llvm-6502/lib/Target/ARM/ARMCodeEmitter.cpp
Jim Grosbach fb8989e640 ARM parsing and encoding of SBFX and UBFX.
Encode the width operand as it encodes in the instruction, which simplifies
the disassembler and the encoder, by using the imm1_32 operand def. Add a
diagnostic for the context-sensitive constraint that the width must be in
the range [1,32-lsb].


git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@136264 91177308-0d34-0410-b5e6-96231b3b80d8
2011-07-27 21:09:25 +00:00

1897 lines
63 KiB
C++

//===-- ARM/ARMCodeEmitter.cpp - Convert ARM code to machine code ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file contains the pass that transforms the ARM machine instructions into
// relocatable machine code.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "jit"
#include "ARM.h"
#include "ARMConstantPoolValue.h"
#include "ARMInstrInfo.h"
#include "ARMRelocations.h"
#include "ARMSubtarget.h"
#include "ARMTargetMachine.h"
#include "MCTargetDesc/ARMAddressingModes.h"
#include "llvm/Constants.h"
#include "llvm/DerivedTypes.h"
#include "llvm/Function.h"
#include "llvm/PassManager.h"
#include "llvm/CodeGen/JITCodeEmitter.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
#ifndef NDEBUG
#include <iomanip>
#endif
using namespace llvm;
STATISTIC(NumEmitted, "Number of machine instructions emitted");
namespace {
class ARMCodeEmitter : public MachineFunctionPass {
ARMJITInfo *JTI;
const ARMInstrInfo *II;
const TargetData *TD;
const ARMSubtarget *Subtarget;
TargetMachine &TM;
JITCodeEmitter &MCE;
MachineModuleInfo *MMI;
const std::vector<MachineConstantPoolEntry> *MCPEs;
const std::vector<MachineJumpTableEntry> *MJTEs;
bool IsPIC;
bool IsThumb;
void getAnalysisUsage(AnalysisUsage &AU) const {
AU.addRequired<MachineModuleInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
static char ID;
public:
ARMCodeEmitter(TargetMachine &tm, JITCodeEmitter &mce)
: MachineFunctionPass(ID), JTI(0),
II((const ARMInstrInfo *)tm.getInstrInfo()),
TD(tm.getTargetData()), TM(tm),
MCE(mce), MCPEs(0), MJTEs(0),
IsPIC(TM.getRelocationModel() == Reloc::PIC_), IsThumb(false) {}
/// getBinaryCodeForInstr - This function, generated by the
/// CodeEmitterGenerator using TableGen, produces the binary encoding for
/// machine instructions.
unsigned getBinaryCodeForInstr(const MachineInstr &MI) const;
bool runOnMachineFunction(MachineFunction &MF);
virtual const char *getPassName() const {
return "ARM Machine Code Emitter";
}
void emitInstruction(const MachineInstr &MI);
private:
void emitWordLE(unsigned Binary);
void emitDWordLE(uint64_t Binary);
void emitConstPoolInstruction(const MachineInstr &MI);
void emitMOVi32immInstruction(const MachineInstr &MI);
void emitMOVi2piecesInstruction(const MachineInstr &MI);
void emitLEApcrelJTInstruction(const MachineInstr &MI);
void emitPseudoMoveInstruction(const MachineInstr &MI);
void addPCLabel(unsigned LabelID);
void emitPseudoInstruction(const MachineInstr &MI);
unsigned getMachineSoRegOpValue(const MachineInstr &MI,
const MCInstrDesc &MCID,
const MachineOperand &MO,
unsigned OpIdx);
unsigned getMachineSoImmOpValue(unsigned SoImm);
unsigned getAddrModeSBit(const MachineInstr &MI,
const MCInstrDesc &MCID) const;
void emitDataProcessingInstruction(const MachineInstr &MI,
unsigned ImplicitRd = 0,
unsigned ImplicitRn = 0);
void emitLoadStoreInstruction(const MachineInstr &MI,
unsigned ImplicitRd = 0,
unsigned ImplicitRn = 0);
void emitMiscLoadStoreInstruction(const MachineInstr &MI,
unsigned ImplicitRn = 0);
void emitLoadStoreMultipleInstruction(const MachineInstr &MI);
void emitMulFrmInstruction(const MachineInstr &MI);
void emitExtendInstruction(const MachineInstr &MI);
void emitMiscArithInstruction(const MachineInstr &MI);
void emitSaturateInstruction(const MachineInstr &MI);
void emitBranchInstruction(const MachineInstr &MI);
void emitInlineJumpTable(unsigned JTIndex);
void emitMiscBranchInstruction(const MachineInstr &MI);
void emitVFPArithInstruction(const MachineInstr &MI);
void emitVFPConversionInstruction(const MachineInstr &MI);
void emitVFPLoadStoreInstruction(const MachineInstr &MI);
void emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI);
void emitNEONLaneInstruction(const MachineInstr &MI);
void emitNEONDupInstruction(const MachineInstr &MI);
void emitNEON1RegModImmInstruction(const MachineInstr &MI);
void emitNEON2RegInstruction(const MachineInstr &MI);
void emitNEON3RegInstruction(const MachineInstr &MI);
/// getMachineOpValue - Return binary encoding of operand. If the machine
/// operand requires relocation, record the relocation and return zero.
unsigned getMachineOpValue(const MachineInstr &MI,
const MachineOperand &MO) const;
unsigned getMachineOpValue(const MachineInstr &MI, unsigned OpIdx) const {
return getMachineOpValue(MI, MI.getOperand(OpIdx));
}
// FIXME: The legacy JIT ARMCodeEmitter doesn't rely on the the
// TableGen'erated getBinaryCodeForInstr() function to encode any
// operand values, instead querying getMachineOpValue() directly for
// each operand it needs to encode. Thus, any of the new encoder
// helper functions can simply return 0 as the values the return
// are already handled elsewhere. They are placeholders to allow this
// encoder to continue to function until the MC encoder is sufficiently
// far along that this one can be eliminated entirely.
