mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2024-12-25 14:32:53 +00:00
4e31acb558
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@188528 91177308-0d34-0410-b5e6-96231b3b80d8
1058 lines
32 KiB
C++
1058 lines
32 KiB
C++
//===- llvm/ADT/DenseMap.h - Dense probed hash table ------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines the DenseMap class.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#ifndef LLVM_ADT_DENSEMAP_H
|
|
#define LLVM_ADT_DENSEMAP_H
|
|
|
|
#include "llvm/ADT/DenseMapInfo.h"
|
|
#include "llvm/Support/AlignOf.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/PointerLikeTypeTraits.h"
|
|
#include "llvm/Support/type_traits.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <climits>
|
|
#include <cstddef>
|
|
#include <cstring>
|
|
#include <iterator>
|
|
#include <new>
|
|
#include <utility>
|
|
|
|
namespace llvm {
|
|
|
|
template<typename KeyT, typename ValueT,
|
|
typename KeyInfoT = DenseMapInfo<KeyT>,
|
|
bool IsConst = false>
|
|
class DenseMapIterator;
|
|
|
|
template<typename DerivedT,
|
|
typename KeyT, typename ValueT, typename KeyInfoT>
|
|
class DenseMapBase {
|
|
protected:
|
|
typedef std::pair<KeyT, ValueT> BucketT;
|
|
|
|
public:
|
|
typedef KeyT key_type;
|
|
typedef ValueT mapped_type;
|
|
typedef BucketT value_type;
|
|
|
|
typedef DenseMapIterator<KeyT, ValueT, KeyInfoT> iterator;
|
|
typedef DenseMapIterator<KeyT, ValueT,
|
|
KeyInfoT, true> const_iterator;
|
|
inline iterator begin() {
|
|
// When the map is empty, avoid the overhead of AdvancePastEmptyBuckets().
|
|
return empty() ? end() : iterator(getBuckets(), getBucketsEnd());
|
|
}
|
|
inline iterator end() {
|
|
return iterator(getBucketsEnd(), getBucketsEnd(), true);
|
|
}
|
|
inline const_iterator begin() const {
|
|
return empty() ? end() : const_iterator(getBuckets(), getBucketsEnd());
|
|
}
|
|
inline const_iterator end() const {
|
|
return const_iterator(getBucketsEnd(), getBucketsEnd(), true);
|
|
}
|
|
|
|
bool empty() const { return getNumEntries() == 0; }
|
|
unsigned size() const { return getNumEntries(); }
|
|
|
|
/// Grow the densemap so that it has at least Size buckets. Does not shrink
|
|
void resize(size_t Size) {
|
|
if (Size > getNumBuckets())
|
|
grow(Size);
|
|
}
|
|
|
|
void clear() {
|
|
if (getNumEntries() == 0 && getNumTombstones() == 0) return;
|
|
|
|
// If the capacity of the array is huge, and the # elements used is small,
|
|
// shrink the array.
|
|
if (getNumEntries() * 4 < getNumBuckets() && getNumBuckets() > 64) {
|
|
shrink_and_clear();
|
|
return;
|
|
}
|
|
|
|
const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
|
|
for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
|
|
if (!KeyInfoT::isEqual(P->first, EmptyKey)) {
|
|
if (!KeyInfoT::isEqual(P->first, TombstoneKey)) {
|
|
P->second.~ValueT();
|
|
decrementNumEntries();
|
|
}
|
|
P->first = EmptyKey;
|
|
}
|
|
}
|
|
assert(getNumEntries() == 0 && "Node count imbalance!");
|
|
setNumTombstones(0);
|
|
}
|
|
|
|
/// count - Return true if the specified key is in the map.
|
|
bool count(const KeyT &Val) const {
|
|
const BucketT *TheBucket;
|
|
return LookupBucketFor(Val, TheBucket);
|
|
}
|
|
|
|
iterator find(const KeyT &Val) {
|
|
BucketT *TheBucket;
|
|
if (LookupBucketFor(Val, TheBucket))
|
|
return iterator(TheBucket, getBucketsEnd(), true);
|
|
return end();
|
|
}
|
|
const_iterator find(const KeyT &Val) const {
|
|
const BucketT *TheBucket;
|
|
if (LookupBucketFor(Val, TheBucket))
|
|
return const_iterator(TheBucket, getBucketsEnd(), true);
|
|
return end();
|
|
}
|
|
|
|
/// Alternate version of find() which allows a different, and possibly
|
|
/// less expensive, key type.
|
|
/// The DenseMapInfo is responsible for supplying methods
|
|
/// getHashValue(LookupKeyT) and isEqual(LookupKeyT, KeyT) for each key
|
|
/// type used.
|
|
template<class LookupKeyT>
|
|
iterator find_as(const LookupKeyT &Val) {
|
|
BucketT *TheBucket;
|
|
if (LookupBucketFor(Val, TheBucket))
|
|
return iterator(TheBucket, getBucketsEnd(), true);
|
|
return end();
|
|
}
|
|
template<class LookupKeyT>
|
|
const_iterator find_as(const LookupKeyT &Val) const {
|
|
const BucketT *TheBucket;
|
|
if (LookupBucketFor(Val, TheBucket))
|
|
return const_iterator(TheBucket, getBucketsEnd(), true);
|
|
return end();
|
|
}
|
|
|
|
/// lookup - Return the entry for the specified key, or a default
|
|
/// constructed value if no such entry exists.
|
|
ValueT lookup(const KeyT &Val) const {
|
|
const BucketT *TheBucket;
|
|
if (LookupBucketFor(Val, TheBucket))
|
|
return TheBucket->second;
|
|
return ValueT();
|
|
}
|
|
|
|
// Inserts key,value pair into the map if the key isn't already in the map.
