mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-22 10:33:23 +00:00
76a690e024
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@54980 91177308-0d34-0410-b5e6-96231b3b80d8
1534 lines
58 KiB
C++
1534 lines
58 KiB
C++
//===-- Verifier.cpp - Implement the Module Verifier -------------*- C++ -*-==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the function verifier interface, that can be used for some
|
|
// sanity checking of input to the system.
|
|
//
|
|
// Note that this does not provide full `Java style' security and verifications,
|
|
// instead it just tries to ensure that code is well-formed.
|
|
//
|
|
// * Both of a binary operator's parameters are of the same type
|
|
// * Verify that the indices of mem access instructions match other operands
|
|
// * Verify that arithmetic and other things are only performed on first-class
|
|
// types. Verify that shifts & logicals only happen on integrals f.e.
|
|
// * All of the constants in a switch statement are of the correct type
|
|
// * The code is in valid SSA form
|
|
// * It should be illegal to put a label into any other type (like a structure)
|
|
// or to return one. [except constant arrays!]
|
|
// * Only phi nodes can be self referential: 'add i32 %0, %0 ; <int>:0' is bad
|
|
// * PHI nodes must have an entry for each predecessor, with no extras.
|
|
// * PHI nodes must be the first thing in a basic block, all grouped together
|
|
// * PHI nodes must have at least one entry
|
|
// * All basic blocks should only end with terminator insts, not contain them
|
|
// * The entry node to a function must not have predecessors
|
|
// * All Instructions must be embedded into a basic block
|
|
// * Functions cannot take a void-typed parameter
|
|
// * Verify that a function's argument list agrees with it's declared type.
|
|
// * It is illegal to specify a name for a void value.
|
|
// * It is illegal to have a internal global value with no initializer
|
|
// * It is illegal to have a ret instruction that returns a value that does not
|
|
// agree with the function return value type.
|
|
// * Function call argument types match the function prototype
|
|
// * All other things that are tested by asserts spread about the code...
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/Verifier.h"
|
|
#include "llvm/CallingConv.h"
|
|
#include "llvm/Constants.h"
|
|
#include "llvm/DerivedTypes.h"
|
|
#include "llvm/InlineAsm.h"
|
|
#include "llvm/IntrinsicInst.h"
|
|
#include "llvm/Module.h"
|
|
#include "llvm/ModuleProvider.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/PassManager.h"
|
|
#include "llvm/Analysis/Dominators.h"
|
|
#include "llvm/Assembly/Writer.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/Support/CallSite.h"
|
|
#include "llvm/Support/CFG.h"
|
|
#include "llvm/Support/InstVisitor.h"
|
|
#include "llvm/Support/Streams.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include <algorithm>
|
|
#include <sstream>
|
|
#include <cstdarg>
|
|
using namespace llvm;
|
|
|
|
namespace { // Anonymous namespace for class
|
|
struct VISIBILITY_HIDDEN PreVerifier : public FunctionPass {
|
|
static char ID; // Pass ID, replacement for typeid
|
|
|
|
PreVerifier() : FunctionPass((intptr_t)&ID) { }
|
|
|
|
// Check that the prerequisites for successful DominatorTree construction
|
|
// are satisfied.
|
|
bool runOnFunction(Function &F) {
|
|
bool Broken = false;
|
|
|
|
for (Function::iterator I = F.begin(), E = F.end(); I != E; ++I) {
|
|
if (I->empty() || !I->back().isTerminator()) {
|
|
cerr << "Basic Block does not have terminator!\n";
|
|
WriteAsOperand(*cerr, I, true);
|
|
cerr << "\n";
|
|
Broken = true;
|
|
}
|
|
}
|
|
|
|
if (Broken)
|
|
abort();
|
|
|
|
return false;
|
|
}
|
|
};
|
|
}
|
|
|
|
char PreVerifier::ID = 0;
|
|
static RegisterPass<PreVerifier>
|
|
PreVer("preverify", "Preliminary module verification");
|
|
static const PassInfo *const PreVerifyID = &PreVer;
|
|
|
|
namespace {
|
|
struct VISIBILITY_HIDDEN
|
|
Verifier : public FunctionPass, InstVisitor<Verifier> {
|
|
static char ID; // Pass ID, replacement for typeid
|
|
bool Broken; // Is this module found to be broken?
|
|
bool RealPass; // Are we not being run by a PassManager?
|
|
VerifierFailureAction action;
|
|
// What to do if verification fails.
|
|
Module *Mod; // Module we are verifying right now
|
|
DominatorTree *DT; // Dominator Tree, caution can be null!
|
|
std::stringstream msgs; // A stringstream to collect messages
|
|
|
|
/// InstInThisBlock - when verifying a basic block, keep track of all of the
|
|
/// instructions we have seen so far. This allows us to do efficient
|
|
/// dominance checks for the case when an instruction has an operand that is
|
|
/// an instruction in the same block.
|
|
SmallPtrSet<Instruction*, 16> InstsInThisBlock;
|
|
|
|
Verifier()
|
|
: FunctionPass((intptr_t)&ID),
|
|
Broken(false), RealPass(true), action(AbortProcessAction),
|
|
DT(0), msgs( std::ios::app | std::ios::out ) {}
|
|
explicit Verifier(VerifierFailureAction ctn)
|
|
: FunctionPass((intptr_t)&ID),
|
|
Broken(false), RealPass(true), action(ctn), DT(0),
|
|
msgs( std::ios::app | std::ios::out ) {}
|
|
explicit Verifier(bool AB)
|
|
: FunctionPass((intptr_t)&ID),
|
|
Broken(false), RealPass(true),
|
|
action( AB ? AbortProcessAction : PrintMessageAction), DT(0),
|
|
msgs( std::ios::app | std::ios::out ) {}
|
|
explicit Verifier(DominatorTree &dt)
|
|
: FunctionPass((intptr_t)&ID),
|
|
Broken(false), RealPass(false), action(PrintMessageAction),
|
|
DT(&dt), msgs( std::ios::app | std::ios::out ) {}
|
|
|
|
|
|
bool doInitialization(Module &M) {
|
|
Mod = &M;
|
|
verifyTypeSymbolTable(M.getTypeSymbolTable());
|
|
|
|
// If this is a real pass, in a pass manager, we must abort before
|
|
// returning back to the pass manager, or else the pass manager may try to
|
|
// run other passes on the broken module.
|
|
if (RealPass)
|
|
return abortIfBroken();
|
|
return false;
|
|
}
|
|
|
|
bool runOnFunction(Function &F) {
|
|
// Get dominator information if we are being run by PassManager
|
|
if (RealPass) DT = &getAnalysis<DominatorTree>();
|
|
|
|
Mod = F.getParent();
|
|
|
|
visit(F);
|
|
InstsInThisBlock.clear();
|
|
|
|
// If this is a real pass, in a pass manager, we must abort before
|
|
// returning back to the pass manager, or else the pass manager may try to
|
|
// run other passes on the broken module.
|
|
if (RealPass)
|
|
return abortIfBroken();
|
|
|
|
return false;
|
|
}
|
|
|
|
bool doFinalization(Module &M) {
|
|
// Scan through, checking all of the external function's linkage now...
|
|
for (Module::iterator I = M.begin(), E = M.end(); I != E; ++I) {
|
|
visitGlobalValue(*I);
|
|
|
|
// Check to make sure function prototypes are okay.
|
|
if (I->isDeclaration()) visitFunction(*I);
|
|
}
|
|
|
|
for (Module::global_iterator I = M.global_begin(), E = M.global_end();
|
|
I != E; ++I)
|
|
visitGlobalVariable(*I);
|
|
|
|
for (Module::alias_iterator I = M.alias_begin(), E = M.alias_end();
|
|
I != E; ++I)
|
|
visitGlobalAlias(*I);
|
|
|
|
// If the module is broken, abort at this time.
|
|
return abortIfBroken();
|
|
}
|
|
|
|
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
AU.addRequiredID(PreVerifyID);
|
|
if (RealPass)
|
|
AU.addRequired<DominatorTree>();
|
|
}
|
|
|
|
/// abortIfBroken - If the module is broken and we are supposed to abort on
|
|
/// this condition, do so.
|
|
///
|
|
bool abortIfBroken() {
|
|
if (Broken) {
|
|
msgs << "Broken module found, ";
|
|
switch (action) {
|
|
case AbortProcessAction:
|
|
msgs << "compilation aborted!\n";
|
|
cerr << msgs.str();
|
|
abort();
|
|
case PrintMessageAction:
|
|
msgs << "verification continues.\n";
|
|
cerr << msgs.str();
|
|
return false;
|
|
case ReturnStatusAction:
|
|
msgs << "compilation terminated.\n";
|
|
return Broken;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
|
|
// Verification methods...