unsigned NEONThumb2DataIPostEncoder(const MachineInstr &MI, unsigned Val)
const { return 0; }
unsigned NEONThumb2LoadStorePostEncoder(const MachineInstr &MI,unsigned Val)
const { return 0; }
unsigned NEONThumb2DupPostEncoder(const MachineInstr &MI,unsigned Val)
const { return 0; }
unsigned VFPThumb2PostEncoder(const MachineInstr&MI, unsigned Val)
const { return 0; }
unsigned getAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getThumbAdrLabelOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getThumbBLTargetOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getThumbBLXTargetOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getThumbBRTargetOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getThumbBCCTargetOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getThumbCBTargetOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getUnconditionalBranchTargetOpValue(const MachineInstr &MI,
unsigned Op) const { return 0; }
unsigned getARMBranchTargetOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getCCOutOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getSOImmOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getT2SOImmOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getSORegRegOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getSORegImmOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getThumbAddrModeRegRegOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getT2AddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getT2AddrModeImm8OpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getT2AddrModeImm8s4OpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getT2AddrModeImm8OffsetOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getT2AddrModeImm12OffsetOpValue(const MachineInstr &MI,unsigned Op)
const { return 0; }
unsigned getT2AddrModeSORegOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getT2SORegOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getT2AdrLabelOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getAddrMode6AddressOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getAddrMode6OneLane32AddressOpValue(const MachineInstr &MI,
unsigned Op)
const { return 0; }
unsigned getAddrMode6DupAddressOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getAddrMode6OffsetOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getBitfieldInvertedMaskOpValue(const MachineInstr &MI,
unsigned Op) const { return 0; }
unsigned getMsbOpValue(const MachineInstr &MI,
unsigned Op) const { return 0; }
unsigned getSsatBitPosValue(const MachineInstr &MI,
unsigned Op) const { return 0; }
uint32_t getLdStmModeOpValue(const MachineInstr &MI, unsigned OpIdx)
const {return 0; }
uint32_t getLdStSORegOpValue(const MachineInstr &MI, unsigned OpIdx)
const { return 0; }
unsigned getAddrModeImm12OpValue(const MachineInstr &MI, unsigned Op)
const {
// {17-13} = reg
// {12} = (U)nsigned (add == '1', sub == '0')
// {11-0} = imm12
const MachineOperand &MO = MI.getOperand(Op);
const MachineOperand &MO1 = MI.getOperand(Op + 1);
if (!MO.isReg()) {
emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
return 0;
}
unsigned Reg = getARMRegisterNumbering(MO.getReg());
int32_t Imm12 = MO1.getImm();
uint32_t Binary;
Binary = Imm12 & 0xfff;
if (Imm12 >= 0)
Binary |= (1 << 12);
Binary |= (Reg << 13);
return Binary;
}
unsigned getHiLo16ImmOpValue(const MachineInstr &MI, unsigned Op) const {
return 0;
}
uint32_t getAddrMode2OpValue(const MachineInstr &MI, unsigned OpIdx)
const { return 0;}
uint32_t getAddrMode2OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
const { return 0;}
uint32_t getAddrMode3OffsetOpValue(const MachineInstr &MI, unsigned OpIdx)
const { return 0;}
uint32_t getAddrMode3OpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
uint32_t getAddrModeThumbSPOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
uint32_t getAddrModeSOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
uint32_t getAddrModeISOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
uint32_t getAddrModePCOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
uint32_t getAddrMode5OpValue(const MachineInstr &MI, unsigned Op) const {
// {17-13} = reg
// {12} = (U)nsigned (add == '1', sub == '0')
// {11-0} = imm12
const MachineOperand &MO = MI.getOperand(Op);
const MachineOperand &MO1 = MI.getOperand(Op + 1);
if (!MO.isReg()) {
emitConstPoolAddress(MO.getIndex(), ARM::reloc_arm_cp_entry);
return 0;
}
unsigned Reg = getARMRegisterNumbering(MO.getReg());
int32_t Imm12 = MO1.getImm();
// Special value for #-0
if (Imm12 == INT32_MIN)
Imm12 = 0;
// Immediate is always encoded as positive. The 'U' bit controls add vs
// sub.
bool isAdd = true;
if (Imm12 < 0) {
Imm12 = -Imm12;
isAdd = false;
}
uint32_t Binary = Imm12 & 0xfff;
if (isAdd)
Binary |= (1 << 12);
Binary |= (Reg << 13);
return Binary;
}
unsigned getNEONVcvtImm32OpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getRegisterListOpValue(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getShiftRight8Imm(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getShiftRight16Imm(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getShiftRight32Imm(const MachineInstr &MI, unsigned Op)
const { return 0; }
unsigned getShiftRight64Imm(const MachineInstr &MI, unsigned Op)
const { return 0; }
/// getMovi32Value - Return binary encoding of operand for movw/movt. If the
/// machine operand requires relocation, record the relocation and return
/// zero.
unsigned getMovi32Value(const MachineInstr &MI,const MachineOperand &MO,
unsigned Reloc);
/// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
///
unsigned getShiftOp(unsigned Imm) const ;
/// Routines that handle operands which add machine relocations which are
/// fixed up by the relocation stage.
void emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
bool MayNeedFarStub, bool Indirect,
intptr_t ACPV = 0) const;
void emitExternalSymbolAddress(const char *ES, unsigned Reloc) const;
void emitConstPoolAddress(unsigned CPI, unsigned Reloc) const;
void emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const;
void emitMachineBasicBlock(MachineBasicBlock *BB, unsigned Reloc,
intptr_t JTBase = 0) const;
};
}
char ARMCodeEmitter::ID = 0;
/// createARMJITCodeEmitterPass - Return a pass that emits the collected ARM
/// code to the specified MCE object.