|
|
// If the key is already in the map, it returns false and doesn't update the
|
|
// value.
|
|
std::pair<iterator, bool> insert(const std::pair<KeyT, ValueT> &KV) {
|
|
BucketT *TheBucket;
|
|
if (LookupBucketFor(KV.first, TheBucket))
|
|
return std::make_pair(iterator(TheBucket, getBucketsEnd(), true),
|
|
false); // Already in map.
|
|
|
|
// Otherwise, insert the new element.
|
|
TheBucket = InsertIntoBucket(KV.first, KV.second, TheBucket);
|
|
return std::make_pair(iterator(TheBucket, getBucketsEnd(), true), true);
|
|
}
|
|
|
|
#if LLVM_HAS_RVALUE_REFERENCES
|
|
// Inserts key,value pair into the map if the key isn't already in the map.
|
|
// If the key is already in the map, it returns false and doesn't update the
|
|
// value.
|
|
std::pair<iterator, bool> insert(std::pair<KeyT, ValueT> &&KV) {
|
|
BucketT *TheBucket;
|
|
if (LookupBucketFor(KV.first, TheBucket))
|
|
return std::make_pair(iterator(TheBucket, getBucketsEnd(), true),
|
|
false); // Already in map.
|
|
|
|
// Otherwise, insert the new element.
|
|
TheBucket = InsertIntoBucket(std::move(KV.first),
|
|
std::move(KV.second),
|
|
TheBucket);
|
|
return std::make_pair(iterator(TheBucket, getBucketsEnd(), true), true);
|
|
}
|
|
#endif
|
|
|
|
/// insert - Range insertion of pairs.
|
|
template<typename InputIt>
|
|
void insert(InputIt I, InputIt E) {
|
|
for (; I != E; ++I)
|
|
insert(*I);
|
|
}
|
|
|
|
|
|
bool erase(const KeyT &Val) {
|
|
BucketT *TheBucket;
|
|
if (!LookupBucketFor(Val, TheBucket))
|
|
return false; // not in map.
|
|
|
|
TheBucket->second.~ValueT();
|
|
TheBucket->first = getTombstoneKey();
|
|
decrementNumEntries();
|
|
incrementNumTombstones();
|
|
return true;
|
|
}
|
|
void erase(iterator I) {
|
|
BucketT *TheBucket = &*I;
|
|
TheBucket->second.~ValueT();
|
|
TheBucket->first = getTombstoneKey();
|
|
decrementNumEntries();
|
|
incrementNumTombstones();
|
|
}
|
|
|
|
value_type& FindAndConstruct(const KeyT &Key) {
|
|
BucketT *TheBucket;
|
|
if (LookupBucketFor(Key, TheBucket))
|
|
return *TheBucket;
|
|
|
|
return *InsertIntoBucket(Key, ValueT(), TheBucket);
|
|
}
|
|
|
|
ValueT &operator[](const KeyT &Key) {
|
|
return FindAndConstruct(Key).second;
|
|
}
|
|
|
|
#if LLVM_HAS_RVALUE_REFERENCES
|
|
value_type& FindAndConstruct(KeyT &&Key) {
|
|
BucketT *TheBucket;
|
|
if (LookupBucketFor(Key, TheBucket))
|
|
return *TheBucket;
|
|
|
|
return *InsertIntoBucket(std::move(Key), ValueT(), TheBucket);
|
|
}
|
|
|
|
ValueT &operator[](KeyT &&Key) {
|
|
return FindAndConstruct(std::move(Key)).second;
|
|
}
|
|
#endif
|
|
|
|
/// isPointerIntoBucketsArray - Return true if the specified pointer points
|
|
/// somewhere into the DenseMap's array of buckets (i.e. either to a key or
|
|
/// value in the DenseMap).
|
|
bool isPointerIntoBucketsArray(const void *Ptr) const {
|
|
return Ptr >= getBuckets() && Ptr < getBucketsEnd();
|
|
}
|
|
|
|
/// getPointerIntoBucketsArray() - Return an opaque pointer into the buckets
|
|
/// array. In conjunction with the previous method, this can be used to
|
|
/// determine whether an insertion caused the DenseMap to reallocate.
|
|
const void *getPointerIntoBucketsArray() const { return getBuckets(); }
|
|
|
|
protected:
|
|
DenseMapBase() {}
|
|
|
|
void destroyAll() {
|
|
if (getNumBuckets() == 0) // Nothing to do.
|
|
return;
|
|
|
|
const KeyT EmptyKey = getEmptyKey(), TombstoneKey = getTombstoneKey();
|
|
for (BucketT *P = getBuckets(), *E = getBucketsEnd(); P != E; ++P) {
|
|
if (!KeyInfoT::isEqual(P->first, EmptyKey) &&
|
|
!KeyInfoT::isEqual(P->first, TombstoneKey))
|
|
P->second.~ValueT();
|
|
P->first.~KeyT();
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
memset((void*)getBuckets(), 0x5a, sizeof(BucketT)*getNumBuckets());
|
|
#endif
|
|
}
|
|
|
|
void initEmpty() {
|
|
setNumEntries(0);
|
|
setNumTombstones(0);
|
|
|
|
assert((getNumBuckets() & (getNumBuckets()-1)) == 0 &&
|
|
"# initial buckets must be a power of two!");
|
|
const KeyT EmptyKey = getEmptyKey();
|
|
for (BucketT *B = getBuckets(), *E = getBucketsEnd(); B != E; ++B)
|
|
new (&B->first) KeyT(EmptyKey);
|
|
}
|
|
|
|
void moveFromOldBuckets(BucketT *OldBucketsBegin, BucketT *OldBucketsEnd) {
|
|
initEmpty();
|
|
|
|
// Insert all the old elements.