|
|
void verifyTypeSymbolTable(TypeSymbolTable &ST);
|
|
void visitGlobalValue(GlobalValue &GV);
|
|
void visitGlobalVariable(GlobalVariable &GV);
|
|
void visitGlobalAlias(GlobalAlias &GA);
|
|
void visitFunction(Function &F);
|
|
void visitBasicBlock(BasicBlock &BB);
|
|
void visitTruncInst(TruncInst &I);
|
|
void visitZExtInst(ZExtInst &I);
|
|
void visitSExtInst(SExtInst &I);
|
|
void visitFPTruncInst(FPTruncInst &I);
|
|
void visitFPExtInst(FPExtInst &I);
|
|
void visitFPToUIInst(FPToUIInst &I);
|
|
void visitFPToSIInst(FPToSIInst &I);
|
|
void visitUIToFPInst(UIToFPInst &I);
|
|
void visitSIToFPInst(SIToFPInst &I);
|
|
void visitIntToPtrInst(IntToPtrInst &I);
|
|
void visitPtrToIntInst(PtrToIntInst &I);
|
|
void visitBitCastInst(BitCastInst &I);
|
|
void visitPHINode(PHINode &PN);
|
|
void visitBinaryOperator(BinaryOperator &B);
|
|
void visitICmpInst(ICmpInst &IC);
|
|
void visitFCmpInst(FCmpInst &FC);
|
|
void visitExtractElementInst(ExtractElementInst &EI);
|
|
void visitInsertElementInst(InsertElementInst &EI);
|
|
void visitShuffleVectorInst(ShuffleVectorInst &EI);
|
|
void visitVAArgInst(VAArgInst &VAA) { visitInstruction(VAA); }
|
|
void visitCallInst(CallInst &CI);
|
|
void visitInvokeInst(InvokeInst &II);
|
|
void visitGetElementPtrInst(GetElementPtrInst &GEP);
|
|
void visitLoadInst(LoadInst &LI);
|
|
void visitStoreInst(StoreInst &SI);
|
|
void visitInstruction(Instruction &I);
|
|
void visitTerminatorInst(TerminatorInst &I);
|
|
void visitReturnInst(ReturnInst &RI);
|
|
void visitSwitchInst(SwitchInst &SI);
|
|
void visitSelectInst(SelectInst &SI);
|
|
void visitUserOp1(Instruction &I);
|
|
void visitUserOp2(Instruction &I) { visitUserOp1(I); }
|
|
void visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI);
|
|
void visitAllocationInst(AllocationInst &AI);
|
|
void visitExtractValueInst(ExtractValueInst &EVI);
|
|
void visitInsertValueInst(InsertValueInst &IVI);
|
|
|
|
void VerifyCallSite(CallSite CS);
|
|
void VerifyIntrinsicPrototype(Intrinsic::ID ID, Function *F,
|
|
unsigned Count, ...);
|
|
void VerifyAttrs(ParameterAttributes Attrs, const Type *Ty,
|
|
bool isReturnValue, const Value *V);
|
|
void VerifyFunctionAttrs(const FunctionType *FT, const PAListPtr &Attrs,
|
|
const Value *V);
|
|
|
|
void WriteValue(const Value *V) {
|
|
if (!V) return;
|
|
if (isa<Instruction>(V)) {
|
|
msgs << *V;
|
|
} else {
|
|
WriteAsOperand(msgs, V, true, Mod);
|
|
msgs << "\n";
|
|
}
|
|
}
|
|
|
|
void WriteType(const Type *T) {
|
|
if ( !T ) return;
|
|
WriteTypeSymbolic(msgs, T, Mod );
|
|
}
|
|
|
|
|
|
// CheckFailed - A check failed, so print out the condition and the message
|
|
// that failed. This provides a nice place to put a breakpoint if you want
|
|
// to see why something is not correct.
|
|
void CheckFailed(const std::string &Message,
|
|
const Value *V1 = 0, const Value *V2 = 0,
|
|
const Value *V3 = 0, const Value *V4 = 0) {
|
|
msgs << Message << "\n";
|
|
WriteValue(V1);
|
|
WriteValue(V2);
|
|
WriteValue(V3);
|
|
WriteValue(V4);
|
|
Broken = true;
|
|
}
|
|
|
|
void CheckFailed( const std::string& Message, const Value* V1,
|
|
const Type* T2, const Value* V3 = 0 ) {
|
|
msgs << Message << "\n";
|
|
WriteValue(V1);
|
|
WriteType(T2);
|
|
WriteValue(V3);
|
|
Broken = true;
|
|
}
|
|
};
|
|
} // End anonymous namespace
|
|
|
|
char Verifier::ID = 0;
|
|
static RegisterPass<Verifier> X("verify", "Module Verifier");
|
|
|
|
// Assert - We know that cond should be true, if not print an error message.
|
|
#define Assert(C, M) \
|
|
do { if (!(C)) { CheckFailed(M); return; } } while (0)
|
|
#define Assert1(C, M, V1) \
|
|
do { if (!(C)) { CheckFailed(M, V1); return; } } while (0)
|
|
#define Assert2(C, M, V1, V2) \
|
|
do { if (!(C)) { CheckFailed(M, V1, V2); return; } } while (0)
|
|
#define Assert3(C, M, V1, V2, V3) \
|
|
do { if (!(C)) { CheckFailed(M, V1, V2, V3); return; } } while (0)
|
|
#define Assert4(C, M, V1, V2, V3, V4) \
|
|
do { if (!(C)) { CheckFailed(M, V1, V2, V3, V4); return; } } while (0)
|
|
|
|
|
|
void Verifier::visitGlobalValue(GlobalValue &GV) {
|
|
Assert1(!GV.isDeclaration() ||
|
|
GV.hasExternalLinkage() ||
|
|
GV.hasDLLImportLinkage() ||
|
|
GV.hasExternalWeakLinkage() ||
|
|
GV.hasGhostLinkage() ||
|
|
(isa<GlobalAlias>(GV) &&
|
|
(GV.hasInternalLinkage() || GV.hasWeakLinkage())),
|
|
"Global is external, but doesn't have external or dllimport or weak linkage!",
|
|
&GV);
|
|
|
|
Assert1(!GV.hasDLLImportLinkage() || GV.isDeclaration(),
|
|
"Global is marked as dllimport, but not external", &GV);
|
|
|
|
Assert1(!GV.hasAppendingLinkage() || isa<GlobalVariable>(GV),
|
|
"Only global variables can have appending linkage!", &GV);
|
|
|
|
if (GV.hasAppendingLinkage()) {
|
|
GlobalVariable &GVar = cast<GlobalVariable>(GV);
|
|
Assert1(isa<ArrayType>(GVar.getType()->getElementType()),
|
|
"Only global arrays can have appending linkage!", &GV);
|
|
}
|
|
}
|
|
|
|
void Verifier::visitGlobalVariable(GlobalVariable &GV) {
|
|
if (GV.hasInitializer()) {
|
|
Assert1(GV.getInitializer()->getType() == GV.getType()->getElementType(),
|
|
"Global variable initializer type does not match global "
|
|
"variable type!", &GV);
|
|
} else {
|
|
Assert1(GV.hasExternalLinkage() || GV.hasDLLImportLinkage() ||
|
|
GV.hasExternalWeakLinkage(),
|
|
"invalid linkage type for global declaration", &GV);
|
|
}
|
|
|
|
visitGlobalValue(GV);
|
|
}
|
|
|
|
void Verifier::visitGlobalAlias(GlobalAlias &GA) {
|
|
Assert1(!GA.getName().empty(),
|
|
"Alias name cannot be empty!", &GA);
|
|
Assert1(GA.hasExternalLinkage() || GA.hasInternalLinkage() ||
|
|
GA.hasWeakLinkage(),
|
|
"Alias should have external or external weak linkage!", &GA);
|
|
Assert1(GA.getAliasee(),
|
|
"Aliasee cannot be NULL!", &GA);
|
|
Assert1(GA.getType() == GA.getAliasee()->getType(),
|
|
"Alias and aliasee types should match!", &GA);
|
|
|
|
if (!isa<GlobalValue>(GA.getAliasee())) {
|
|
const ConstantExpr *CE = dyn_cast<ConstantExpr>(GA.getAliasee());
|
|
Assert1(CE && CE->getOpcode() == Instruction::BitCast &&
|
|
isa<GlobalValue>(CE->getOperand(0)),
|
|
"Aliasee should be either GlobalValue or bitcast of GlobalValue",
|
|
&GA);
|
|
}
|
|
|
|
const GlobalValue* Aliasee = GA.resolveAliasedGlobal();
|
|
Assert1(Aliasee,
|
|
"Aliasing chain should end with function or global variable", &GA);
|
|
|
|
visitGlobalValue(GA);
|
|
}
|
|
|
|
void Verifier::verifyTypeSymbolTable(TypeSymbolTable &ST) {
|
|
}
|
|
|
|
// VerifyAttrs - Check the given parameter attributes for an argument or return
|
|
// value of the specified type. The value V is printed in error messages.