FunctionPass *llvm::createARMJITCodeEmitterPass(ARMBaseTargetMachine &TM,
JITCodeEmitter &JCE) {
return new ARMCodeEmitter(TM, JCE);
}
bool ARMCodeEmitter::runOnMachineFunction(MachineFunction &MF) {
assert((MF.getTarget().getRelocationModel() != Reloc::Default ||
MF.getTarget().getRelocationModel() != Reloc::Static) &&
"JIT relocation model must be set to static or default!");
JTI = ((ARMTargetMachine &)MF.getTarget()).getJITInfo();
II = ((const ARMTargetMachine &)MF.getTarget()).getInstrInfo();
TD = ((const ARMTargetMachine &)MF.getTarget()).getTargetData();
Subtarget = &TM.getSubtarget<ARMSubtarget>();
MCPEs = &MF.getConstantPool()->getConstants();
MJTEs = 0;
if (MF.getJumpTableInfo()) MJTEs = &MF.getJumpTableInfo()->getJumpTables();
IsPIC = TM.getRelocationModel() == Reloc::PIC_;
IsThumb = MF.getInfo<ARMFunctionInfo>()->isThumbFunction();
JTI->Initialize(MF, IsPIC);
MMI = &getAnalysis<MachineModuleInfo>();
MCE.setModuleInfo(MMI);
do {
DEBUG(errs() << "JITTing function '"
<< MF.getFunction()->getName() << "'\n");
MCE.startFunction(MF);
for (MachineFunction::iterator MBB = MF.begin(), E = MF.end();
MBB != E; ++MBB) {
MCE.StartMachineBasicBlock(MBB);
for (MachineBasicBlock::const_iterator I = MBB->begin(), E = MBB->end();
I != E; ++I)
emitInstruction(*I);
}
} while (MCE.finishFunction(MF));
return false;
}
/// getShiftOp - Return the shift opcode (bit[6:5]) of the immediate value.
///
unsigned ARMCodeEmitter::getShiftOp(unsigned Imm) const {
switch (ARM_AM::getAM2ShiftOpc(Imm)) {
default: llvm_unreachable("Unknown shift opc!");
case ARM_AM::asr: return 2;
case ARM_AM::lsl: return 0;
case ARM_AM::lsr: return 1;
case ARM_AM::ror:
case ARM_AM::rrx: return 3;
}
return 0;
}
/// getMovi32Value - Return binary encoding of operand for movw/movt. If the
/// machine operand requires relocation, record the relocation and return zero.
unsigned ARMCodeEmitter::getMovi32Value(const MachineInstr &MI,
const MachineOperand &MO,
unsigned Reloc) {
assert(((Reloc == ARM::reloc_arm_movt) || (Reloc == ARM::reloc_arm_movw))
&& "Relocation to this function should be for movt or movw");
if (MO.isImm())
return static_cast<unsigned>(MO.getImm());
else if (MO.isGlobal())
emitGlobalAddress(MO.getGlobal(), Reloc, true, false);
else if (MO.isSymbol())
emitExternalSymbolAddress(MO.getSymbolName(), Reloc);
else if (MO.isMBB())
emitMachineBasicBlock(MO.getMBB(), Reloc);
else {
#ifndef NDEBUG
errs() << MO;
#endif
llvm_unreachable("Unsupported operand type for movw/movt");
}
return 0;
}
/// getMachineOpValue - Return binary encoding of operand. If the machine
/// operand requires relocation, record the relocation and return zero.
unsigned ARMCodeEmitter::getMachineOpValue(const MachineInstr &MI,
const MachineOperand &MO) const {
if (MO.isReg())
return getARMRegisterNumbering(MO.getReg());
else if (MO.isImm())
return static_cast<unsigned>(MO.getImm());
else if (MO.isGlobal())
emitGlobalAddress(MO.getGlobal(), ARM::reloc_arm_branch, true, false);
else if (MO.isSymbol())
emitExternalSymbolAddress(MO.getSymbolName(), ARM::reloc_arm_branch);
else if (MO.isCPI()) {
const MCInstrDesc &MCID = MI.getDesc();
// For VFP load, the immediate offset is multiplied by 4.
unsigned Reloc = ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPLdStFrm)
? ARM::reloc_arm_vfp_cp_entry : ARM::reloc_arm_cp_entry;
emitConstPoolAddress(MO.getIndex(), Reloc);
} else if (MO.isJTI())
emitJumpTableAddress(MO.getIndex(), ARM::reloc_arm_relative);
else if (MO.isMBB())
emitMachineBasicBlock(MO.getMBB(), ARM::reloc_arm_branch);
else
llvm_unreachable("Unable to encode MachineOperand!");
return 0;
}
/// emitGlobalAddress - Emit the specified address to the code stream.
///
void ARMCodeEmitter::emitGlobalAddress(const GlobalValue *GV, unsigned Reloc,
bool MayNeedFarStub, bool Indirect,
intptr_t ACPV) const {
MachineRelocation MR = Indirect
? MachineRelocation::getIndirectSymbol(MCE.getCurrentPCOffset(), Reloc,
const_cast<GlobalValue *>(GV),
ACPV, MayNeedFarStub)
: MachineRelocation::getGV(MCE.getCurrentPCOffset(), Reloc,
const_cast<GlobalValue *>(GV), ACPV,
MayNeedFarStub);
MCE.addRelocation(MR);
}
/// emitExternalSymbolAddress - Arrange for the address of an external symbol to
/// be emitted to the current location in the function, and allow it to be PC
/// relative.
void ARMCodeEmitter::
emitExternalSymbolAddress(const char *ES, unsigned Reloc) const {
MCE.addRelocation(MachineRelocation::getExtSym(MCE.getCurrentPCOffset(),
Reloc, ES));
}
/// emitConstPoolAddress - Arrange for the address of an constant pool
/// to be emitted to the current location in the function, and allow it to be PC
/// relative.
void ARMCodeEmitter::emitConstPoolAddress(unsigned CPI, unsigned Reloc) const {
// Tell JIT emitter we'll resolve the address.
MCE.addRelocation(MachineRelocation::getConstPool(MCE.getCurrentPCOffset(),
Reloc, CPI, 0, true));
}
/// emitJumpTableAddress - Arrange for the address of a jump table to
/// be emitted to the current location in the function, and allow it to be PC
/// relative.
void ARMCodeEmitter::
emitJumpTableAddress(unsigned JTIndex, unsigned Reloc) const {
MCE.addRelocation(MachineRelocation::getJumpTable(MCE.getCurrentPCOffset(),
Reloc, JTIndex, 0, true));
}
/// emitMachineBasicBlock - Emit the specified address basic block.