|
|
const KeyT EmptyKey = getEmptyKey();
|
|
const KeyT TombstoneKey = getTombstoneKey();
|
|
for (BucketT *B = OldBucketsBegin, *E = OldBucketsEnd; B != E; ++B) {
|
|
if (!KeyInfoT::isEqual(B->first, EmptyKey) &&
|
|
!KeyInfoT::isEqual(B->first, TombstoneKey)) {
|
|
// Insert the key/value into the new table.
|
|
BucketT *DestBucket;
|
|
bool FoundVal = LookupBucketFor(B->first, DestBucket);
|
|
(void)FoundVal; // silence warning.
|
|
assert(!FoundVal && "Key already in new map?");
|
|
DestBucket->first = llvm_move(B->first);
|
|
new (&DestBucket->second) ValueT(llvm_move(B->second));
|
|
incrementNumEntries();
|
|
|
|
// Free the value.
|
|
B->second.~ValueT();
|
|
}
|
|
B->first.~KeyT();
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
if (OldBucketsBegin != OldBucketsEnd)
|
|
memset((void*)OldBucketsBegin, 0x5a,
|
|
sizeof(BucketT) * (OldBucketsEnd - OldBucketsBegin));
|
|
#endif
|
|
}
|
|
|
|
template <typename OtherBaseT>
|
|
void copyFrom(const DenseMapBase<OtherBaseT, KeyT, ValueT, KeyInfoT>& other) {
|
|
assert(getNumBuckets() == other.getNumBuckets());
|
|
|
|
setNumEntries(other.getNumEntries());
|
|
setNumTombstones(other.getNumTombstones());
|
|
|
|
if (isPodLike<KeyT>::value && isPodLike<ValueT>::value)
|
|
memcpy(getBuckets(), other.getBuckets(),
|
|
getNumBuckets() * sizeof(BucketT));
|
|
else
|
|
for (size_t i = 0; i < getNumBuckets(); ++i) {
|
|
new (&getBuckets()[i].first) KeyT(other.getBuckets()[i].first);
|
|
if (!KeyInfoT::isEqual(getBuckets()[i].first, getEmptyKey()) &&
|
|
!KeyInfoT::isEqual(getBuckets()[i].first, getTombstoneKey()))
|
|
new (&getBuckets()[i].second) ValueT(other.getBuckets()[i].second);
|
|
}
|
|
}
|
|
|
|
void swap(DenseMapBase& RHS) {
|
|
std::swap(getNumEntries(), RHS.getNumEntries());
|
|
std::swap(getNumTombstones(), RHS.getNumTombstones());
|
|
}
|
|
|
|
static unsigned getHashValue(const KeyT &Val) {
|
|
return KeyInfoT::getHashValue(Val);
|
|
}
|
|
template<typename LookupKeyT>
|
|
static unsigned getHashValue(const LookupKeyT &Val) {
|
|
return KeyInfoT::getHashValue(Val);
|
|
}
|
|
static const KeyT getEmptyKey() {
|
|
return KeyInfoT::getEmptyKey();
|
|
}
|
|
static const KeyT getTombstoneKey() {
|
|
return KeyInfoT::getTombstoneKey();
|
|
}
|
|
|
|
private:
|
|
unsigned getNumEntries() const {
|
|
return static_cast<const DerivedT *>(this)->getNumEntries();
|
|
}
|
|
void setNumEntries(unsigned Num) {
|
|
static_cast<DerivedT *>(this)->setNumEntries(Num);
|
|
}
|
|
void incrementNumEntries() {
|
|
setNumEntries(getNumEntries() + 1);
|
|
}
|
|
void decrementNumEntries() {
|
|
setNumEntries(getNumEntries() - 1);
|
|
}
|
|
unsigned getNumTombstones() const {
|
|
return static_cast<const DerivedT *>(this)->getNumTombstones();
|
|
}
|
|
void setNumTombstones(unsigned Num) {
|
|
static_cast<DerivedT *>(this)->setNumTombstones(Num);
|
|
}
|
|
void incrementNumTombstones() {
|
|
setNumTombstones(getNumTombstones() + 1);
|
|
}
|
|
void decrementNumTombstones() {
|
|
setNumTombstones(getNumTombstones() - 1);
|
|
}
|
|
const BucketT *getBuckets() const {
|
|
return static_cast<const DerivedT *>(this)->getBuckets();
|
|
}
|
|
BucketT *getBuckets() {
|
|
return static_cast<DerivedT *>(this)->getBuckets();
|
|
}
|
|
unsigned getNumBuckets() const {
|
|
return static_cast<const DerivedT *>(this)->getNumBuckets();
|
|
}
|
|
BucketT *getBucketsEnd() {
|
|
return getBuckets() + getNumBuckets();
|
|
}
|
|
const BucketT *getBucketsEnd() const {
|
|
return getBuckets() + getNumBuckets();
|
|
}
|
|
|
|
void grow(unsigned AtLeast) {
|
|
static_cast<DerivedT *>(this)->grow(AtLeast);
|
|
}
|
|
|
|
void shrink_and_clear() {
|
|
static_cast<DerivedT *>(this)->shrink_and_clear();
|
|
}
|
|
|
|
|
|
BucketT *InsertIntoBucket(const KeyT &Key, const ValueT &Value,
|
|
BucketT *TheBucket) {
|
|
TheBucket = InsertIntoBucketImpl(Key, TheBucket);
|
|
|
|
TheBucket->first = Key;
|
|
new (&TheBucket->second) ValueT(Value);
|
|
return TheBucket;
|
|
}
|
|
|
|
#if LLVM_HAS_RVALUE_REFERENCES
|
|
BucketT *InsertIntoBucket(const KeyT &Key, ValueT &&Value,
|
|
BucketT *TheBucket) {
|
|
TheBucket = InsertIntoBucketImpl(Key, TheBucket);
|
|
|
|
TheBucket->first = Key;
|
|
new (&TheBucket->second) ValueT(std::move(Value));
|
|
return TheBucket;
|
|
}
|
|
|
|
BucketT *InsertIntoBucket(KeyT &&Key, ValueT &&Value, BucketT *TheBucket) {
|
|
TheBucket = InsertIntoBucketImpl(Key, TheBucket);
|
|
|
|
TheBucket->first = std::move(Key);
|
|
new (&TheBucket->second) ValueT(std::move(Value));
|
|
return TheBucket;
|
|
}
|
|
#endif
|
|
|
|
BucketT *InsertIntoBucketImpl(const KeyT &Key, BucketT *TheBucket) {
|
|
// If the load of the hash table is more than 3/4, or if fewer than 1/8 of
|
|
// the buckets are empty (meaning that many are filled with tombstones),
|
|
// grow the table.