|
|
void Verifier::VerifyAttrs(ParameterAttributes Attrs, const Type *Ty,
|
|
bool isReturnValue, const Value *V) {
|
|
if (Attrs == ParamAttr::None)
|
|
return;
|
|
|
|
if (isReturnValue) {
|
|
ParameterAttributes RetI = Attrs & ParamAttr::ParameterOnly;
|
|
Assert1(!RetI, "Attribute " + ParamAttr::getAsString(RetI) +
|
|
" does not apply to return values!", V);
|
|
} else {
|
|
ParameterAttributes ParmI = Attrs & ParamAttr::ReturnOnly;
|
|
Assert1(!ParmI, "Attribute " + ParamAttr::getAsString(ParmI) +
|
|
" only applies to return values!", V);
|
|
}
|
|
|
|
for (unsigned i = 0;
|
|
i < array_lengthof(ParamAttr::MutuallyIncompatible); ++i) {
|
|
ParameterAttributes MutI = Attrs & ParamAttr::MutuallyIncompatible[i];
|
|
Assert1(!(MutI & (MutI - 1)), "Attributes " +
|
|
ParamAttr::getAsString(MutI) + " are incompatible!", V);
|
|
}
|
|
|
|
ParameterAttributes TypeI = Attrs & ParamAttr::typeIncompatible(Ty);
|
|
Assert1(!TypeI, "Wrong type for attribute " +
|
|
ParamAttr::getAsString(TypeI), V);
|
|
}
|
|
|
|
// VerifyFunctionAttrs - Check parameter attributes against a function type.
|
|
// The value V is printed in error messages.
|
|
void Verifier::VerifyFunctionAttrs(const FunctionType *FT,
|
|
const PAListPtr &Attrs,
|
|
const Value *V) {
|
|
if (Attrs.isEmpty())
|
|
return;
|
|
|
|
bool SawNest = false;
|
|
|
|
for (unsigned i = 0, e = Attrs.getNumSlots(); i != e; ++i) {
|
|
const ParamAttrsWithIndex &Attr = Attrs.getSlot(i);
|
|
|
|
const Type *Ty;
|
|
if (Attr.Index == 0)
|
|
Ty = FT->getReturnType();
|
|
else if (Attr.Index-1 < FT->getNumParams())
|
|
Ty = FT->getParamType(Attr.Index-1);
|
|
else
|
|
break; // VarArgs attributes, don't verify.
|
|
|
|
VerifyAttrs(Attr.Attrs, Ty, Attr.Index == 0, V);
|
|
|
|
if (Attr.Attrs & ParamAttr::Nest) {
|
|
Assert1(!SawNest, "More than one parameter has attribute nest!", V);
|
|
SawNest = true;
|
|
}
|
|
|
|
if (Attr.Attrs & ParamAttr::StructRet)
|
|
Assert1(Attr.Index == 1, "Attribute sret not on first parameter!", V);
|
|
}
|
|
}
|
|
|
|
// visitFunction - Verify that a function is ok.
|
|
//
|
|
void Verifier::visitFunction(Function &F) {
|
|
// Check function arguments.
|
|
const FunctionType *FT = F.getFunctionType();
|
|
unsigned NumArgs = F.arg_size();
|
|
|
|
Assert2(FT->getNumParams() == NumArgs,
|
|
"# formal arguments must match # of arguments for function type!",
|
|
&F, FT);
|
|
Assert1(F.getReturnType()->isFirstClassType() ||
|
|
F.getReturnType() == Type::VoidTy ||
|
|
isa<StructType>(F.getReturnType()),
|
|
"Functions cannot return aggregate values!", &F);
|
|
|
|
Assert1(!F.hasStructRetAttr() || F.getReturnType() == Type::VoidTy,
|
|
"Invalid struct return type!", &F);
|
|
|
|
const PAListPtr &Attrs = F.getParamAttrs();
|
|
|
|
Assert1(Attrs.isEmpty() ||
|
|
Attrs.getSlot(Attrs.getNumSlots()-1).Index <= FT->getNumParams(),
|
|
"Attributes after last parameter!", &F);
|
|
|
|
// Check function attributes.
|
|
VerifyFunctionAttrs(FT, Attrs, &F);
|
|
|
|
// Check that this function meets the restrictions on this calling convention.
|
|
switch (F.getCallingConv()) {
|
|
default:
|
|
break;
|
|
case CallingConv::C:
|
|
case CallingConv::X86_SSECall:
|
|
break;
|
|
case CallingConv::Fast:
|
|
case CallingConv::Cold:
|
|
case CallingConv::X86_FastCall:
|
|
Assert1(!F.isVarArg(),
|
|
"Varargs functions must have C calling conventions!", &F);
|
|
break;
|
|
}
|
|
|
|
// Check that the argument values match the function type for this function...
|
|
unsigned i = 0;
|
|
for (Function::arg_iterator I = F.arg_begin(), E = F.arg_end();
|
|
I != E; ++I, ++i) {
|
|
Assert2(I->getType() == FT->getParamType(i),
|
|
"Argument value does not match function argument type!",
|
|
I, FT->getParamType(i));
|
|
// Make sure no aggregates are passed by value.
|
|
Assert1(I->getType()->isFirstClassType(),
|
|
"Functions cannot take aggregates as arguments by value!", I);
|
|
}
|
|
|
|
if (F.isDeclaration()) {
|
|
Assert1(F.hasExternalLinkage() || F.hasDLLImportLinkage() ||
|
|
F.hasExternalWeakLinkage() || F.hasGhostLinkage(),
|
|
"invalid linkage type for function declaration", &F);
|
|
} else {
|
|
// Verify that this function (which has a body) is not named "llvm.*". It
|
|
// is not legal to define intrinsics.
|
|
if (F.getName().size() >= 5)
|
|
Assert1(F.getName().substr(0, 5) != "llvm.",
|
|
"llvm intrinsics cannot be defined!", &F);
|
|
|
|
// Check the entry node
|
|
BasicBlock *Entry = &F.getEntryBlock();
|
|
Assert1(pred_begin(Entry) == pred_end(Entry),
|
|
"Entry block to function must not have predecessors!", Entry);
|
|
}
|
|
}
|
|
|
|
|
|
// verifyBasicBlock - Verify that a basic block is well formed...
|
|
//
|
|
void Verifier::visitBasicBlock(BasicBlock &BB) {
|
|
InstsInThisBlock.clear();
|
|
|
|
// Ensure that basic blocks have terminators!
|
|
Assert1(BB.getTerminator(), "Basic Block does not have terminator!", &BB);
|
|
|
|
// Check constraints that this basic block imposes on all of the PHI nodes in
|
|
// it.
|
|
if (isa<PHINode>(BB.front())) {
|
|
SmallVector<BasicBlock*, 8> Preds(pred_begin(&BB), pred_end(&BB));
|
|
SmallVector<std::pair<BasicBlock*, Value*>, 8> Values;
|
|
std::sort(Preds.begin(), Preds.end());
|
|
PHINode *PN;
|
|
for (BasicBlock::iterator I = BB.begin(); (PN = dyn_cast<PHINode>(I));++I) {
|
|
|
|
// Ensure that PHI nodes have at least one entry!
|
|
Assert1(PN->getNumIncomingValues() != 0,
|
|
"PHI nodes must have at least one entry. If the block is dead, "
|
|
"the PHI should be removed!", PN);
|
|
Assert1(PN->getNumIncomingValues() == Preds.size(),
|
|
"PHINode should have one entry for each predecessor of its "
|
|
"parent basic block!", PN);
|
|
|
|
// Get and sort all incoming values in the PHI node...
|
|
Values.clear();
|
|
Values.reserve(PN->getNumIncomingValues());
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
Values.push_back(std::make_pair(PN->getIncomingBlock(i),
|
|
PN->getIncomingValue(i)));
|
|
std::sort(Values.begin(), Values.end());
|
|
|
|
for (unsigned i = 0, e = Values.size(); i != e; ++i) {
|
|
// Check to make sure that if there is more than one entry for a
|
|
// particular basic block in this PHI node, that the incoming values are
|
|
// all identical.
|
|
//
|
|
Assert4(i == 0 || Values[i].first != Values[i-1].first ||
|
|
Values[i].second == Values[i-1].second,
|
|
"PHI node has multiple entries for the same basic block with "
|
|
"different incoming values!", PN, Values[i].first,
|
|
Values[i].second, Values[i-1].second);
|
|
|
|
// Check to make sure that the predecessors and PHI node entries are
|
|
// matched up.
|
|
Assert3(Values[i].first == Preds[i],
|
|
"PHI node entries do not match predecessors!", PN,
|
|
Values[i].first, Preds[i]);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void Verifier::visitTerminatorInst(TerminatorInst &I) {
|
|
// Ensure that terminators only exist at the end of the basic block.