void ARMCodeEmitter::emitMachineBasicBlock(MachineBasicBlock *BB,
unsigned Reloc,
intptr_t JTBase) const {
MCE.addRelocation(MachineRelocation::getBB(MCE.getCurrentPCOffset(),
Reloc, BB, JTBase));
}
void ARMCodeEmitter::emitWordLE(unsigned Binary) {
DEBUG(errs() << " 0x";
errs().write_hex(Binary) << "\n");
MCE.emitWordLE(Binary);
}
void ARMCodeEmitter::emitDWordLE(uint64_t Binary) {
DEBUG(errs() << " 0x";
errs().write_hex(Binary) << "\n");
MCE.emitDWordLE(Binary);
}
void ARMCodeEmitter::emitInstruction(const MachineInstr &MI) {
DEBUG(errs() << "JIT: " << (void*)MCE.getCurrentPCValue() << ":\t" << MI);
MCE.processDebugLoc(MI.getDebugLoc(), true);
++NumEmitted; // Keep track of the # of mi's emitted
switch (MI.getDesc().TSFlags & ARMII::FormMask) {
default: {
llvm_unreachable("Unhandled instruction encoding format!");
break;
}
case ARMII::MiscFrm:
if (MI.getOpcode() == ARM::LEApcrelJT) {
// Materialize jumptable address.
emitLEApcrelJTInstruction(MI);
break;
}
llvm_unreachable("Unhandled instruction encoding!");
break;
case ARMII::Pseudo:
emitPseudoInstruction(MI);
break;
case ARMII::DPFrm:
case ARMII::DPSoRegFrm:
emitDataProcessingInstruction(MI);
break;
case ARMII::LdFrm:
case ARMII::StFrm:
emitLoadStoreInstruction(MI);
break;
case ARMII::LdMiscFrm:
case ARMII::StMiscFrm:
emitMiscLoadStoreInstruction(MI);
break;
case ARMII::LdStMulFrm:
emitLoadStoreMultipleInstruction(MI);
break;
case ARMII::MulFrm:
emitMulFrmInstruction(MI);
break;
case ARMII::ExtFrm:
emitExtendInstruction(MI);
break;
case ARMII::ArithMiscFrm:
emitMiscArithInstruction(MI);
break;
case ARMII::SatFrm:
emitSaturateInstruction(MI);
break;
case ARMII::BrFrm:
emitBranchInstruction(MI);
break;
case ARMII::BrMiscFrm:
emitMiscBranchInstruction(MI);
break;
// VFP instructions.
case ARMII::VFPUnaryFrm:
case ARMII::VFPBinaryFrm:
emitVFPArithInstruction(MI);
break;
case ARMII::VFPConv1Frm:
case ARMII::VFPConv2Frm:
case ARMII::VFPConv3Frm:
case ARMII::VFPConv4Frm:
case ARMII::VFPConv5Frm:
emitVFPConversionInstruction(MI);
break;
case ARMII::VFPLdStFrm:
emitVFPLoadStoreInstruction(MI);
break;
case ARMII::VFPLdStMulFrm:
emitVFPLoadStoreMultipleInstruction(MI);
break;
// NEON instructions.
case ARMII::NGetLnFrm:
case ARMII::NSetLnFrm:
emitNEONLaneInstruction(MI);
break;
case ARMII::NDupFrm:
emitNEONDupInstruction(MI);
break;
case ARMII::N1RegModImmFrm:
emitNEON1RegModImmInstruction(MI);
break;
case ARMII::N2RegFrm:
emitNEON2RegInstruction(MI);
break;
case ARMII::N3RegFrm:
emitNEON3RegInstruction(MI);
break;
}
MCE.processDebugLoc(MI.getDebugLoc(), false);
}
void ARMCodeEmitter::emitConstPoolInstruction(const MachineInstr &MI) {
unsigned CPI = MI.getOperand(0).getImm(); // CP instruction index.
unsigned CPIndex = MI.getOperand(1).getIndex(); // Actual cp entry index.
const MachineConstantPoolEntry &MCPE = (*MCPEs)[CPIndex];
// Remember the CONSTPOOL_ENTRY address for later relocation.
JTI->addConstantPoolEntryAddr(CPI, MCE.getCurrentPCValue());
// Emit constpool island entry. In most cases, the actual values will be
// resolved and relocated after code emission.
if (MCPE.isMachineConstantPoolEntry()) {
ARMConstantPoolValue *ACPV =
static_cast<ARMConstantPoolValue*>(MCPE.Val.MachineCPVal);
DEBUG(errs() << " ** ARM constant pool #" << CPI << " @ "
<< (void*)MCE.getCurrentPCValue() << " " << *ACPV << '\n');
assert(ACPV->isGlobalValue() && "unsupported constant pool value");
const GlobalValue *GV = ACPV->getGV();
if (GV) {
Reloc::Model RelocM = TM.getRelocationModel();
emitGlobalAddress(GV, ARM::reloc_arm_machine_cp_entry,
isa<Function>(GV),
Subtarget->GVIsIndirectSymbol(GV, RelocM),
(intptr_t)ACPV);
} else {
emitExternalSymbolAddress(ACPV->getSymbol(), ARM::reloc_arm_absolute);
}
emitWordLE(0);
} else {
const Constant *CV = MCPE.Val.ConstVal;
DEBUG({
errs() << " ** Constant pool #" << CPI << " @ "
<< (void*)MCE.getCurrentPCValue() << " ";
if (const Function *F = dyn_cast<Function>(CV))
errs() << F->getName();
else
errs() << *CV;
errs() << '\n';
});
if (const GlobalValue *GV = dyn_cast<GlobalValue>(CV)) {
emitGlobalAddress(GV, ARM::reloc_arm_absolute, isa<Function>(GV), false);
emitWordLE(0);
} else if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
uint32_t Val = uint32_t(*CI->getValue().getRawData());
emitWordLE(Val);
} else if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
if (CFP->getType()->isFloatTy())
emitWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
else if (CFP->getType()->isDoubleTy())
emitDWordLE(CFP->getValueAPF().bitcastToAPInt().getZExtValue());
else {
llvm_unreachable("Unable to handle this constantpool entry!");
}
} else {
llvm_unreachable("Unable to handle this constantpool entry!");
}
}
}
void ARMCodeEmitter::emitMOVi32immInstruction(const MachineInstr &MI) {
const MachineOperand &MO0 = MI.getOperand(0);
const MachineOperand &MO1 = MI.getOperand(1);
// Emit the 'movw' instruction.
unsigned Binary = 0x30 << 20; // mov: Insts{27-20} = 0b00110000
unsigned Lo16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movw) & 0xFFFF;
// Set the conditional execution predicate.