|
|
//
|
|
// The later case is tricky. For example, if we had one empty bucket with
|
|
// tons of tombstones, failing lookups (e.g. for insertion) would have to
|
|
// probe almost the entire table until it found the empty bucket. If the
|
|
// table completely filled with tombstones, no lookup would ever succeed,
|
|
// causing infinite loops in lookup.
|
|
unsigned NewNumEntries = getNumEntries() + 1;
|
|
unsigned NumBuckets = getNumBuckets();
|
|
if (NewNumEntries*4 >= NumBuckets*3) {
|
|
this->grow(NumBuckets * 2);
|
|
LookupBucketFor(Key, TheBucket);
|
|
NumBuckets = getNumBuckets();
|
|
}
|
|
if (NumBuckets-(NewNumEntries+getNumTombstones()) <= NumBuckets/8) {
|
|
this->grow(NumBuckets * 2);
|
|
LookupBucketFor(Key, TheBucket);
|
|
}
|
|
assert(TheBucket);
|
|
|
|
// Only update the state after we've grown our bucket space appropriately
|
|
// so that when growing buckets we have self-consistent entry count.
|
|
incrementNumEntries();
|
|
|
|
// If we are writing over a tombstone, remember this.
|
|
const KeyT EmptyKey = getEmptyKey();
|
|
if (!KeyInfoT::isEqual(TheBucket->first, EmptyKey))
|
|
decrementNumTombstones();
|
|
|
|
return TheBucket;
|
|
}
|
|
|
|
/// LookupBucketFor - Lookup the appropriate bucket for Val, returning it in
|
|
/// FoundBucket. If the bucket contains the key and a value, this returns
|
|
/// true, otherwise it returns a bucket with an empty marker or tombstone and
|
|
/// returns false.
|
|
template<typename LookupKeyT>
|
|
bool LookupBucketFor(const LookupKeyT &Val,
|
|
const BucketT *&FoundBucket) const {
|
|
const BucketT *BucketsPtr = getBuckets();
|
|
const unsigned NumBuckets = getNumBuckets();
|
|
|
|
if (NumBuckets == 0) {
|
|
FoundBucket = 0;
|
|
return false;
|
|
}
|
|
|
|
// FoundTombstone - Keep track of whether we find a tombstone while probing.
|
|
const BucketT *FoundTombstone = 0;
|
|
const KeyT EmptyKey = getEmptyKey();
|
|
const KeyT TombstoneKey = getTombstoneKey();
|
|
assert(!KeyInfoT::isEqual(Val, EmptyKey) &&
|
|
!KeyInfoT::isEqual(Val, TombstoneKey) &&
|
|
"Empty/Tombstone value shouldn't be inserted into map!");
|
|
|
|
unsigned BucketNo = getHashValue(Val) & (NumBuckets-1);
|
|
unsigned ProbeAmt = 1;
|
|
while (1) {
|
|
const BucketT *ThisBucket = BucketsPtr + BucketNo;
|
|
// Found Val's bucket? If so, return it.
|
|
if (KeyInfoT::isEqual(Val, ThisBucket->first)) {
|
|
FoundBucket = ThisBucket;
|
|
return true;
|
|
}
|
|
|
|
// If we found an empty bucket, the key doesn't exist in the set.
|
|
// Insert it and return the default value.
|
|
if (KeyInfoT::isEqual(ThisBucket->first, EmptyKey)) {
|
|
// If we've already seen a tombstone while probing, fill it in instead
|
|
// of the empty bucket we eventually probed to.
|
|
FoundBucket = FoundTombstone ? FoundTombstone : ThisBucket;
|
|
return false;
|
|
}
|
|
|
|
// If this is a tombstone, remember it. If Val ends up not in the map, we
|
|
// prefer to return it than something that would require more probing.
|
|
if (KeyInfoT::isEqual(ThisBucket->first, TombstoneKey) && !FoundTombstone)
|
|
FoundTombstone = ThisBucket; // Remember the first tombstone found.
|
|
|
|
// Otherwise, it's a hash collision or a tombstone, continue quadratic
|
|
// probing.