|
|
Assert1(&I == I.getParent()->getTerminator(),
|
|
"Terminator found in the middle of a basic block!", I.getParent());
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitReturnInst(ReturnInst &RI) {
|
|
Function *F = RI.getParent()->getParent();
|
|
unsigned N = RI.getNumOperands();
|
|
if (F->getReturnType() == Type::VoidTy)
|
|
Assert2(N == 0,
|
|
"Found return instr that returns void in Function of non-void "
|
|
"return type!", &RI, F->getReturnType());
|
|
else if (N == 1 && F->getReturnType() == RI.getOperand(0)->getType()) {
|
|
// Exactly one return value and it matches the return type. Good.
|
|
} else if (const StructType *STy = dyn_cast<StructType>(F->getReturnType())) {
|
|
// The return type is a struct; check for multiple return values.
|
|
Assert2(STy->getNumElements() == N,
|
|
"Incorrect number of return values in ret instruction!",
|
|
&RI, F->getReturnType());
|
|
for (unsigned i = 0; i != N; ++i)
|
|
Assert2(STy->getElementType(i) == RI.getOperand(i)->getType(),
|
|
"Function return type does not match operand "
|
|
"type of return inst!", &RI, F->getReturnType());
|
|
} else if (const ArrayType *ATy = dyn_cast<ArrayType>(F->getReturnType())) {
|
|
// The return type is an array; check for multiple return values.
|
|
Assert2(ATy->getNumElements() == N,
|
|
"Incorrect number of return values in ret instruction!",
|
|
&RI, F->getReturnType());
|
|
for (unsigned i = 0; i != N; ++i)
|
|
Assert2(ATy->getElementType() == RI.getOperand(i)->getType(),
|
|
"Function return type does not match operand "
|
|
"type of return inst!", &RI, F->getReturnType());
|
|
} else {
|
|
CheckFailed("Function return type does not match operand "
|
|
"type of return inst!", &RI, F->getReturnType());
|
|
}
|
|
|
|
// Check to make sure that the return value has necessary properties for
|
|
// terminators...
|
|
visitTerminatorInst(RI);
|
|
}
|
|
|
|
void Verifier::visitSwitchInst(SwitchInst &SI) {
|
|
// Check to make sure that all of the constants in the switch instruction
|
|
// have the same type as the switched-on value.
|
|
const Type *SwitchTy = SI.getCondition()->getType();
|
|
for (unsigned i = 1, e = SI.getNumCases(); i != e; ++i)
|
|
Assert1(SI.getCaseValue(i)->getType() == SwitchTy,
|
|
"Switch constants must all be same type as switch value!", &SI);
|
|
|
|
visitTerminatorInst(SI);
|
|
}
|
|
|
|
void Verifier::visitSelectInst(SelectInst &SI) {
|
|
Assert1(SI.getCondition()->getType() == Type::Int1Ty,
|
|
"Select condition type must be bool!", &SI);
|
|
Assert1(SI.getTrueValue()->getType() == SI.getFalseValue()->getType(),
|
|
"Select values must have identical types!", &SI);
|
|
Assert1(SI.getTrueValue()->getType() == SI.getType(),
|
|
"Select values must have same type as select instruction!", &SI);
|
|
visitInstruction(SI);
|
|
}
|
|
|
|
|
|
/// visitUserOp1 - User defined operators shouldn't live beyond the lifetime of
|
|
/// a pass, if any exist, it's an error.
|
|
///
|
|
void Verifier::visitUserOp1(Instruction &I) {
|
|
Assert1(0, "User-defined operators should not live outside of a pass!", &I);
|
|
}
|
|
|
|
void Verifier::visitTruncInst(TruncInst &I) {
|
|
// Get the source and destination types
|
|
const Type *SrcTy = I.getOperand(0)->getType();
|
|
const Type *DestTy = I.getType();
|
|
|
|
// Get the size of the types in bits, we'll need this later
|
|
unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
|
|
unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
|
|
|
|
Assert1(SrcTy->isIntOrIntVector(), "Trunc only operates on integer", &I);
|
|
Assert1(DestTy->isIntOrIntVector(), "Trunc only produces integer", &I);
|
|
Assert1(SrcBitSize > DestBitSize,"DestTy too big for Trunc", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitZExtInst(ZExtInst &I) {
|
|
// Get the source and destination types
|
|
const Type *SrcTy = I.getOperand(0)->getType();
|
|
const Type *DestTy = I.getType();
|
|
|
|
// Get the size of the types in bits, we'll need this later
|
|
Assert1(SrcTy->isIntOrIntVector(), "ZExt only operates on integer", &I);
|
|
Assert1(DestTy->isIntOrIntVector(), "ZExt only produces an integer", &I);
|
|
unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
|
|
unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
|
|
|
|
Assert1(SrcBitSize < DestBitSize,"Type too small for ZExt", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitSExtInst(SExtInst &I) {
|
|
// Get the source and destination types
|
|
const Type *SrcTy = I.getOperand(0)->getType();
|
|
const Type *DestTy = I.getType();
|
|
|
|
// Get the size of the types in bits, we'll need this later
|
|
unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
|
|
unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
|
|
|
|
Assert1(SrcTy->isIntOrIntVector(), "SExt only operates on integer", &I);
|
|
Assert1(DestTy->isIntOrIntVector(), "SExt only produces an integer", &I);
|
|
Assert1(SrcBitSize < DestBitSize,"Type too small for SExt", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitFPTruncInst(FPTruncInst &I) {
|
|
// Get the source and destination types
|
|
const Type *SrcTy = I.getOperand(0)->getType();
|
|
const Type *DestTy = I.getType();
|
|
// Get the size of the types in bits, we'll need this later
|
|
unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
|
|
unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
|
|
|
|
Assert1(SrcTy->isFPOrFPVector(),"FPTrunc only operates on FP", &I);
|
|
Assert1(DestTy->isFPOrFPVector(),"FPTrunc only produces an FP", &I);
|
|
Assert1(SrcBitSize > DestBitSize,"DestTy too big for FPTrunc", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitFPExtInst(FPExtInst &I) {
|
|
// Get the source and destination types
|
|
const Type *SrcTy = I.getOperand(0)->getType();
|
|
const Type *DestTy = I.getType();
|
|
|
|
// Get the size of the types in bits, we'll need this later
|
|
unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
|
|
unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
|
|
|
|
Assert1(SrcTy->isFPOrFPVector(),"FPExt only operates on FP", &I);
|
|
Assert1(DestTy->isFPOrFPVector(),"FPExt only produces an FP", &I);
|
|
Assert1(SrcBitSize < DestBitSize,"DestTy too small for FPExt", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitUIToFPInst(UIToFPInst &I) {
|
|
// Get the source and destination types
|
|
const Type *SrcTy = I.getOperand(0)->getType();
|
|
const Type *DestTy = I.getType();
|
|
|
|
bool SrcVec = isa<VectorType>(SrcTy);
|
|
bool DstVec = isa<VectorType>(DestTy);
|
|
|
|
Assert1(SrcVec == DstVec,
|
|
"UIToFP source and dest must both be vector or scalar", &I);
|
|
Assert1(SrcTy->isIntOrIntVector(),
|
|
"UIToFP source must be integer or integer vector", &I);
|
|
Assert1(DestTy->isFPOrFPVector(),
|
|
"UIToFP result must be FP or FP vector", &I);
|
|
|
|
if (SrcVec && DstVec)
|
|
Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
|
|
cast<VectorType>(DestTy)->getNumElements(),
|
|
"UIToFP source and dest vector length mismatch", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitSIToFPInst(SIToFPInst &I) {
|
|
// Get the source and destination types
|
|
const Type *SrcTy = I.getOperand(0)->getType();
|
|
const Type *DestTy = I.getType();
|
|
|
|
bool SrcVec = SrcTy->getTypeID() == Type::VectorTyID;
|
|
bool DstVec = DestTy->getTypeID() == Type::VectorTyID;
|
|
|
|
