m:
|
|
case X86::LD_Fp64m:
|
|
case X86::LD_Fp80m:
|
|
case X86::MMX_MOVD64rm:
|
|
case X86::MMX_MOVQ64rm:
|
|
return false;
|
|
}
|
|
|
|
EVT VT = Load1->getValueType(0);
|
|
switch (VT.getSimpleVT().SimpleTy) {
|
|
default:
|
|
// XMM registers. In 64-bit mode we can be a bit more aggressive since we
|
|
// have 16 of them to play with.
|
|
if (TM.getSubtargetImpl()->is64Bit()) {
|
|
if (NumLoads >= 3)
|
|
return false;
|
|
} else if (NumLoads) {
|
|
return false;
|
|
}
|
|
break;
|
|
case MVT::i8:
|
|
case MVT::i16:
|
|
case MVT::i32:
|
|
case MVT::i64:
|
|
case MVT::f32:
|
|
case MVT::f64:
|
|
if (NumLoads)
|
|
return false;
|
|
break;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
bool X86InstrInfo::
|
|
ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
|
|
assert(Cond.size() == 1 && "Invalid X86 branch condition!");
|
|
X86::CondCode CC = static_cast<X86::CondCode>(Cond[0].getImm());
|
|
if (CC == X86::COND_NE_OR_P || CC == X86::COND_NP_OR_E)
|
|
return true;
|
|
Cond[0].setImm(GetOppositeBranchCondition(CC));
|
|
return false;
|
|
}
|
|
|
|
bool X86InstrInfo::
|
|
isSafeToMoveRegClassDefs(const TargetRegisterClass *RC) const {
|
|
// FIXME: Return false for x87 stack register classes for now. We can't
|
|
// allow any loads of these registers before FpGet_ST0_80.
|
|
return !(RC == &X86::CCRRegClass || RC == &X86::RFP32RegClass ||
|
|
RC == &X86::RFP64RegClass || RC == &X86::RFP80RegClass);
|
|
}
|
|
|
|
/// getGlobalBaseReg - Return a virtual register initialized with the
|
|
/// the global base register value. Output instructions required to
|
|
/// initialize the register in the function entry block, if necessary.
|
|
///
|
|
/// TODO: Eliminate this and move the code to X86MachineFunctionInfo.
|
|
///
|
|
unsigned X86InstrInfo::getGlobalBaseReg(MachineFunction *MF) const {
|
|
assert(!TM.getSubtarget<X86Subtarget>().is64Bit() &&
|
|
"X86-64 PIC uses RIP relative addressing");
|
|
|
|
X86MachineFunctionInfo *X86FI = MF->getInfo<X86MachineFunctionInfo>();
|
|
unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
|
|
if (GlobalBaseReg != 0)
|
|
return GlobalBaseReg;
|
|
|
|
// Create the register. The code to initialize it is inserted
|
|
// later, by the CGBR pass (below).
|
|
MachineRegisterInfo &RegInfo = MF->getRegInfo();
|
|
GlobalBaseReg = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
|
|
X86FI->setGlobalBaseReg(GlobalBaseReg);
|
|
return GlobalBaseReg;
|
|
}
|
|
|
|
// These are the replaceable SSE instructions. Some of these have Int variants
|
|
// that we don't include here. We don't want to replace instructions selected
|
|
// by intrinsics.