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
// Encode Rd.
Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
// Encode imm16 as imm4:imm12
Binary |= Lo16 & 0xFFF; // Insts{11-0} = imm12
Binary |= ((Lo16 >> 12) & 0xF) << 16; // Insts{19-16} = imm4
emitWordLE(Binary);
unsigned Hi16 = getMovi32Value(MI, MO1, ARM::reloc_arm_movt) >> 16;
// Emit the 'movt' instruction.
Binary = 0x34 << 20; // movt: Insts{27-20} = 0b00110100
// Set the conditional execution predicate.
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
// Encode Rd.
Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
// Encode imm16 as imm4:imm1, same as movw above.
Binary |= Hi16 & 0xFFF;
Binary |= ((Hi16 >> 12) & 0xF) << 16;
emitWordLE(Binary);
}
void ARMCodeEmitter::emitMOVi2piecesInstruction(const MachineInstr &MI) {
const MachineOperand &MO0 = MI.getOperand(0);
const MachineOperand &MO1 = MI.getOperand(1);
assert(MO1.isImm() && ARM_AM::isSOImmTwoPartVal(MO1.getImm()) &&
"Not a valid so_imm value!");
unsigned V1 = ARM_AM::getSOImmTwoPartFirst(MO1.getImm());
unsigned V2 = ARM_AM::getSOImmTwoPartSecond(MO1.getImm());
// Emit the 'mov' instruction.
unsigned Binary = 0xd << 21; // mov: Insts{24-21} = 0b1101
// Set the conditional execution predicate.
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
// Encode Rd.
Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
// Encode so_imm.
// Set bit I(25) to identify this is the immediate form of <shifter_op>
Binary |= 1 << ARMII::I_BitShift;
Binary |= getMachineSoImmOpValue(V1);
emitWordLE(Binary);
// Now the 'orr' instruction.
Binary = 0xc << 21; // orr: Insts{24-21} = 0b1100
// Set the conditional execution predicate.
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
// Encode Rd.
Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRdShift;
// Encode Rn.
Binary |= getMachineOpValue(MI, MO0) << ARMII::RegRnShift;
// Encode so_imm.
// Set bit I(25) to identify this is the immediate form of <shifter_op>
Binary |= 1 << ARMII::I_BitShift;
Binary |= getMachineSoImmOpValue(V2);
emitWordLE(Binary);
}
void ARMCodeEmitter::emitLEApcrelJTInstruction(const MachineInstr &MI) {
// It's basically add r, pc, (LJTI - $+8)
const MCInstrDesc &MCID = MI.getDesc();
// Emit the 'add' instruction.
unsigned Binary = 0x4 << 21; // add: Insts{24-21} = 0b0100
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
// Encode S bit if MI modifies CPSR.
Binary |= getAddrModeSBit(MI, MCID);
// Encode Rd.
Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
// Encode Rn which is PC.
Binary |= getARMRegisterNumbering(ARM::PC) << ARMII::RegRnShift;
// Encode the displacement.
Binary |= 1 << ARMII::I_BitShift;
emitJumpTableAddress(MI.getOperand(1).getIndex(), ARM::reloc_arm_jt_base);
emitWordLE(Binary);
}
void ARMCodeEmitter::emitPseudoMoveInstruction(const MachineInstr &MI) {
unsigned Opcode = MI.getDesc().Opcode;
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
// Encode S bit if MI modifies CPSR.
if (Opcode == ARM::MOVsrl_flag || Opcode == ARM::MOVsra_flag)
Binary |= 1 << ARMII::S_BitShift;
// Encode register def if there is one.
Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
// Encode the shift operation.
switch (Opcode) {
default: break;
case ARM::RRX:
// rrx
Binary |= 0x6 << 4;
break;
case ARM::MOVsrl_flag:
// lsr #1
Binary |= (0x2 << 4) | (1 << 7);
break;
case ARM::MOVsra_flag:
// asr #1
Binary |= (0x4 << 4) | (1 << 7);
break;
}
// Encode register Rm.
Binary |= getMachineOpValue(MI, 1);
emitWordLE(Binary);
}
void ARMCodeEmitter::addPCLabel(unsigned LabelID) {
DEBUG(errs() << " ** LPC" << LabelID << " @ "
<< (void*)MCE.getCurrentPCValue() << '\n');
JTI->addPCLabelAddr(LabelID, MCE.getCurrentPCValue());
}
void ARMCodeEmitter::emitPseudoInstruction(const MachineInstr &MI) {
unsigned Opcode = MI.getDesc().Opcode;
switch (Opcode) {
default:
llvm_unreachable("ARMCodeEmitter::emitPseudoInstruction");
case ARM::BX_CALL:
case ARM::BMOVPCRX_CALL:
case ARM::BXr9_CALL:
case ARM::BMOVPCRXr9_CALL: {
// First emit mov lr, pc
unsigned Binary = 0x01a0e00f;
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
emitWordLE(Binary);
// and then emit the branch.
emitMiscBranchInstruction(MI);
break;
}
case TargetOpcode::INLINEASM: {
// We allow inline assembler nodes with empty bodies - they can
// implicitly define registers, which is ok for JIT.
if (MI.getOperand(0).getSymbolName()[0]) {
report_fatal_error("JIT does not support inline asm!");
}
break;
}
case TargetOpcode::PROLOG_LABEL:
case TargetOpcode::EH_LABEL:
MCE.emitLabel(MI.getOperand(0).getMCSymbol());
break;
case TargetOpcode::IMPLICIT_DEF:
case TargetOpcode::KILL:
// Do nothing.
break;
case ARM::CONSTPOOL_ENTRY:
emitConstPoolInstruction(MI);
break;
case ARM::PICADD: {
// Remember of the address of the PC label for relocation later.
addPCLabel(MI.getOperand(2).getImm());
// PICADD is just an add instruction that implicitly read pc.
emitDataProcessingInstruction(MI, 0, ARM::PC);
break;
}
case ARM::PICLDR:
case ARM::PICLDRB:
case ARM::PICSTR:
case ARM::PICSTRB: {
// Remember of the address of the PC label for relocation later.
addPCLabel(MI.getOperand(2).getImm());
// These are just load / store instructions that implicitly read pc.