Assert1(SrcVec == DstVec,
|
|
"SIToFP source and dest must both be vector or scalar", &I);
|
|
Assert1(SrcTy->isIntOrIntVector(),
|
|
"SIToFP source must be integer or integer vector", &I);
|
|
Assert1(DestTy->isFPOrFPVector(),
|
|
"SIToFP result must be FP or FP vector", &I);
|
|
|
|
if (SrcVec && DstVec)
|
|
Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
|
|
cast<VectorType>(DestTy)->getNumElements(),
|
|
"SIToFP source and dest vector length mismatch", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitFPToUIInst(FPToUIInst &I) {
|
|
// Get the source and destination types
|
|
const Type *SrcTy = I.getOperand(0)->getType();
|
|
const Type *DestTy = I.getType();
|
|
|
|
bool SrcVec = isa<VectorType>(SrcTy);
|
|
bool DstVec = isa<VectorType>(DestTy);
|
|
|
|
Assert1(SrcVec == DstVec,
|
|
"FPToUI source and dest must both be vector or scalar", &I);
|
|
Assert1(SrcTy->isFPOrFPVector(), "FPToUI source must be FP or FP vector", &I);
|
|
Assert1(DestTy->isIntOrIntVector(),
|
|
"FPToUI result must be integer or integer vector", &I);
|
|
|
|
if (SrcVec && DstVec)
|
|
Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
|
|
cast<VectorType>(DestTy)->getNumElements(),
|
|
"FPToUI source and dest vector length mismatch", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitFPToSIInst(FPToSIInst &I) {
|
|
// Get the source and destination types
|
|
const Type *SrcTy = I.getOperand(0)->getType();
|
|
const Type *DestTy = I.getType();
|
|
|
|
bool SrcVec = isa<VectorType>(SrcTy);
|
|
bool DstVec = isa<VectorType>(DestTy);
|
|
|
|
Assert1(SrcVec == DstVec,
|
|
"FPToSI source and dest must both be vector or scalar", &I);
|
|
Assert1(SrcTy->isFPOrFPVector(),
|
|
"FPToSI source must be FP or FP vector", &I);
|
|
Assert1(DestTy->isIntOrIntVector(),
|
|
"FPToSI result must be integer or integer vector", &I);
|
|
|
|
if (SrcVec && DstVec)
|
|
Assert1(cast<VectorType>(SrcTy)->getNumElements() ==
|
|
cast<VectorType>(DestTy)->getNumElements(),
|
|
"FPToSI source and dest vector length mismatch", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitPtrToIntInst(PtrToIntInst &I) {
|
|
// Get the source and destination types
|
|
const Type *SrcTy = I.getOperand(0)->getType();
|
|
const Type *DestTy = I.getType();
|
|
|
|
Assert1(isa<PointerType>(SrcTy), "PtrToInt source must be pointer", &I);
|
|
Assert1(DestTy->isInteger(), "PtrToInt result must be integral", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitIntToPtrInst(IntToPtrInst &I) {
|
|
// Get the source and destination types
|
|
const Type *SrcTy = I.getOperand(0)->getType();
|
|
const Type *DestTy = I.getType();
|
|
|
|
Assert1(SrcTy->isInteger(), "IntToPtr source must be an integral", &I);
|
|
Assert1(isa<PointerType>(DestTy), "IntToPtr result must be a pointer",&I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
void Verifier::visitBitCastInst(BitCastInst &I) {
|
|
// Get the source and destination types
|
|
const Type *SrcTy = I.getOperand(0)->getType();
|
|
const Type *DestTy = I.getType();
|
|
|
|
// Get the size of the types in bits, we'll need this later
|
|
unsigned SrcBitSize = SrcTy->getPrimitiveSizeInBits();
|
|
unsigned DestBitSize = DestTy->getPrimitiveSizeInBits();
|
|
|
|
// BitCast implies a no-op cast of type only. No bits change.
|
|
// However, you can't cast pointers to anything but pointers.
|
|
Assert1(isa<PointerType>(DestTy) == isa<PointerType>(DestTy),
|
|
"Bitcast requires both operands to be pointer or neither", &I);
|
|
Assert1(SrcBitSize == DestBitSize, "Bitcast requies types of same width", &I);
|
|
|
|
visitInstruction(I);
|
|
}
|
|
|
|
/// visitPHINode - Ensure that a PHI node is well formed.
|
|
///
|
|
void Verifier::visitPHINode(PHINode &PN) {
|
|
// Ensure that the PHI nodes are all grouped together at the top of the block.
|
|
// This can be tested by checking whether the instruction before this is
|
|
// either nonexistent (because this is begin()) or is a PHI node. If not,
|
|
// then there is some other instruction before a PHI.
|
|
Assert2(&PN == &PN.getParent()->front() ||
|
|
isa<PHINode>(--BasicBlock::iterator(&PN)),
|
|
"PHI nodes not grouped at top of basic block!",
|
|
&PN, PN.getParent());
|
|
|
|
// Check that all of the operands of the PHI node have the same type as the
|
|
// result.
|
|
for (unsigned i = 0, e = PN.getNumIncomingValues(); i != e; ++i)
|
|
Assert1(PN.getType() == PN.getIncomingValue(i)->getType(),
|
|
"PHI node operands are not the same type as the result!", &PN);
|
|
|
|
// All other PHI node constraints are checked in the visitBasicBlock method.
|
|
|
|
visitInstruction(PN);
|
|
}
|
|
|
|
void Verifier::VerifyCallSite(CallSite CS) {
|
|
Instruction *I = CS.getInstruction();
|
|
|
|
Assert1(isa<PointerType>(CS.getCalledValue()->getType()),
|
|
"Called function must be a pointer!", I);
|
|
const PointerType *FPTy = cast<PointerType>(CS.getCalledValue()->getType());
|
|
Assert1(isa<FunctionType>(FPTy->getElementType()),
|
|
"Called function is not pointer to function type!", I);
|
|
|
|
const FunctionType *FTy = cast<FunctionType>(FPTy->getElementType());
|
|
|
|
// Verify that the correct number of arguments are being passed
|
|
if (FTy->isVarArg())
|
|
Assert1(CS.arg_size() >= FTy->getNumParams(),
|
|
"Called function requires more parameters than were provided!",I);
|
|
else
|
|
Assert1(CS.arg_size() == FTy->getNumParams(),
|
|
"Incorrect number of arguments passed to called function!", I);
|
|
|
|
// Verify that all arguments to the call match the function type...
|
|
for (unsigned i = 0, e = FTy->getNumParams(); i != e; ++i)
|
|
Assert3(CS.getArgument(i)->getType() == FTy->getParamType(i),
|
|
"Call parameter type does not match function signature!",
|
|
CS.getArgument(i), FTy->getParamType(i), I);
|
|
|
|
const PAListPtr &Attrs = CS.getParamAttrs();
|
|
|
|
Assert1(Attrs.isEmpty() ||
|
|
Attrs.getSlot(Attrs.getNumSlots()-1).Index <= CS.arg_size(),
|
|
"Attributes after last parameter!", I);
|
|
|
|
// Verify call attributes.
|
|
VerifyFunctionAttrs(FTy, Attrs, I);
|
|
|
|
if (FTy->isVarArg())
|
|
// Check attributes on the varargs part.
|
|
for (unsigned Idx = 1 + FTy->getNumParams(); Idx <= CS.arg_size(); ++Idx) {
|
|
ParameterAttributes Attr = Attrs.getParamAttrs(Idx);
|
|
|
|
VerifyAttrs(Attr, CS.getArgument(Idx-1)->getType(), false, I);
|
|
|
|
ParameterAttributes VArgI = Attr & ParamAttr::VarArgsIncompatible;
|
|
Assert1(!VArgI, "Attribute " + ParamAttr::getAsString(VArgI) +
|
|
" cannot be used for vararg call arguments!", I);
|
|
}
|
|
|
|
visitInstruction(*I);
|
|
}
|
|
|
|
void Verifier::visitCallInst(CallInst &CI) {
|
|
VerifyCallSite(&CI);
|
|
|
|
if (Function *F = CI.getCalledFunction()) {
|
|
if (Intrinsic::ID ID = (Intrinsic::ID)F->getIntrinsicID())
|
|
visitIntrinsicFunctionCall(ID, CI);
|
|
}
|
|
}
|
|
|
|
void Verifier::visitInvokeInst(InvokeInst &II) {
|
|
VerifyCallSite(&II);
|
|
}
|
|
|
|
/// visitBinaryOperator - Check that both arguments to the binary operator are
|
|
/// of the same type!
|
|
///
|
|
void Verifier::visitBinaryOperator(BinaryOperator &B) {
|
|
Assert1(B.getOperand(0)->getType() == B.getOperand(1)->getType(),
|
|
"Both operands to a binary operator are not of the same type!", &B);
|
|
|
|
switch (B.getOpcode()) {
|
|
// Check that logical operators are only used with integral operands.