|
|
BucketNo += ProbeAmt++;
|
|
BucketNo &= (NumBuckets-1);
|
|
}
|
|
}
|
|
|
|
template <typename LookupKeyT>
|
|
bool LookupBucketFor(const LookupKeyT &Val, BucketT *&FoundBucket) {
|
|
const BucketT *ConstFoundBucket;
|
|
bool Result = const_cast<const DenseMapBase *>(this)
|
|
->LookupBucketFor(Val, ConstFoundBucket);
|
|
FoundBucket = const_cast<BucketT *>(ConstFoundBucket);
|
|
return Result;
|
|
}
|
|
|
|
public:
|
|
/// Return the approximate size (in bytes) of the actual map.
|
|
/// This is just the raw memory used by DenseMap.
|
|
/// If entries are pointers to objects, the size of the referenced objects
|
|
/// are not included.
|
|
size_t getMemorySize() const {
|
|
return getNumBuckets() * sizeof(BucketT);
|
|
}
|
|
};
|
|
|
|
template<typename KeyT, typename ValueT,
|
|
typename KeyInfoT = DenseMapInfo<KeyT> >
|
|
class DenseMap
|
|
: public DenseMapBase<DenseMap<KeyT, ValueT, KeyInfoT>,
|
|
KeyT, ValueT, KeyInfoT> {
|
|
// Lift some types from the dependent base class into this class for
|
|
// simplicity of referring to them.
|
|
typedef DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT> BaseT;
|
|
typedef typename BaseT::BucketT BucketT;
|
|
friend class DenseMapBase<DenseMap, KeyT, ValueT, KeyInfoT>;
|
|
|
|
BucketT *Buckets;
|
|
unsigned NumEntries;
|
|
unsigned NumTombstones;
|
|
unsigned NumBuckets;
|
|
|
|
public:
|
|
explicit DenseMap(unsigned NumInitBuckets = 0) {
|
|
init(NumInitBuckets);
|
|
}
|
|
|
|
DenseMap(const DenseMap &other) : BaseT() {
|
|
init(0);
|
|
copyFrom(other);
|
|
}
|
|
|
|
#if LLVM_HAS_RVALUE_REFERENCES
|
|
DenseMap(DenseMap &&other) : BaseT() {
|
|
init(0);
|
|
swap(other);
|
|
}
|
|
#endif
|
|
|
|
template<typename InputIt>
|
|
DenseMap(const InputIt &I, const InputIt &E) {
|
|
init(NextPowerOf2(std::distance(I, E)));
|
|
this->insert(I, E);
|
|
}
|
|
|
|
~DenseMap() {
|
|
this->destroyAll();
|
|
operator delete(Buckets);
|
|
}
|
|
|
|
void swap(DenseMap& RHS) {
|
|
std::swap(Buckets, RHS.Buckets);
|
|
std::swap(NumEntries, RHS.NumEntries);
|
|
std::swap(NumTombstones, RHS.NumTombstones);
|
|
std::swap(NumBuckets, RHS.NumBuckets);
|
|
}
|
|
|
|
DenseMap& operator=(const DenseMap& other) {
|
|
copyFrom(other);
|
|
return *this;
|
|
}
|
|
|
|
#if LLVM_HAS_RVALUE_REFERENCES
|
|
DenseMap& operator=(DenseMap &&other) {
|
|
this->destroyAll();
|
|
operator delete(Buckets);
|
|
init(0);
|
|
swap(other);
|
|
return *this;
|
|
}
|
|
#endif
|
|
|
|
void copyFrom(const DenseMap& other) {
|
|
this->destroyAll();
|
|
operator delete(Buckets);
|
|
if (allocateBuckets(other.NumBuckets)) {
|
|
this->BaseT::copyFrom(other);
|
|
} else {
|
|
NumEntries = 0;
|
|
NumTombstones = 0;
|
|
}
|
|
}
|
|
|
|
void init(unsigned InitBuckets) {
|
|
if (allocateBuckets(InitBuckets)) {
|
|
this->BaseT::initEmpty();
|
|
} else {
|
|
NumEntries = 0;
|
|
NumTombstones = 0;
|
|
}
|
|
}
|
|
|
|
void grow(unsigned AtLeast) {
|
|
unsigned OldNumBuckets = NumBuckets;
|
|
BucketT *OldBuckets = Buckets;
|
|
|
|
allocateBuckets(std::max<unsigned>(64, static_cast<unsigned>(NextPowerOf2(AtLeast-1))));
|
|
assert(Buckets);
|
|
if (!OldBuckets) {
|
|
this->BaseT::initEmpty();
|
|
return;
|
|
}
|
|
|
|
this->moveFromOldBuckets(OldBuckets, OldBuckets+OldNumBuckets);
|
|
|
|
// Free the old table.
|
|
operator delete(OldBuckets);
|
|
}
|
|
|
|
void shrink_and_clear() {
|
|
unsigned OldNumEntries = NumEntries;
|
|
this->destroyAll();
|
|
|
|
// Reduce the number of buckets.