emitLoadStoreInstruction(MI, 0, ARM::PC);
break;
}
case ARM::PICLDRH:
case ARM::PICLDRSH:
case ARM::PICLDRSB:
case ARM::PICSTRH: {
// Remember of the address of the PC label for relocation later.
addPCLabel(MI.getOperand(2).getImm());
// These are just load / store instructions that implicitly read pc.
emitMiscLoadStoreInstruction(MI, ARM::PC);
break;
}
case ARM::MOVi32imm:
// Two instructions to materialize a constant.
if (Subtarget->hasV6T2Ops())
emitMOVi32immInstruction(MI);
else
emitMOVi2piecesInstruction(MI);
break;
case ARM::LEApcrelJT:
// Materialize jumptable address.
emitLEApcrelJTInstruction(MI);
break;
case ARM::RRX:
case ARM::MOVsrl_flag:
case ARM::MOVsra_flag:
emitPseudoMoveInstruction(MI);
break;
}
}
unsigned ARMCodeEmitter::getMachineSoRegOpValue(const MachineInstr &MI,
const MCInstrDesc &MCID,
const MachineOperand &MO,
unsigned OpIdx) {
unsigned Binary = getMachineOpValue(MI, MO);
const MachineOperand &MO1 = MI.getOperand(OpIdx + 1);
const MachineOperand &MO2 = MI.getOperand(OpIdx + 2);
ARM_AM::ShiftOpc SOpc = ARM_AM::getSORegShOp(MO2.getImm());
// Encode the shift opcode.
unsigned SBits = 0;
unsigned Rs = MO1.getReg();
if (Rs) {
// Set shift operand (bit[7:4]).
// LSL - 0001
// LSR - 0011
// ASR - 0101
// ROR - 0111
// RRX - 0110 and bit[11:8] clear.
switch (SOpc) {
default: llvm_unreachable("Unknown shift opc!");
case ARM_AM::lsl: SBits = 0x1; break;
case ARM_AM::lsr: SBits = 0x3; break;
case ARM_AM::asr: SBits = 0x5; break;
case ARM_AM::ror: SBits = 0x7; break;
case ARM_AM::rrx: SBits = 0x6; break;
}
} else {
// Set shift operand (bit[6:4]).
// LSL - 000
// LSR - 010
// ASR - 100
// ROR - 110
switch (SOpc) {
default: llvm_unreachable("Unknown shift opc!");
case ARM_AM::lsl: SBits = 0x0; break;
case ARM_AM::lsr: SBits = 0x2; break;
case ARM_AM::asr: SBits = 0x4; break;
case ARM_AM::ror: SBits = 0x6; break;
}
}
Binary |= SBits << 4;
if (SOpc == ARM_AM::rrx)
return Binary;
// Encode the shift operation Rs or shift_imm (except rrx).
if (Rs) {
// Encode Rs bit[11:8].
assert(ARM_AM::getSORegOffset(MO2.getImm()) == 0);
return Binary | (getARMRegisterNumbering(Rs) << ARMII::RegRsShift);
}
// Encode shift_imm bit[11:7].
return Binary | ARM_AM::getSORegOffset(MO2.getImm()) << 7;
}
unsigned ARMCodeEmitter::getMachineSoImmOpValue(unsigned SoImm) {
int SoImmVal = ARM_AM::getSOImmVal(SoImm);
assert(SoImmVal != -1 && "Not a valid so_imm value!");
// Encode rotate_imm.
unsigned Binary = (ARM_AM::getSOImmValRot((unsigned)SoImmVal) >> 1)
<< ARMII::SoRotImmShift;
// Encode immed_8.
Binary |= ARM_AM::getSOImmValImm((unsigned)SoImmVal);
return Binary;
}
unsigned ARMCodeEmitter::getAddrModeSBit(const MachineInstr &MI,
const MCInstrDesc &MCID) const {
for (unsigned i = MI.getNumOperands(), e = MCID.getNumOperands(); i >= e; --i){
const MachineOperand &MO = MI.getOperand(i-1);
if (MO.isReg() && MO.isDef() && MO.getReg() == ARM::CPSR)
return 1 << ARMII::S_BitShift;
}
return 0;
}
void ARMCodeEmitter::emitDataProcessingInstruction(const MachineInstr &MI,
unsigned ImplicitRd,
unsigned ImplicitRn) {
const MCInstrDesc &MCID = MI.getDesc();
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
// Encode S bit if MI modifies CPSR.
Binary |= getAddrModeSBit(MI, MCID);
// Encode register def if there is one.
unsigned NumDefs = MCID.getNumDefs();
unsigned OpIdx = 0;
if (NumDefs)
Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
else if (ImplicitRd)
// Special handling for implicit use (e.g. PC).
Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift);
if (MCID.Opcode == ARM::MOVi16) {
// Get immediate from MI.
unsigned Lo16 = getMovi32Value(MI, MI.getOperand(OpIdx),
ARM::reloc_arm_movw);
// Encode imm which is the same as in emitMOVi32immInstruction().
Binary |= Lo16 & 0xFFF;
Binary |= ((Lo16 >> 12) & 0xF) << 16;
emitWordLE(Binary);
return;
} else if(MCID.Opcode == ARM::MOVTi16) {
unsigned Hi16 = (getMovi32Value(MI, MI.getOperand(OpIdx),
ARM::reloc_arm_movt) >> 16);
Binary |= Hi16 & 0xFFF;
Binary |= ((Hi16 >> 12) & 0xF) << 16;
emitWordLE(Binary);
return;
} else if ((MCID.Opcode == ARM::BFC) || (MCID.Opcode == ARM::BFI)) {
uint32_t v = ~MI.getOperand(2).getImm();
int32_t lsb = CountTrailingZeros_32(v);
int32_t msb = (32 - CountLeadingZeros_32(v)) - 1;
// Instr{20-16} = msb, Instr{11-7} = lsb
Binary |= (msb & 0x1F) << 16;
Binary |= (lsb & 0x1F) << 7;
emitWordLE(Binary);
return;
} else if ((MCID.Opcode == ARM::UBFX) || (MCID.Opcode == ARM::SBFX)) {
// Encode Rn in Instr{0-3}
Binary |= getMachineOpValue(MI, OpIdx++);
uint32_t lsb = MI.getOperand(OpIdx++).getImm();
uint32_t widthm1 = MI.getOperand(OpIdx++).getImm() - 1;
// Instr{20-16} = widthm1, Instr{11-7} = lsb
Binary |= (widthm1 & 0x1F) << 16;
Binary |= (lsb & 0x1F) << 7;
emitWordLE(Binary);
return;
}
// If this is a two-address operand, skip it. e.g. MOVCCr operand 1.
if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
++OpIdx;
// Encode first non-shifter register operand if there is one.
bool isUnary = MCID.TSFlags & ARMII::UnaryDP;
if (!isUnary) {
if (ImplicitRn)
// Special handling for implicit use (e.g. PC).
Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
else {
Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRnShift;
++OpIdx;
}
}
// Encode shifter operand.
const MachineOperand &MO = MI.getOperand(OpIdx);
if ((MCID.TSFlags & ARMII::FormMask) == ARMII::DPSoRegFrm) {
// Encode SoReg.
emitWordLE(Binary | getMachineSoRegOpValue(MI, MCID, MO, OpIdx));
return;
}
if (MO.isReg()) {
// Encode register Rm.
emitWordLE(Binary | getARMRegisterNumbering(MO.getReg()));
return;
}
// Encode so_imm.
Binary |= getMachineSoImmOpValue((unsigned)MO.getImm());
emitWordLE(Binary);
}
void ARMCodeEmitter::emitLoadStoreInstruction(const MachineInstr &MI,
unsigned ImplicitRd,
unsigned ImplicitRn) {
const MCInstrDesc &MCID = MI.getDesc();
unsigned Form = MCID.TSFlags & ARMII::FormMask;
bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// If this is an LDRi12, STRi12 or LDRcp, nothing more needs be done.
if (MI.getOpcode() == ARM::LDRi12 || MI.getOpcode() == ARM::LDRcp ||
MI.getOpcode() == ARM::STRi12) {
emitWordLE(Binary);
return;
}
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
unsigned OpIdx = 0;
// Operand 0 of a pre- and post-indexed store is the address base
// writeback. Skip it.
bool Skipped = false;
if (IsPrePost && Form == ARMII::StFrm) {
++OpIdx;
Skipped = true;
}
// Set first operand
if (ImplicitRd)
// Special handling for implicit use (e.g. PC).
Binary |= (getARMRegisterNumbering(ImplicitRd) << ARMII::RegRdShift);
else
Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
// Set second operand
if (ImplicitRn)
// Special handling for implicit use (e.g. PC).
Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
else
Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
// If this is a two-address operand, skip it. e.g. LDR_PRE.
if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
++OpIdx;
const MachineOperand &MO2 = MI.getOperand(OpIdx);
unsigned AM2Opc = (ImplicitRn == ARM::PC)
? 0 : MI.getOperand(OpIdx+1).getImm();
// Set bit U(23) according to sign of immed value (positive or negative).
Binary |= ((ARM_AM::getAM2Op(AM2Opc) == ARM_AM::add ? 1 : 0) <<
ARMII::U_BitShift);
if (!MO2.getReg()) { // is immediate
if (ARM_AM::getAM2Offset(AM2Opc))
// Set the value of offset_12 field
Binary |= ARM_AM::getAM2Offset(AM2Opc);
emitWordLE(Binary);
return;
}
// Set bit I(25), because this is not in immediate encoding.
Binary |= 1 << ARMII::I_BitShift;
assert(TargetRegisterInfo::isPhysicalRegister(MO2.getReg()));
// Set bit[3:0] to the corresponding Rm register
Binary |= getARMRegisterNumbering(MO2.getReg());
// If this instr is in scaled register offset/index instruction, set
// shift_immed(bit[11:7]) and shift(bit[6:5]) fields.
if (unsigned ShImm = ARM_AM::getAM2Offset(AM2Opc)) {
Binary |= getShiftOp(AM2Opc) << ARMII::ShiftImmShift; // shift
Binary |= ShImm << ARMII::ShiftShift; // shift_immed
}
emitWordLE(Binary);
}
void ARMCodeEmitter::emitMiscLoadStoreInstruction(const MachineInstr &MI,
unsigned ImplicitRn) {
const MCInstrDesc &MCID = MI.getDesc();
unsigned Form = MCID.TSFlags & ARMII::FormMask;
bool IsPrePost = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
unsigned OpIdx = 0;
// Operand 0 of a pre- and post-indexed store is the address base
// writeback. Skip it.
bool Skipped = false;
if (IsPrePost && Form == ARMII::StMiscFrm) {
++OpIdx;
Skipped = true;
}
// Set first operand
Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
// Skip LDRD and STRD's second operand.
if (MCID.Opcode == ARM::LDRD || MCID.Opcode == ARM::STRD)
++OpIdx;
// Set second operand
if (ImplicitRn)
// Special handling for implicit use (e.g. PC).
Binary |= (getARMRegisterNumbering(ImplicitRn) << ARMII::RegRnShift);
else
Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
// If this is a two-address operand, skip it. e.g. LDRH_POST.
if (!Skipped && MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
++OpIdx;
const MachineOperand &MO2 = MI.getOperand(OpIdx);
unsigned AM3Opc = (ImplicitRn == ARM::PC)
? 0 : MI.getOperand(OpIdx+1).getImm();
// Set bit U(23) according to sign of immed value (positive or negative)
Binary |= ((ARM_AM::getAM3Op(AM3Opc) == ARM_AM::add ? 1 : 0) <<
ARMII::U_BitShift);
// If this instr is in register offset/index encoding, set bit[3:0]
// to the corresponding Rm register.
if (MO2.getReg()) {
Binary |= getARMRegisterNumbering(MO2.getReg());
emitWordLE(Binary);
return;
}
// This instr is in immediate offset/index encoding, set bit 22 to 1.