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
Assert1(B.getType()->isInteger() ||
|
|
(isa<VectorType>(B.getType()) &&
|
|
cast<VectorType>(B.getType())->getElementType()->isInteger()),
|
|
"Logical operators only work with integral types!", &B);
|
|
Assert1(B.getType() == B.getOperand(0)->getType(),
|
|
"Logical operators must have same type for operands and result!",
|
|
&B);
|
|
break;
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
Assert1(B.getType()->isInteger() ||
|
|
(isa<VectorType>(B.getType()) &&
|
|
cast<VectorType>(B.getType())->getElementType()->isInteger()),
|
|
"Shifts only work with integral types!", &B);
|
|
Assert1(B.getType() == B.getOperand(0)->getType(),
|
|
"Shift return type must be same as operands!", &B);
|
|
/* FALL THROUGH */
|
|
default:
|
|
// Arithmetic operators only work on integer or fp values
|
|
Assert1(B.getType() == B.getOperand(0)->getType(),
|
|
"Arithmetic operators must have same type for operands and result!",
|
|
&B);
|
|
Assert1(B.getType()->isInteger() || B.getType()->isFloatingPoint() ||
|
|
isa<VectorType>(B.getType()),
|
|
"Arithmetic operators must have integer, fp, or vector type!", &B);
|
|
break;
|
|
}
|
|
|
|
visitInstruction(B);
|
|
}
|
|
|
|
void Verifier::visitICmpInst(ICmpInst& IC) {
|
|
// Check that the operands are the same type
|
|
const Type* Op0Ty = IC.getOperand(0)->getType();
|
|
const Type* Op1Ty = IC.getOperand(1)->getType();
|
|
Assert1(Op0Ty == Op1Ty,
|
|
"Both operands to ICmp instruction are not of the same type!", &IC);
|
|
// Check that the operands are the right type
|
|
Assert1(Op0Ty->isInteger() || isa<PointerType>(Op0Ty),
|
|
"Invalid operand types for ICmp instruction", &IC);
|
|
visitInstruction(IC);
|
|
}
|
|
|
|
void Verifier::visitFCmpInst(FCmpInst& FC) {
|
|
// Check that the operands are the same type
|
|
const Type* Op0Ty = FC.getOperand(0)->getType();
|
|
const Type* Op1Ty = FC.getOperand(1)->getType();
|
|
Assert1(Op0Ty == Op1Ty,
|
|
"Both operands to FCmp instruction are not of the same type!", &FC);
|
|
// Check that the operands are the right type
|
|
Assert1(Op0Ty->isFloatingPoint(),
|
|
"Invalid operand types for FCmp instruction", &FC);
|
|
visitInstruction(FC);
|
|
}
|
|
|
|
void Verifier::visitExtractElementInst(ExtractElementInst &EI) {
|
|
Assert1(ExtractElementInst::isValidOperands(EI.getOperand(0),
|
|
EI.getOperand(1)),
|
|
"Invalid extractelement operands!", &EI);
|
|
visitInstruction(EI);
|
|
}
|
|
|
|
void Verifier::visitInsertElementInst(InsertElementInst &IE) {
|
|
Assert1(InsertElementInst::isValidOperands(IE.getOperand(0),
|
|
IE.getOperand(1),
|
|
IE.getOperand(2)),
|
|
"Invalid insertelement operands!", &IE);
|
|
visitInstruction(IE);
|
|
}
|
|
|
|
void Verifier::visitShuffleVectorInst(ShuffleVectorInst &SV) {
|
|
Assert1(ShuffleVectorInst::isValidOperands(SV.getOperand(0), SV.getOperand(1),
|
|
SV.getOperand(2)),
|
|
"Invalid shufflevector operands!", &SV);
|
|
Assert1(SV.getType() == SV.getOperand(0)->getType(),
|
|
"Result of shufflevector must match first operand type!", &SV);
|
|
|
|
// Check to see if Mask is valid.
|
|
if (const ConstantVector *MV = dyn_cast<ConstantVector>(SV.getOperand(2))) {
|
|
for (unsigned i = 0, e = MV->getNumOperands(); i != e; ++i) {
|
|
if (ConstantInt* CI = dyn_cast<ConstantInt>(MV->getOperand(i))) {
|
|
Assert1(!CI->uge(MV->getNumOperands()*2),
|
|
"Invalid shufflevector shuffle mask!", &SV);
|
|
} else {
|
|
Assert1(isa<UndefValue>(MV->getOperand(i)),
|
|
"Invalid shufflevector shuffle mask!", &SV);
|
|
}
|
|
}
|
|
} else {
|
|
Assert1(isa<UndefValue>(SV.getOperand(2)) ||
|
|
isa<ConstantAggregateZero>(SV.getOperand(2)),
|
|
"Invalid shufflevector shuffle mask!", &SV);
|
|
}
|
|
|
|
visitInstruction(SV);
|
|
}
|
|
|
|
void Verifier::visitGetElementPtrInst(GetElementPtrInst &GEP) {
|
|
SmallVector<Value*, 16> Idxs(GEP.idx_begin(), GEP.idx_end());
|
|
const Type *ElTy =
|
|
GetElementPtrInst::getIndexedType(GEP.getOperand(0)->getType(),
|
|
Idxs.begin(), Idxs.end());
|
|
Assert1(ElTy, "Invalid indices for GEP pointer type!", &GEP);
|
|
Assert2(isa<PointerType>(GEP.getType()) &&
|
|
cast<PointerType>(GEP.getType())->getElementType() == ElTy,
|
|
"GEP is not of right type for indices!", &GEP, ElTy);
|
|
visitInstruction(GEP);
|
|
}
|
|
|
|
void Verifier::visitLoadInst(LoadInst &LI) {
|
|
const Type *ElTy =
|
|
cast<PointerType>(LI.getOperand(0)->getType())->getElementType();
|
|
Assert2(ElTy == LI.getType(),
|
|
"Load result type does not match pointer operand type!", &LI, ElTy);
|
|
visitInstruction(LI);
|
|
}
|
|
|
|
void Verifier::visitStoreInst(StoreInst &SI) {
|
|
const Type *ElTy =
|
|
cast<PointerType>(SI.getOperand(1)->getType())->getElementType();
|
|
Assert2(ElTy == SI.getOperand(0)->getType(),
|
|
"Stored value type does not match pointer operand type!", &SI, ElTy);
|
|
visitInstruction(SI);
|
|
}
|
|
|
|
void Verifier::visitAllocationInst(AllocationInst &AI) {
|
|
const PointerType *PTy = AI.getType();
|
|
Assert1(PTy->getAddressSpace() == 0,
|
|
"Allocation instruction pointer not in the generic address space!",
|
|
&AI);
|
|
Assert1(PTy->getElementType()->isSized(), "Cannot allocate unsized type",
|
|
&AI);
|
|
visitInstruction(AI);
|
|
}
|
|
|
|
void Verifier::visitExtractValueInst(ExtractValueInst &EVI) {
|
|
Assert1(ExtractValueInst::getIndexedType(EVI.getAggregateOperand()->getType(),
|
|
EVI.idx_begin(), EVI.idx_end()) ==
|
|
EVI.getType(),
|
|
"Invalid ExtractValueInst operands!", &EVI);
|
|
|
|
visitInstruction(EVI);
|
|
}
|
|
|
|
void Verifier::visitInsertValueInst(InsertValueInst &IVI) {
|
|
Assert1(ExtractValueInst::getIndexedType(IVI.getAggregateOperand()->getType(),
|
|
IVI.idx_begin(), IVI.idx_end()) ==
|
|
IVI.getOperand(1)->getType(),
|
|
"Invalid InsertValueInst operands!", &IVI);
|
|
|
|
visitInstruction(IVI);
|
|
}
|
|
|
|
/// verifyInstruction - Verify that an instruction is well formed.
|
|
///
|
|
void Verifier::visitInstruction(Instruction &I) {
|
|
BasicBlock *BB = I.getParent();
|
|
Assert1(BB, "Instruction not embedded in basic block!", &I);
|
|
|
|
if (!isa<PHINode>(I)) { // Check that non-phi nodes are not self referential
|
|
for (Value::use_iterator UI = I.use_begin(), UE = I.use_end();
|
|
UI != UE; ++UI)
|
|
Assert1(*UI != (User*)&I ||
|
|
!DT->dominates(&BB->getParent()->getEntryBlock(), BB),
|
|
"Only PHI nodes may reference their own value!", &I);
|
|
}
|
|
|
|
// Verify that if this is a terminator that it is at the end of the block.
|
|
if (isa<TerminatorInst>(I))
|
|
Assert1(BB->getTerminator() == &I, "Terminator not at end of block!", &I);
|
|
|
|
|
|
// Check that void typed values don't have names
|
|
Assert1(I.getType() != Type::VoidTy || !I.hasName(),
|
|
"Instruction has a name, but provides a void value!", &I);
|
|
|
|
// Check that the return value of the instruction is either void or a legal
|
|
// value type.
|
|
Assert1(I.getType() == Type::VoidTy || I.getType()->isFirstClassType()
|
|
|| ((isa<CallInst>(I) || isa<InvokeInst>(I))
|
|
&& isa<StructType>(I.getType())),
|
|
"Instruction returns a non-scalar type!", &I);
|
|
|
|
// Check that all uses of the instruction, if they are instructions
|
|
// themselves, actually have parent basic blocks. If the use is not an
|
|
// instruction, it is an error!