|
|
static const unsigned ReplaceableInstrs[][3] = {
|
|
//PackedSingle PackedDouble PackedInt
|
|
{ X86::MOVAPSmr, X86::MOVAPDmr, X86::MOVDQAmr },
|
|
{ X86::MOVAPSrm, X86::MOVAPDrm, X86::MOVDQArm },
|
|
{ X86::MOVAPSrr, X86::MOVAPDrr, X86::MOVDQArr },
|
|
{ X86::MOVUPSmr, X86::MOVUPDmr, X86::MOVDQUmr },
|
|
{ X86::MOVUPSrm, X86::MOVUPDrm, X86::MOVDQUrm },
|
|
{ X86::MOVNTPSmr, X86::MOVNTPDmr, X86::MOVNTDQmr },
|
|
{ X86::ANDNPSrm, X86::ANDNPDrm, X86::PANDNrm },
|
|
{ X86::ANDNPSrr, X86::ANDNPDrr, X86::PANDNrr },
|
|
{ X86::ANDPSrm, X86::ANDPDrm, X86::PANDrm },
|
|
{ X86::ANDPSrr, X86::ANDPDrr, X86::PANDrr },
|
|
{ X86::ORPSrm, X86::ORPDrm, X86::PORrm },
|
|
{ X86::ORPSrr, X86::ORPDrr, X86::PORrr },
|
|
{ X86::XORPSrm, X86::XORPDrm, X86::PXORrm },
|
|
{ X86::XORPSrr, X86::XORPDrr, X86::PXORrr },
|
|
// AVX 128-bit support
|
|
{ X86::VMOVAPSmr, X86::VMOVAPDmr, X86::VMOVDQAmr },
|
|
{ X86::VMOVAPSrm, X86::VMOVAPDrm, X86::VMOVDQArm },
|
|
{ X86::VMOVAPSrr, X86::VMOVAPDrr, X86::VMOVDQArr },
|
|
{ X86::VMOVUPSmr, X86::VMOVUPDmr, X86::VMOVDQUmr },
|
|
{ X86::VMOVUPSrm, X86::VMOVUPDrm, X86::VMOVDQUrm },
|
|
{ X86::VMOVNTPSmr, X86::VMOVNTPDmr, X86::VMOVNTDQmr },
|
|
{ X86::VANDNPSrm, X86::VANDNPDrm, X86::VPANDNrm },
|
|
{ X86::VANDNPSrr, X86::VANDNPDrr, X86::VPANDNrr },
|
|
{ X86::VANDPSrm, X86::VANDPDrm, X86::VPANDrm },
|
|
{ X86::VANDPSrr, X86::VANDPDrr, X86::VPANDrr },
|
|
{ X86::VORPSrm, X86::VORPDrm, X86::VPORrm },
|
|
{ X86::VORPSrr, X86::VORPDrr, X86::VPORrr },
|
|
{ X86::VXORPSrm, X86::VXORPDrm, X86::VPXORrm },
|
|
{ X86::VXORPSrr, X86::VXORPDrr, X86::VPXORrr },
|
|
// AVX 256-bit support
|
|
{ X86::VMOVAPSYmr, X86::VMOVAPDYmr, X86::VMOVDQAYmr },
|
|
{ X86::VMOVAPSYrm, X86::VMOVAPDYrm, X86::VMOVDQAYrm },
|
|
{ X86::VMOVAPSYrr, X86::VMOVAPDYrr, X86::VMOVDQAYrr },
|
|
{ X86::VMOVUPSYmr, X86::VMOVUPDYmr, X86::VMOVDQUYmr },
|
|
{ X86::VMOVUPSYrm, X86::VMOVUPDYrm, X86::VMOVDQUYrm },
|
|
{ X86::VMOVNTPSYmr, X86::VMOVNTPDYmr, X86::VMOVNTDQYmr }
|
|
};
|
|
|
|
static const unsigned ReplaceableInstrsAVX2[][3] = {
|
|
//PackedSingle PackedDouble PackedInt
|
|
{ X86::VANDNPSYrm, X86::VANDNPDYrm, X86::VPANDNYrm },
|
|
{ X86::VANDNPSYrr, X86::VANDNPDYrr, X86::VPANDNYrr },
|
|
{ X86::VANDPSYrm, X86::VANDPDYrm, X86::VPANDYrm },
|
|
{ X86::VANDPSYrr, X86::VANDPDYrr, X86::VPANDYrr },
|
|
{ X86::VORPSYrm, X86::VORPDYrm, X86::VPORYrm },
|
|
{ X86::VORPSYrr, X86::VORPDYrr, X86::VPORYrr },
|
|
{ X86::VXORPSYrm, X86::VXORPDYrm, X86::VPXORYrm },
|
|
{ X86::VXORPSYrr, X86::VXORPDYrr, X86::VPXORYrr },
|
|
{ X86::VEXTRACTF128mr, X86::VEXTRACTF128mr, X86::VEXTRACTI128mr },
|
|
{ X86::VEXTRACTF128rr, X86::VEXTRACTF128rr, X86::VEXTRACTI128rr },
|
|
{ X86::VINSERTF128rm, X86::VINSERTF128rm, X86::VINSERTI128rm },
|
|
{ X86::VINSERTF128rr, X86::VINSERTF128rr, X86::VINSERTI128rr },
|
|
{ X86::VPERM2F128rm, X86::VPERM2F128rm, X86::VPERM2I128rm },
|
|
{ X86::VPERM2F128rr, X86::VPERM2F128rr, X86::VPERM2I128rr }
|
|
};
|
|
|
|
// FIXME: Some shuffle and unpack instructions have equivalents in different
|
|
// domains, but they require a bit more work than just switching opcodes.