|
|
unsigned NewNumBuckets = 0;
|
|
if (OldNumEntries)
|
|
NewNumBuckets = std::max(64, 1 << (Log2_32_Ceil(OldNumEntries) + 1));
|
|
if (NewNumBuckets == NumBuckets) {
|
|
this->BaseT::initEmpty();
|
|
return;
|
|
}
|
|
|
|
operator delete(Buckets);
|
|
init(NewNumBuckets);
|
|
}
|
|
|
|
private:
|
|
unsigned getNumEntries() const {
|
|
return NumEntries;
|
|
}
|
|
void setNumEntries(unsigned Num) {
|
|
NumEntries = Num;
|
|
}
|
|
|
|
unsigned getNumTombstones() const {
|
|
return NumTombstones;
|
|
}
|
|
void setNumTombstones(unsigned Num) {
|
|
NumTombstones = Num;
|
|
}
|
|
|
|
BucketT *getBuckets() const {
|
|
return Buckets;
|
|
}
|
|
|
|
unsigned getNumBuckets() const {
|
|
return NumBuckets;
|
|
}
|
|
|
|
bool allocateBuckets(unsigned Num) {
|
|
NumBuckets = Num;
|
|
if (NumBuckets == 0) {
|
|
Buckets = 0;
|
|
return false;
|
|
}
|
|
|
|
Buckets = static_cast<BucketT*>(operator new(sizeof(BucketT) * NumBuckets));
|
|
return true;
|
|
}
|
|
};
|
|
|
|
template<typename KeyT, typename ValueT,
|
|
unsigned InlineBuckets = 4,
|
|
typename KeyInfoT = DenseMapInfo<KeyT> >
|
|
class SmallDenseMap
|
|
: public DenseMapBase<SmallDenseMap<KeyT, ValueT, InlineBuckets, KeyInfoT>,
|
|
KeyT, ValueT, KeyInfoT> {
|
|
// Lift some types from the dependent base class into this class for
|
|
// simplicity of referring to them.
|
|
typedef DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT> BaseT;
|
|
typedef typename BaseT::BucketT BucketT;
|
|
friend class DenseMapBase<SmallDenseMap, KeyT, ValueT, KeyInfoT>;
|
|
|
|
unsigned Small : 1;
|
|
unsigned NumEntries : 31;
|
|
unsigned NumTombstones;
|
|
|
|
struct LargeRep {
|
|
BucketT *Buckets;
|
|
unsigned NumBuckets;
|
|
};
|
|
|
|
/// A "union" of an inline bucket array and the struct representing
|
|
/// a large bucket. This union will be discriminated by the 'Small' bit.
|
|
AlignedCharArrayUnion<BucketT[InlineBuckets], LargeRep> storage;
|
|
|
|
public:
|
|
explicit SmallDenseMap(unsigned NumInitBuckets = 0) {
|
|
init(NumInitBuckets);
|
|
}
|
|
|
|
SmallDenseMap(const SmallDenseMap &other) : BaseT() {
|
|
init(0);
|
|
copyFrom(other);
|
|
}
|
|
|
|
#if LLVM_HAS_RVALUE_REFERENCES
|
|
SmallDenseMap(SmallDenseMap &&other) : BaseT() {
|
|
init(0);
|
|
swap(other);
|
|
}
|
|
#endif
|
|
|
|
template<typename InputIt>
|
|
SmallDenseMap(const InputIt &I, const InputIt &E) {
|
|
init(NextPowerOf2(std::distance(I, E)));
|
|
this->insert(I, E);
|
|
}
|
|
|
|
~SmallDenseMap() {
|
|
this->destroyAll();
|
|
deallocateBuckets();
|
|
}
|
|
|
|
void swap(SmallDenseMap& RHS) {
|
|
unsigned TmpNumEntries = RHS.NumEntries;
|
|
RHS.NumEntries = NumEntries;
|
|
NumEntries = TmpNumEntries;
|
|
std::swap(NumTombstones, RHS.NumTombstones);
|
|
|
|
const KeyT EmptyKey = this->getEmptyKey();
|
|
const KeyT TombstoneKey = this->getTombstoneKey();
|
|
if (Small && RHS.Small) {
|
|
// If we're swapping inline bucket arrays, we have to cope with some of
|
|
// the tricky bits of DenseMap's storage system: the buckets are not
|
|
// fully initialized. Thus we swap every key, but we may have
|
|
// a one-directional move of the value.
|
|
for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
|
|
BucketT *LHSB = &getInlineBuckets()[i],
|
|
*RHSB = &RHS.getInlineBuckets()[i];
|
|
bool hasLHSValue = (!KeyInfoT::isEqual(LHSB->first, EmptyKey) &&
|
|
!KeyInfoT::isEqual(LHSB->first, TombstoneKey));
|
|
bool hasRHSValue = (!KeyInfoT::isEqual(RHSB->first, EmptyKey) &&
|
|
!KeyInfoT::isEqual(RHSB->first, TombstoneKey));
|
|
if (hasLHSValue && hasRHSValue) {
|
|
// Swap together if we can...
|
|
std::swap(*LHSB, *RHSB);
|
|
continue;
|
|
}
|
|
// Swap separately and handle any assymetry.
|
|
std::swap(LHSB->first, RHSB->first);
|
|
if (hasLHSValue) {
|
|
new (&RHSB->second) ValueT(llvm_move(LHSB->second));
|
|
LHSB->second.~ValueT();
|
|
} else if (hasRHSValue) {
|
|
new (&LHSB->second) ValueT(llvm_move(RHSB->second));
|
|
RHSB->second.~ValueT();
|
|
}
|
|
}
|
|
return;
|
|
}
|
|
if (!Small && !RHS.Small) {
|
|
std::swap(getLargeRep()->Buckets, RHS.getLargeRep()->Buckets);
|
|
std::swap(getLargeRep()->NumBuckets, RHS.getLargeRep()->NumBuckets);
|
|
return;
|
|
}
|
|
|
|
SmallDenseMap &SmallSide = Small ? *this : RHS;
|
|
SmallDenseMap &LargeSide = Small ? RHS : *this;
|
|
|
|
// First stash the large side's rep and move the small side across.
|
|
LargeRep TmpRep = llvm_move(*LargeSide.getLargeRep());
|
|
LargeSide.getLargeRep()->~LargeRep();
|
|
LargeSide.Small = true;
|
|
// This is similar to the standard move-from-old-buckets, but the bucket
|
|
// count hasn't actually rotated in this case. So we have to carefully
|
|
// move construct the keys and values into their new locations, but there
|
|
// is no need to re-hash things.