|
|
for (User::use_iterator UI = I.use_begin(), UE = I.use_end();
|
|
UI != UE; ++UI) {
|
|
Assert1(isa<Instruction>(*UI), "Use of instruction is not an instruction!",
|
|
*UI);
|
|
Instruction *Used = cast<Instruction>(*UI);
|
|
Assert2(Used->getParent() != 0, "Instruction referencing instruction not"
|
|
" embeded in a basic block!", &I, Used);
|
|
}
|
|
|
|
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
|
|
Assert1(I.getOperand(i) != 0, "Instruction has null operand!", &I);
|
|
|
|
// Check to make sure that only first-class-values are operands to
|
|
// instructions.
|
|
if (!I.getOperand(i)->getType()->isFirstClassType()) {
|
|
Assert1(0, "Instruction operands must be first-class values!", &I);
|
|
}
|
|
|
|
if (Function *F = dyn_cast<Function>(I.getOperand(i))) {
|
|
// Check to make sure that the "address of" an intrinsic function is never
|
|
// taken.
|
|
Assert1(!F->isIntrinsic() || (i == 0 && isa<CallInst>(I)),
|
|
"Cannot take the address of an intrinsic!", &I);
|
|
Assert1(F->getParent() == Mod, "Referencing function in another module!",
|
|
&I);
|
|
} else if (BasicBlock *OpBB = dyn_cast<BasicBlock>(I.getOperand(i))) {
|
|
Assert1(OpBB->getParent() == BB->getParent(),
|
|
"Referring to a basic block in another function!", &I);
|
|
} else if (Argument *OpArg = dyn_cast<Argument>(I.getOperand(i))) {
|
|
Assert1(OpArg->getParent() == BB->getParent(),
|
|
"Referring to an argument in another function!", &I);
|
|
} else if (GlobalValue *GV = dyn_cast<GlobalValue>(I.getOperand(i))) {
|
|
Assert1(GV->getParent() == Mod, "Referencing global in another module!",
|
|
&I);
|
|
} else if (Instruction *Op = dyn_cast<Instruction>(I.getOperand(i))) {
|
|
BasicBlock *OpBlock = Op->getParent();
|
|
|
|
// Check that a definition dominates all of its uses.
|
|
if (!isa<PHINode>(I)) {
|
|
// Invoke results are only usable in the normal destination, not in the
|
|
// exceptional destination.
|
|
if (InvokeInst *II = dyn_cast<InvokeInst>(Op)) {
|
|
OpBlock = II->getNormalDest();
|
|
|
|
Assert2(OpBlock != II->getUnwindDest(),
|
|
"No uses of invoke possible due to dominance structure!",
|
|
Op, II);
|
|
|
|
// If the normal successor of an invoke instruction has multiple
|
|
// predecessors, then the normal edge from the invoke is critical, so
|
|
// the invoke value can only be live if the destination block
|
|
// dominates all of it's predecessors (other than the invoke) or if
|
|
// the invoke value is only used by a phi in the successor.
|
|
if (!OpBlock->getSinglePredecessor() &&
|
|
DT->dominates(&BB->getParent()->getEntryBlock(), BB)) {
|
|
// The first case we allow is if the use is a PHI operand in the
|
|
// normal block, and if that PHI operand corresponds to the invoke's
|
|
// block.
|
|
bool Bad = true;
|
|
if (PHINode *PN = dyn_cast<PHINode>(&I))
|
|
if (PN->getParent() == OpBlock &&
|
|
PN->getIncomingBlock(i/2) == Op->getParent())
|
|
Bad = false;
|
|
|
|
// If it is used by something non-phi, then the other case is that
|
|
// 'OpBlock' dominates all of its predecessors other than the
|
|
// invoke. In this case, the invoke value can still be used.
|
|
if (Bad) {
|
|
Bad = false;
|
|
for (pred_iterator PI = pred_begin(OpBlock),
|
|
E = pred_end(OpBlock); PI != E; ++PI) {
|
|
if (*PI != II->getParent() && !DT->dominates(OpBlock, *PI)) {
|
|
Bad = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
Assert2(!Bad,
|
|
"Invoke value defined on critical edge but not dead!", &I,
|
|
Op);
|
|
}
|
|
} else if (OpBlock == BB) {
|
|
// If they are in the same basic block, make sure that the definition
|
|
// comes before the use.
|
|
Assert2(InstsInThisBlock.count(Op) ||
|
|
!DT->dominates(&BB->getParent()->getEntryBlock(), BB),
|
|
"Instruction does not dominate all uses!", Op, &I);
|
|
}
|
|
|
|
// Definition must dominate use unless use is unreachable!
|
|
Assert2(InstsInThisBlock.count(Op) || DT->dominates(Op, &I) ||
|
|
!DT->dominates(&BB->getParent()->getEntryBlock(), BB),
|
|
"Instruction does not dominate all uses!", Op, &I);
|
|
} else {
|
|
// PHI nodes are more difficult than other nodes because they actually
|
|
// "use" the value in the predecessor basic blocks they correspond to.
|
|
BasicBlock *PredBB = cast<BasicBlock>(I.getOperand(i+1));
|
|
Assert2(DT->dominates(OpBlock, PredBB) ||
|
|
!DT->dominates(&BB->getParent()->getEntryBlock(), PredBB),
|
|
"Instruction does not dominate all uses!", Op, &I);
|
|
}
|
|
} else if (isa<InlineAsm>(I.getOperand(i))) {
|
|
Assert1(i == 0 && (isa<CallInst>(I) || isa<InvokeInst>(I)),
|
|
"Cannot take the address of an inline asm!", &I);
|
|
}
|
|
}
|
|
InstsInThisBlock.insert(&I);
|
|
}
|
|
|
|
/// visitIntrinsicFunction - Allow intrinsics to be verified in different ways.
|
|
///
|
|
void Verifier::visitIntrinsicFunctionCall(Intrinsic::ID ID, CallInst &CI) {
|
|
Function *IF = CI.getCalledFunction();
|
|
Assert1(IF->isDeclaration(), "Intrinsic functions should never be defined!",
|
|
IF);
|
|
|
|
#define GET_INTRINSIC_VERIFIER
|
|
#include "llvm/Intrinsics.gen"
|
|
#undef GET_INTRINSIC_VERIFIER
|
|
|
|
switch (ID) {
|
|
default:
|
|
break;
|
|
case Intrinsic::gcroot:
|
|
case Intrinsic::gcwrite:
|
|
case Intrinsic::gcread: {
|
|
Type *PtrTy = PointerType::getUnqual(Type::Int8Ty),
|
|
*PtrPtrTy = PointerType::getUnqual(PtrTy);
|
|
|
|
switch (ID) {
|
|
default:
|
|
break;
|
|
case Intrinsic::gcroot:
|
|
Assert1(CI.getOperand(1)->getType() == PtrPtrTy,
|
|
"Intrinsic parameter #1 is not i8**.", &CI);
|
|
Assert1(CI.getOperand(2)->getType() == PtrTy,
|
|
"Intrinsic parameter #2 is not i8*.", &CI);
|
|
Assert1(isa<AllocaInst>(CI.getOperand(1)->stripPointerCasts()),
|
|
"llvm.gcroot parameter #1 must be an alloca.", &CI);
|
|
Assert1(isa<Constant>(CI.getOperand(2)),
|
|
"llvm.gcroot parameter #2 must be a constant.", &CI);
|
|
break;
|
|
case Intrinsic::gcwrite:
|
|
Assert1(CI.getOperand(1)->getType() == PtrTy,
|
|
"Intrinsic parameter #1 is not a i8*.", &CI);
|
|
Assert1(CI.getOperand(2)->getType() == PtrTy,
|
|
"Intrinsic parameter #2 is not a i8*.", &CI);
|
|
Assert1(CI.getOperand(3)->getType() == PtrPtrTy,
|
|
"Intrinsic parameter #3 is not a i8**.", &CI);
|
|
break;
|
|
case Intrinsic::gcread:
|
|
Assert1(CI.getOperand(1)->getType() == PtrTy,
|
|
"Intrinsic parameter #1 is not a i8*.", &CI);
|
|
Assert1(CI.getOperand(2)->getType() == PtrPtrTy,
|
|
"Intrinsic parameter #2 is not a i8**.", &CI);
|
|
break;
|
|
}
|
|
|
|
Assert1(CI.getParent()->getParent()->hasGC(),
|
|
"Enclosing function does not use GC.",
|
|
&CI);
|
|
} break;
|
|
case Intrinsic::init_trampoline:
|
|
Assert1(isa<Function>(CI.getOperand(2)->stripPointerCasts()),
|
|
"llvm.init_trampoline parameter #2 must resolve to a function.",
|
|
&CI);
|
|
break;
|
|
}
|
|
}
|
|
|
|
/// VerifyIntrinsicPrototype - TableGen emits calls to this function into
|
|
/// Intrinsics.gen. This implements a little state machine that verifies the
|
|
/// prototype of intrinsics.