|
|
|
|
static const unsigned *lookup(unsigned opcode, unsigned domain) {
|
|
for (unsigned i = 0, e = array_lengthof(ReplaceableInstrs); i != e; ++i)
|
|
if (ReplaceableInstrs[i][domain-1] == opcode)
|
|
return ReplaceableInstrs[i];
|
|
return 0;
|
|
}
|
|
|
|
static const unsigned *lookupAVX2(unsigned opcode, unsigned domain) {
|
|
for (unsigned i = 0, e = array_lengthof(ReplaceableInstrsAVX2); i != e; ++i)
|
|
if (ReplaceableInstrsAVX2[i][domain-1] == opcode)
|
|
return ReplaceableInstrsAVX2[i];
|
|
return 0;
|
|
}
|
|
|
|
std::pair<uint16_t, uint16_t>
|
|
X86InstrInfo::getExecutionDomain(const MachineInstr *MI) const {
|
|
uint16_t domain = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
|
|
bool hasAVX2 = TM.getSubtarget<X86Subtarget>().hasAVX2();
|
|
uint16_t validDomains = 0;
|
|
if (domain && lookup(MI->getOpcode(), domain))
|
|
validDomains = 0xe;
|
|
else if (domain && lookupAVX2(MI->getOpcode(), domain))
|
|
validDomains = hasAVX2 ? 0xe : 0x6;
|
|
return std::make_pair(domain, validDomains);
|
|
}
|
|
|
|
void X86InstrInfo::setExecutionDomain(MachineInstr *MI, unsigned Domain) const {
|
|
assert(Domain>0 && Domain<4 && "Invalid execution domain");
|
|
uint16_t dom = (MI->getDesc().TSFlags >> X86II::SSEDomainShift) & 3;
|
|
assert(dom && "Not an SSE instruction");
|
|
const unsigned *table = lookup(MI->getOpcode(), dom);
|
|
if (!table) { // try the other table
|
|
assert((TM.getSubtarget<X86Subtarget>().hasAVX2() || Domain < 3) &&
|
|
"256-bit vector operations only available in AVX2");
|
|
table = lookupAVX2(MI->getOpcode(), dom);
|
|
}
|
|
assert(table && "Cannot change domain");
|
|
MI->setDesc(get(table[Domain-1]));
|
|
}
|
|
|
|
/// getNoopForMachoTarget - Return the noop instruction to use for a noop.
|
|
void X86InstrInfo::getNoopForMachoTarget(MCInst &NopInst) const {
|
|
NopInst.setOpcode(X86::NOOP);
|
|
}
|
|
|
|
bool X86InstrInfo::isHighLatencyDef(int opc) const {
|
|
switch (opc) {
|
|
default: return false;
|
|
case X86::DIVSDrm:
|
|
case X86::DIVSDrm_Int:
|
|
case X86::DIVSDrr:
|
|
case X86::DIVSDrr_Int:
|
|
case X86::DIVSSrm:
|
|
case X86::DIVSSrm_Int:
|
|
case X86::DIVSSrr:
|
|
case X86::DIVSSrr_Int:
|
|
case X86::SQRTPDm:
|
|
case X86::SQRTPDm_Int:
|
|
case X86::SQRTPDr:
|
|
case X86::SQRTPDr_Int:
|
|
case X86::SQRTPSm:
|
|
case X86::SQRTPSm_Int:
|
|
case X86::SQRTPSr:
|
|
case X86::SQRTPSr_Int:
|
|
case X86::SQRTSDm:
|
|
case X86::SQRTSDm_Int:
|
|
case X86::SQRTSDr:
|
|
case X86::SQRTSDr_Int:
|
|
case X86::SQRTSSm:
|
|
case X86::SQRTSSm_Int:
|
|
case X86::SQRTSSr:
|
|
case X86::SQRTSSr_Int:
|
|
// AVX instructions with high latency
|
|
case X86::VDIVSDrm:
|
|
case X86::VDIVSDrm_Int:
|
|
case X86::VDIVSDrr:
|
|
case X86::VDIVSDrr_Int:
|
|
case X86::VDIVSSrm:
|
|
case X86::VDIVSSrm_Int:
|
|
case X86::VDIVSSrr:
|
|
case X86::VDIVSSrr_Int:
|
|
case X86::VSQRTPDm:
|
|
case X86::VSQRTPDm_Int:
|
|
case X86::VSQRTPDr:
|
|
case X86::VSQRTPDr_Int:
|
|
case X86::VSQRTPSm:
|
|