|
|
for (unsigned i = 0, e = InlineBuckets; i != e; ++i) {
|
|
BucketT *NewB = &LargeSide.getInlineBuckets()[i],
|
|
*OldB = &SmallSide.getInlineBuckets()[i];
|
|
new (&NewB->first) KeyT(llvm_move(OldB->first));
|
|
OldB->first.~KeyT();
|
|
if (!KeyInfoT::isEqual(NewB->first, EmptyKey) &&
|
|
!KeyInfoT::isEqual(NewB->first, TombstoneKey)) {
|
|
new (&NewB->second) ValueT(llvm_move(OldB->second));
|
|
OldB->second.~ValueT();
|
|
}
|
|
}
|
|
|
|
// The hard part of moving the small buckets across is done, just move
|
|
// the TmpRep into its new home.
|
|
SmallSide.Small = false;
|
|
new (SmallSide.getLargeRep()) LargeRep(llvm_move(TmpRep));
|
|
}
|
|
|
|
SmallDenseMap& operator=(const SmallDenseMap& other) {
|
|
copyFrom(other);
|
|
return *this;
|
|
}
|
|
|
|
#if LLVM_HAS_RVALUE_REFERENCES
|
|
SmallDenseMap& operator=(SmallDenseMap &&other) {
|
|
this->destroyAll();
|
|
deallocateBuckets();
|
|
init(0);
|
|
swap(other);
|
|
return *this;
|
|
}
|
|
#endif
|
|
|
|
void copyFrom(const SmallDenseMap& other) {
|
|
this->destroyAll();
|
|
deallocateBuckets();
|
|
Small = true;
|
|
if (other.getNumBuckets() > InlineBuckets) {
|
|
Small = false;
|
|
allocateBuckets(other.getNumBuckets());
|
|
}
|
|
this->BaseT::copyFrom(other);
|
|
}
|
|
|
|
void init(unsigned InitBuckets) {
|
|
Small = true;
|
|
if (InitBuckets > InlineBuckets) {
|
|
Small = false;
|
|
new (getLargeRep()) LargeRep(allocateBuckets(InitBuckets));
|
|
}
|
|
this->BaseT::initEmpty();
|
|
}
|
|
|
|
void grow(unsigned AtLeast) {
|
|
if (AtLeast >= InlineBuckets)
|
|
AtLeast = std::max<unsigned>(64, NextPowerOf2(AtLeast-1));
|
|
|
|
if (Small) {
|
|
if (AtLeast < InlineBuckets)
|
|
return; // Nothing to do.
|
|
|
|
// First move the inline buckets into a temporary storage.
|
|
AlignedCharArrayUnion<BucketT[InlineBuckets]> TmpStorage;
|
|
BucketT *TmpBegin = reinterpret_cast<BucketT *>(TmpStorage.buffer);
|
|
BucketT *TmpEnd = TmpBegin;
|
|
|
|
// Loop over the buckets, moving non-empty, non-tombstones into the
|
|
// temporary storage. Have the loop move the TmpEnd forward as it goes.
|
|
const KeyT EmptyKey = this->getEmptyKey();
|
|
const KeyT TombstoneKey = this->getTombstoneKey();
|
|
for (BucketT *P = getBuckets(), *E = P + InlineBuckets; P != E; ++P) {
|
|
if (!KeyInfoT::isEqual(P->first, EmptyKey) &&
|
|
!KeyInfoT::isEqual(P->first, TombstoneKey)) {
|
|
assert(size_t(TmpEnd - TmpBegin) < InlineBuckets &&
|
|
"Too many inline buckets!");
|
|
new (&TmpEnd->first) KeyT(llvm_move(P->first));
|
|
new (&TmpEnd->second) ValueT(llvm_move(P->second));
|
|
++TmpEnd;
|
|
P->second.~ValueT();
|
|
}
|
|
P->first.~KeyT();
|
|
}
|
|
|
|
// Now make this map use the large rep, and move all the entries back
|
|
// into it.
|
|
Small = false;
|
|
new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
|
|
this->moveFromOldBuckets(TmpBegin, TmpEnd);
|
|
return;
|
|
}
|
|
|
|
LargeRep OldRep = llvm_move(*getLargeRep());
|
|
getLargeRep()->~LargeRep();
|
|
if (AtLeast <= InlineBuckets) {
|
|
Small = true;
|
|
} else {
|
|
new (getLargeRep()) LargeRep(allocateBuckets(AtLeast));
|
|
}
|
|
|
|
this->moveFromOldBuckets(OldRep.Buckets, OldRep.Buckets+OldRep.NumBuckets);
|
|
|
|
// Free the old table.
|
|
operator delete(OldRep.Buckets);
|
|
}
|
|
|
|
void shrink_and_clear() {
|
|
unsigned OldSize = this->size();
|
|
this->destroyAll();
|
|
|
|
// Reduce the number of buckets.
|
|
unsigned NewNumBuckets = 0;
|
|
if (OldSize) {
|
|
NewNumBuckets = 1 << (Log2_32_Ceil(OldSize) + 1);
|
|
if (NewNumBuckets > InlineBuckets && NewNumBuckets < 64u)
|
|
NewNumBuckets = 64;
|
|
}
|
|
if ((Small && NewNumBuckets <= InlineBuckets) ||
|
|
(!Small && NewNumBuckets == getLargeRep()->NumBuckets)) {
|
|
this->BaseT::initEmpty();
|
|
return;
|
|
}
|
|
|
|
deallocateBuckets();
|
|
init(NewNumBuckets);
|
|
}
|
|
|
|
private:
|
|
unsigned getNumEntries() const {
|
|
return NumEntries;
|
|
}
|
|
void setNumEntries(unsigned Num) {
|
|
assert(Num < INT_MAX && "Cannot support more than INT_MAX entries");
|
|
NumEntries = Num;
|
|
}
|
|
|
|
unsigned getNumTombstones() const {
|
|
return NumTombstones;
|
|
}
|
|
void setNumTombstones(unsigned Num) {
|
|
NumTombstones = Num;
|
|
}
|
|
|
|
const BucketT *getInlineBuckets() const {
|
|
assert(Small);
|
|
// Note that this cast does not violate aliasing rules as we assert that
|
|
// the memory's dynamic type is the small, inline bucket buffer, and the
|
|
// 'storage.buffer' static type is 'char *'.
