llvm-6502/unittests/ADT/SparseSetTest.cpp
Jakob Stoklund Olesen 62588622d4 Add a Briggs and Torczon sparse set implementation.
For objects that can be identified by small unsigned keys, SparseSet
provides constant time clear() and fast deterministic iteration. Insert,
erase, and find operations are typically faster than hash tables.

SparseSet is useful for keeping information about physical registers,
virtual registers, or numbered basic blocks.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@151110 91177308-0d34-0410-b5e6-96231b3b80d8
2012-02-22 00:56:08 +00:00

187 lines
4.3 KiB
C++

//===------ ADT/SparseSetTest.cpp - SparseSet unit tests - -----*- C++ -*-===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SparseSet.h"
#include "gtest/gtest.h"
using namespace llvm;
namespace {
typedef SparseSet<unsigned> USet;
// Empty set tests
TEST(SparseSetTest, EmptySet) {
USet Set;
EXPECT_TRUE(Set.empty());
EXPECT_TRUE(Set.begin() == Set.end());
EXPECT_EQ(0u, Set.size());
Set.setUniverse(10);
// Lookups on empty set.
EXPECT_TRUE(Set.find(0) == Set.end());
EXPECT_TRUE(Set.find(9) == Set.end());
// Same thing on a const reference.
const USet &CSet = Set;
EXPECT_TRUE(CSet.empty());
EXPECT_TRUE(CSet.begin() == CSet.end());
EXPECT_EQ(0u, CSet.size());
EXPECT_TRUE(CSet.find(0) == CSet.end());
USet::const_iterator I = CSet.find(5);
EXPECT_TRUE(I == CSet.end());
}
// Single entry set tests
TEST(SparseSetTest, SingleEntrySet) {
USet Set;
Set.setUniverse(10);
std::pair<USet::iterator, bool> IP = Set.insert(5);
EXPECT_TRUE(IP.second);
EXPECT_TRUE(IP.first == Set.begin());
EXPECT_FALSE(Set.empty());
EXPECT_FALSE(Set.begin() == Set.end());
EXPECT_TRUE(Set.begin() + 1 == Set.end());
EXPECT_EQ(1u, Set.size());
EXPECT_TRUE(Set.find(0) == Set.end());
EXPECT_TRUE(Set.find(9) == Set.end());
EXPECT_FALSE(Set.count(0));
EXPECT_TRUE(Set.count(5));
// Redundant insert.
IP = Set.insert(5);
EXPECT_FALSE(IP.second);
EXPECT_TRUE(IP.first == Set.begin());
// Erase non-existant element.
EXPECT_FALSE(Set.erase(1));
EXPECT_EQ(1u, Set.size());
EXPECT_EQ(5u, *Set.begin());
// Erase iterator.
USet::iterator I = Set.find(5);
EXPECT_TRUE(I == Set.begin());
I = Set.erase(I);
EXPECT_TRUE(I == Set.end());
EXPECT_TRUE(Set.empty());
}
// Multiple entry set tests
TEST(SparseSetTest, MultipleEntrySet) {
USet Set;
Set.setUniverse(10);
Set.insert(5);
Set.insert(3);
Set.insert(2);
Set.insert(1);
Set.insert(4);
EXPECT_EQ(5u, Set.size());
// Without deletions, iteration order == insertion order.
USet::const_iterator I = Set.begin();
EXPECT_EQ(5u, *I);
++I;
EXPECT_EQ(3u, *I);
++I;
EXPECT_EQ(2u, *I);
++I;
EXPECT_EQ(1u, *I);
++I;
EXPECT_EQ(4u, *I);
++I;
EXPECT_TRUE(I == Set.end());
// Redundant insert.
std::pair<USet::iterator, bool> IP = Set.insert(3);
EXPECT_FALSE(IP.second);
EXPECT_TRUE(IP.first == Set.begin() + 1);
// Erase last element by key.
EXPECT_TRUE(Set.erase(4));
EXPECT_EQ(4u, Set.size());
EXPECT_FALSE(Set.count(4));
EXPECT_FALSE(Set.erase(4));
EXPECT_EQ(4u, Set.size());
EXPECT_FALSE(Set.count(4));
// Erase first element by key.
EXPECT_TRUE(Set.count(5));
EXPECT_TRUE(Set.find(5) == Set.begin());
EXPECT_TRUE(Set.erase(5));
EXPECT_EQ(3u, Set.size());
EXPECT_FALSE(Set.count(5));
EXPECT_FALSE(Set.erase(5));
EXPECT_EQ(3u, Set.size());
EXPECT_FALSE(Set.count(5));
Set.insert(6);
Set.insert(7);
EXPECT_EQ(5u, Set.size());
// Erase last element by iterator.
I = Set.erase(Set.end() - 1);
EXPECT_TRUE(I == Set.end());
EXPECT_EQ(4u, Set.size());
// Erase second element by iterator.
I = Set.erase(Set.begin() + 1);
EXPECT_TRUE(I == Set.begin() + 1);
// Clear and resize the universe.
Set.clear();
EXPECT_FALSE(Set.count(5));
Set.setUniverse(1000);
// Add more than 256 elements.
for (unsigned i = 100; i != 800; ++i)
Set.insert(i);
for (unsigned i = 0; i != 10; ++i)
Set.erase(i);
for (unsigned i = 100; i != 800; ++i)
EXPECT_TRUE(Set.count(i));
EXPECT_FALSE(Set.count(99));
EXPECT_FALSE(Set.count(800));
EXPECT_EQ(700u, Set.size());
}
struct Alt {
unsigned Value;
explicit Alt(unsigned x) : Value(x) {}
unsigned getSparseSetKey() const { return Value - 1000; }
};
TEST(SparseSetTest, AltStructSet) {
typedef SparseSet<Alt> ASet;
ASet Set;
Set.setUniverse(10);
Set.insert(Alt(1005));
ASet::iterator I = Set.find(5);
ASSERT_TRUE(I == Set.begin());
EXPECT_EQ(1005u, I->Value);
Set.insert(Alt(1006));
Set.insert(Alt(1006));
I = Set.erase(Set.begin());
ASSERT_TRUE(I == Set.begin());
EXPECT_EQ(1006u, I->Value);
EXPECT_FALSE(Set.erase(5));
EXPECT_TRUE(Set.erase(6));
}
} // namespace