case X86::VSQRTPSm_Int:
|
|
case X86::VSQRTPSr:
|
|
case X86::VSQRTPSr_Int:
|
|
case X86::VSQRTSDm:
|
|
case X86::VSQRTSDm_Int:
|
|
case X86::VSQRTSDr:
|
|
case X86::VSQRTSSm:
|
|
case X86::VSQRTSSm_Int:
|
|
case X86::VSQRTSSr:
|
|
return true;
|
|
}
|
|
}
|
|
|
|
bool X86InstrInfo::
|
|
hasHighOperandLatency(const InstrItineraryData *ItinData,
|
|
const MachineRegisterInfo *MRI,
|
|
const MachineInstr *DefMI, unsigned DefIdx,
|
|
const MachineInstr *UseMI, unsigned UseIdx) const {
|
|
return isHighLatencyDef(DefMI->getOpcode());
|
|
}
|
|
|
|
namespace {
|
|
/// CGBR - Create Global Base Reg pass. This initializes the PIC
|
|
/// global base register for x86-32.
|
|
struct CGBR : public MachineFunctionPass {
|
|
static char ID;
|
|
CGBR() : MachineFunctionPass(ID) {}
|
|
|
|
virtual bool runOnMachineFunction(MachineFunction &MF) {
|
|
const X86TargetMachine *TM =
|
|
static_cast<const X86TargetMachine *>(&MF.getTarget());
|
|
|
|
assert(!TM->getSubtarget<X86Subtarget>().is64Bit() &&
|
|
"X86-64 PIC uses RIP relative addressing");
|
|
|
|
// Only emit a global base reg in PIC mode.
|
|
if (TM->getRelocationModel() != Reloc::PIC_)
|
|
return false;
|
|
|
|
X86MachineFunctionInfo *X86FI = MF.getInfo<X86MachineFunctionInfo>();
|
|
unsigned GlobalBaseReg = X86FI->getGlobalBaseReg();
|
|
|
|
// If we didn't need a GlobalBaseReg, don't insert code.
|
|
if (GlobalBaseReg == 0)
|
|
return false;
|
|
|
|
// Insert the set of GlobalBaseReg into the first MBB of the function
|
|
MachineBasicBlock &FirstMBB = MF.front();
|
|
MachineBasicBlock::iterator MBBI = FirstMBB.begin();
|
|
DebugLoc DL = FirstMBB.findDebugLoc(MBBI);
|
|
MachineRegisterInfo &RegInfo = MF.getRegInfo();
|
|
const X86InstrInfo *TII = TM->getInstrInfo();
|
|
|
|
unsigned PC;
|
|
if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT())
|
|
PC = RegInfo.createVirtualRegister(X86::GR32RegisterClass);
|
|
else
|
|
PC = GlobalBaseReg;
|
|
|
|
// Operand of MovePCtoStack is completely ignored by asm printer. It's
|
|
// only used in JIT code emission as displacement to pc.
|
|
BuildMI(FirstMBB, MBBI, DL, TII->get(X86::MOVPC32r), PC).addImm(0);
|
|
|
|
// If we're using vanilla 'GOT' PIC style, we should use relative addressing
|
|
// not to pc, but to _GLOBAL_OFFSET_TABLE_ external.
|
|
if (TM->getSubtarget<X86Subtarget>().isPICStyleGOT()) {
|
|
// Generate addl $__GLOBAL_OFFSET_TABLE_ + [.-piclabel], %some_register
|
|
BuildMI(FirstMBB, MBBI, DL, TII->get(X86::ADD32ri), GlobalBaseReg)
|
|
.addReg(PC).addExternalSymbol("_GLOBAL_OFFSET_TABLE_",
|
|
X86II::MO_GOT_ABSOLUTE_ADDRESS);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
virtual const char *getPassName() const {
|
|
return "X86 PIC Global Base Reg Initialization";
|
|
}
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesCFG();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
}
|
|
};
|
|
}
|
|
|
|
char CGBR::ID = 0;
|
|
FunctionPass*
|
|
llvm::createGlobalBaseRegPass() { return new CGBR(); }
|