|
|
return reinterpret_cast<const BucketT *>(storage.buffer);
|
|
}
|
|
BucketT *getInlineBuckets() {
|
|
return const_cast<BucketT *>(
|
|
const_cast<const SmallDenseMap *>(this)->getInlineBuckets());
|
|
}
|
|
const LargeRep *getLargeRep() const {
|
|
assert(!Small);
|
|
// Note, same rule about aliasing as with getInlineBuckets.
|
|
return reinterpret_cast<const LargeRep *>(storage.buffer);
|
|
}
|
|
LargeRep *getLargeRep() {
|
|
return const_cast<LargeRep *>(
|
|
const_cast<const SmallDenseMap *>(this)->getLargeRep());
|
|
}
|
|
|
|
const BucketT *getBuckets() const {
|
|
return Small ? getInlineBuckets() : getLargeRep()->Buckets;
|
|
}
|
|
BucketT *getBuckets() {
|
|
return const_cast<BucketT *>(
|
|
const_cast<const SmallDenseMap *>(this)->getBuckets());
|
|
}
|
|
unsigned getNumBuckets() const {
|
|
return Small ? InlineBuckets : getLargeRep()->NumBuckets;
|
|
}
|
|
|
|
void deallocateBuckets() {
|
|
if (Small)
|
|
return;
|
|
|
|
operator delete(getLargeRep()->Buckets);
|
|
getLargeRep()->~LargeRep();
|
|
}
|
|
|
|
LargeRep allocateBuckets(unsigned Num) {
|
|
assert(Num > InlineBuckets && "Must allocate more buckets than are inline");
|
|
LargeRep Rep = {
|
|
static_cast<BucketT*>(operator new(sizeof(BucketT) * Num)), Num
|
|
};
|
|
return Rep;
|
|
}
|
|
};
|
|
|
|
template<typename KeyT, typename ValueT,
|
|
typename KeyInfoT, bool IsConst>
|
|
class DenseMapIterator {
|
|
typedef std::pair<KeyT, ValueT> Bucket;
|
|
typedef DenseMapIterator<KeyT, ValueT,
|
|
KeyInfoT, true> ConstIterator;
|
|
friend class DenseMapIterator<KeyT, ValueT, KeyInfoT, true>;
|
|
public:
|
|
typedef ptrdiff_t difference_type;
|
|
typedef typename conditional<IsConst, const Bucket, Bucket>::type value_type;
|
|
typedef value_type *pointer;
|
|
typedef value_type &reference;
|
|
typedef std::forward_iterator_tag iterator_category;
|
|
private:
|
|
pointer Ptr, End;
|
|
public:
|
|
DenseMapIterator() : Ptr(0), End(0) {}
|
|
|
|
DenseMapIterator(pointer Pos, pointer E, bool NoAdvance = false)
|
|
: Ptr(Pos), End(E) {
|
|
if (!NoAdvance) AdvancePastEmptyBuckets();
|
|
}
|
|
|
|
// If IsConst is true this is a converting constructor from iterator to
|
|
// const_iterator and the default copy constructor is used.
|
|
// Otherwise this is a copy constructor for iterator.
|
|
DenseMapIterator(const DenseMapIterator<KeyT, ValueT,
|
|
KeyInfoT, false>& I)
|
|
: Ptr(I.Ptr), End(I.End) {}
|
|
|
|
reference operator*() const {
|
|
return *Ptr;
|
|
}
|
|
pointer operator->() const {
|
|
return Ptr;
|
|
}
|
|
|
|
bool operator==(const ConstIterator &RHS) const {
|
|
return Ptr == RHS.operator->();
|
|
}
|
|
bool operator!=(const ConstIterator &RHS) const {
|
|
return Ptr != RHS.operator->();
|
|
}
|
|
|
|
inline DenseMapIterator& operator++() { // Preincrement
|
|
++Ptr;
|
|
AdvancePastEmptyBuckets();
|
|
return *this;
|
|
}
|
|
DenseMapIterator operator++(int) { // Postincrement
|
|
DenseMapIterator tmp = *this; ++*this; return tmp;
|
|
}
|
|
|
|
private:
|
|
void AdvancePastEmptyBuckets() {
|
|
const KeyT Empty = KeyInfoT::getEmptyKey();
|
|
const KeyT Tombstone = KeyInfoT::getTombstoneKey();
|
|
|
|
while (Ptr != End &&
|
|
(KeyInfoT::isEqual(Ptr->first, Empty) ||
|
|
KeyInfoT::isEqual(Ptr->first, Tombstone)))
|
|
++Ptr;
|
|
}
|
|
};
|
|
|
|
template<typename KeyT, typename ValueT, typename KeyInfoT>
|
|
static inline size_t
|
|
capacity_in_bytes(const DenseMap<KeyT, ValueT, KeyInfoT> &X) {
|
|
return X.getMemorySize();
|
|
}
|
|
|
|
} // end namespace llvm
|
|
|
|
#endif
|