|
|
void Verifier::VerifyIntrinsicPrototype(Intrinsic::ID ID,
|
|
Function *F,
|
|
unsigned Count, ...) {
|
|
va_list VA;
|
|
va_start(VA, Count);
|
|
const FunctionType *FTy = F->getFunctionType();
|
|
|
|
// For overloaded intrinsics, the Suffix of the function name must match the
|
|
// types of the arguments. This variable keeps track of the expected
|
|
// suffix, to be checked at the end.
|
|
std::string Suffix;
|
|
|
|
if (FTy->getNumParams() + FTy->isVarArg() != Count - 1) {
|
|
CheckFailed("Intrinsic prototype has incorrect number of arguments!", F);
|
|
return;
|
|
}
|
|
|
|
// Note that "arg#0" is the return type.
|
|
for (unsigned ArgNo = 0; ArgNo < Count; ++ArgNo) {
|
|
int VT = va_arg(VA, int); // An MVT::SimpleValueType when non-negative.
|
|
|
|
if (VT == MVT::isVoid && ArgNo > 0) {
|
|
if (!FTy->isVarArg())
|
|
CheckFailed("Intrinsic prototype has no '...'!", F);
|
|
break;
|
|
}
|
|
|
|
const Type *Ty;
|
|
if (ArgNo == 0)
|
|
Ty = FTy->getReturnType();
|
|
else
|
|
Ty = FTy->getParamType(ArgNo-1);
|
|
|
|
unsigned NumElts = 0;
|
|
const Type *EltTy = Ty;
|
|
if (const VectorType *VTy = dyn_cast<VectorType>(Ty)) {
|
|
EltTy = VTy->getElementType();
|
|
NumElts = VTy->getNumElements();
|
|
}
|
|
|
|
if (VT < 0) {
|
|
int Match = ~VT;
|
|
if (Match == 0) {
|
|
if (Ty != FTy->getReturnType()) {
|
|
CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " does not "
|
|
"match return type.", F);
|
|
break;
|
|
}
|
|
} else {
|
|
if (Ty != FTy->getParamType(Match-1)) {
|
|
CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " does not "
|
|
"match parameter %" + utostr(Match-1) + ".", F);
|
|
break;
|
|
}
|
|
}
|
|
} else if (VT == MVT::iAny) {
|
|
if (!EltTy->isInteger()) {
|
|
if (ArgNo == 0)
|
|
CheckFailed("Intrinsic result type is not "
|
|
"an integer type.", F);
|
|
else
|
|
CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is not "
|
|
"an integer type.", F);
|
|
break;
|
|
}
|
|
unsigned GotBits = cast<IntegerType>(EltTy)->getBitWidth();
|
|
Suffix += ".";
|
|
if (EltTy != Ty)
|
|
Suffix += "v" + utostr(NumElts);
|
|
Suffix += "i" + utostr(GotBits);;
|
|
// Check some constraints on various intrinsics.
|
|
switch (ID) {
|
|
default: break; // Not everything needs to be checked.
|
|
case Intrinsic::bswap:
|
|
if (GotBits < 16 || GotBits % 16 != 0)
|
|
CheckFailed("Intrinsic requires even byte width argument", F);
|
|
break;
|
|
}
|
|
} else if (VT == MVT::fAny) {
|
|
if (!EltTy->isFloatingPoint()) {
|
|
if (ArgNo == 0)
|
|
CheckFailed("Intrinsic result type is not "
|
|
"a floating-point type.", F);
|
|
else
|
|
CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is not "
|
|
"a floating-point type.", F);
|
|
break;
|
|
}
|
|
Suffix += ".";
|
|
if (EltTy != Ty)
|
|
Suffix += "v" + utostr(NumElts);
|
|
Suffix += MVT::getMVT(EltTy).getMVTString();
|
|
} else if (VT == MVT::iPTR) {
|
|
if (!isa<PointerType>(Ty)) {
|
|
if (ArgNo == 0)
|
|
CheckFailed("Intrinsic result type is not a "
|
|
"pointer and a pointer is required.", F);
|
|
else
|
|
CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is not a "
|
|
"pointer and a pointer is required.", F);
|
|
}
|
|
} else if (VT == MVT::iPTRAny) {
|
|
// Outside of TableGen, we don't distinguish iPTRAny (to any address
|
|
// space) and iPTR. In the verifier, we can not distinguish which case
|
|
// we have so allow either case to be legal.
|
|
if (const PointerType* PTyp = dyn_cast<PointerType>(Ty)) {
|
|
Suffix += ".p" + utostr(PTyp->getAddressSpace()) +
|
|
MVT::getMVT(PTyp->getElementType()).getMVTString();
|
|
} else {
|
|
if (ArgNo == 0)
|
|
CheckFailed("Intrinsic result type is not a "
|
|
"pointer and a pointer is required.", F);
|
|
else
|
|
CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is not a "
|
|
"pointer and a pointer is required.", F);
|
|
break;
|
|
}
|
|
} else if (MVT((MVT::SimpleValueType)VT).isVector()) {
|
|
MVT VVT = MVT((MVT::SimpleValueType)VT);
|
|
// If this is a vector argument, verify the number and type of elements.
|
|
if (VVT.getVectorElementType() != MVT::getMVT(EltTy)) {
|
|
CheckFailed("Intrinsic prototype has incorrect vector element type!",
|
|
F);
|
|
break;
|
|
}
|
|
if (VVT.getVectorNumElements() != NumElts) {
|
|
CheckFailed("Intrinsic prototype has incorrect number of "
|
|
"vector elements!",F);
|
|
break;
|
|
}
|
|
} else if (MVT((MVT::SimpleValueType)VT).getTypeForMVT() != EltTy) {
|
|
if (ArgNo == 0)
|
|
CheckFailed("Intrinsic prototype has incorrect result type!", F);
|
|
else
|
|
CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is wrong!",F);
|
|
break;
|
|
} else if (EltTy != Ty) {
|
|
if (ArgNo == 0)
|
|
CheckFailed("Intrinsic result type is vector "
|
|
"and a scalar is required.", F);
|
|
else
|
|
CheckFailed("Intrinsic parameter #" + utostr(ArgNo-1) + " is vector "
|
|
"and a scalar is required.", F);
|
|
}
|
|
}
|
|
|
|
va_end(VA);
|
|
|
|
// For intrinsics without pointer arguments, if we computed a Suffix then the
|
|
// intrinsic is overloaded and we need to make sure that the name of the
|
|
// function is correct. We add the suffix to the name of the intrinsic and
|
|
// compare against the given function name. If they are not the same, the
|
|
// function name is invalid. This ensures that overloading of intrinsics
|
|
// uses a sane and consistent naming convention. Note that intrinsics with
|
|
// pointer argument may or may not be overloaded so we will check assuming it
|
|
// has a suffix and not.
|
|
if (!Suffix.empty()) {
|
|
std::string Name(Intrinsic::getName(ID));
|
|
if (Name + Suffix != F->getName()) {
|
|
CheckFailed("Overloaded intrinsic has incorrect suffix: '" +
|
|
F->getName().substr(Name.length()) + "'. It should be '" +
|
|
Suffix + "'", F);
|
|
}
|
|
}
|
|
|
|
// Check parameter attributes.
|
|
Assert1(F->getParamAttrs() == Intrinsic::getParamAttrs(ID),
|
|
"Intrinsic has wrong parameter attributes!", F);
|
|
}
|
|
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Implement the public interfaces to this file...
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
FunctionPass *llvm::createVerifierPass(VerifierFailureAction action) {
|
|
return new Verifier(action);
|
|
}
|
|
|
|
|
|
// verifyFunction - Create
|
|
bool llvm::verifyFunction(const Function &f, VerifierFailureAction action) {
|
|
Function &F = const_cast<Function&>(f);
|
|
assert(!F.isDeclaration() && "Cannot verify external functions");
|
|
|
|
FunctionPassManager FPM(new ExistingModuleProvider(F.getParent()));
|
|
Verifier *V = new Verifier(action);
|
|
FPM.add(V);
|
|
FPM.run(F);
|
|
return V->Broken;
|
|
}
|
|
|
|
/// verifyModule - Check a module for errors, printing messages on stderr.
|
|
/// Return true if the module is corrupt.
|
|
///
|
|
bool llvm::verifyModule(const Module &M, VerifierFailureAction action,
|
|
std::string *ErrorInfo) {
|
|
PassManager PM;
|
|
Verifier *V = new Verifier(action);
|
|
PM.add(V);
|
|
PM.run(const_cast<Module&>(M));
|
|
|
|
if (ErrorInfo && V->Broken)
|
|
*ErrorInfo = V->msgs.str();
|
|
return V->Broken;
|
|
}
|
|
|
|
// vim: sw=2
|