Binary |= 1 << ARMII::AM3_I_BitShift;
if (unsigned ImmOffs = ARM_AM::getAM3Offset(AM3Opc)) {
// Set operands
Binary |= (ImmOffs >> 4) << ARMII::ImmHiShift; // immedH
Binary |= (ImmOffs & 0xF); // immedL
}
emitWordLE(Binary);
}
static unsigned getAddrModeUPBits(unsigned Mode) {
unsigned Binary = 0;
// Set addressing mode by modifying bits U(23) and P(24)
// IA - Increment after - bit U = 1 and bit P = 0
// IB - Increment before - bit U = 1 and bit P = 1
// DA - Decrement after - bit U = 0 and bit P = 0
// DB - Decrement before - bit U = 0 and bit P = 1
switch (Mode) {
default: llvm_unreachable("Unknown addressing sub-mode!");
case ARM_AM::da: break;
case ARM_AM::db: Binary |= 0x1 << ARMII::P_BitShift; break;
case ARM_AM::ia: Binary |= 0x1 << ARMII::U_BitShift; break;
case ARM_AM::ib: Binary |= 0x3 << ARMII::U_BitShift; break;
}
return Binary;
}
void ARMCodeEmitter::emitLoadStoreMultipleInstruction(const MachineInstr &MI) {
const MCInstrDesc &MCID = MI.getDesc();
bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
// Skip operand 0 of an instruction with base register update.
unsigned OpIdx = 0;
if (IsUpdating)
++OpIdx;
// Set base address operand
Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
// Set addressing mode by modifying bits U(23) and P(24)
ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
// Set bit W(21)
if (IsUpdating)
Binary |= 0x1 << ARMII::W_BitShift;
// Set registers
for (unsigned i = OpIdx+2, e = MI.getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (!MO.isReg() || MO.isImplicit())
break;
unsigned RegNum = getARMRegisterNumbering(MO.getReg());
assert(TargetRegisterInfo::isPhysicalRegister(MO.getReg()) &&
RegNum < 16);
Binary |= 0x1 << RegNum;
}
emitWordLE(Binary);
}
void ARMCodeEmitter::emitMulFrmInstruction(const MachineInstr &MI) {
const MCInstrDesc &MCID = MI.getDesc();
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
// Encode S bit if MI modifies CPSR.
Binary |= getAddrModeSBit(MI, MCID);
// 32x32->64bit operations have two destination registers. The number
// of register definitions will tell us if that's what we're dealing with.
unsigned OpIdx = 0;
if (MCID.getNumDefs() == 2)
Binary |= getMachineOpValue (MI, OpIdx++) << ARMII::RegRdLoShift;
// Encode Rd
Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdHiShift;
// Encode Rm
Binary |= getMachineOpValue(MI, OpIdx++);
// Encode Rs
Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRsShift;
// Many multiple instructions (e.g. MLA) have three src operands. Encode
// it as Rn (for multiply, that's in the same offset as RdLo.
if (MCID.getNumOperands() > OpIdx &&
!MCID.OpInfo[OpIdx].isPredicate() &&
!MCID.OpInfo[OpIdx].isOptionalDef())
Binary |= getMachineOpValue(MI, OpIdx) << ARMII::RegRdLoShift;
emitWordLE(Binary);
}
void ARMCodeEmitter::emitExtendInstruction(const MachineInstr &MI) {
const MCInstrDesc &MCID = MI.getDesc();
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
unsigned OpIdx = 0;
// Encode Rd
Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
const MachineOperand &MO1 = MI.getOperand(OpIdx++);
const MachineOperand &MO2 = MI.getOperand(OpIdx);
if (MO2.isReg()) {
// Two register operand form.
// Encode Rn.
Binary |= getMachineOpValue(MI, MO1) << ARMII::RegRnShift;
// Encode Rm.
Binary |= getMachineOpValue(MI, MO2);
++OpIdx;
} else {
Binary |= getMachineOpValue(MI, MO1);
}
// Encode rot imm (0, 8, 16, or 24) if it has a rotate immediate operand.
if (MI.getOperand(OpIdx).isImm() &&
!MCID.OpInfo[OpIdx].isPredicate() &&
!MCID.OpInfo[OpIdx].isOptionalDef())
Binary |= (getMachineOpValue(MI, OpIdx) / 8) << ARMII::ExtRotImmShift;
emitWordLE(Binary);
}
void ARMCodeEmitter::emitMiscArithInstruction(const MachineInstr &MI) {
const MCInstrDesc &MCID = MI.getDesc();
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
// PKH instructions are finished at this point
if (MCID.Opcode == ARM::PKHBT || MCID.Opcode == ARM::PKHTB) {
emitWordLE(Binary);
return;
}
unsigned OpIdx = 0;
// Encode Rd
Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRdShift;
const MachineOperand &MO = MI.getOperand(OpIdx++);
if (OpIdx == MCID.getNumOperands() ||
MCID.OpInfo[OpIdx].isPredicate() ||
MCID.OpInfo[OpIdx].isOptionalDef()) {
// Encode Rm and it's done.
Binary |= getMachineOpValue(MI, MO);
emitWordLE(Binary);
return;
}
// Encode Rn.
Binary |= getMachineOpValue(MI, MO) << ARMII::RegRnShift;
// Encode Rm.
Binary |= getMachineOpValue(MI, OpIdx++);
// Encode shift_imm.
unsigned ShiftAmt = MI.getOperand(OpIdx).getImm();
if (MCID.Opcode == ARM::PKHTB) {
assert(ShiftAmt != 0 && "PKHTB shift_imm is 0!");
if (ShiftAmt == 32)
ShiftAmt = 0;
}
assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
Binary |= ShiftAmt << ARMII::ShiftShift;
emitWordLE(Binary);
}
void ARMCodeEmitter::emitSaturateInstruction(const MachineInstr &MI) {
const MCInstrDesc &MCID = MI.getDesc();
// Part of binary is determined by TableGen.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
// Encode Rd
Binary |= getMachineOpValue(MI, 0) << ARMII::RegRdShift;
// Encode saturate bit position.
unsigned Pos = MI.getOperand(1).getImm();
if (MCID.Opcode == ARM::SSAT || MCID.Opcode == ARM::SSAT16)
Pos -= 1;
assert((Pos < 16 || (Pos < 32 &&
MCID.Opcode != ARM::SSAT16 &&
MCID.Opcode != ARM::USAT16)) &&
"saturate bit position out of range");
Binary |= Pos << 16;
// Encode Rm
Binary |= getMachineOpValue(MI, 2);
// Encode shift_imm.
if (MCID.getNumOperands() == 4) {
unsigned ShiftOp = MI.getOperand(3).getImm();
ARM_AM::ShiftOpc Opc = ARM_AM::getSORegShOp(ShiftOp);
if (Opc == ARM_AM::asr)
Binary |= (1 << 6);
unsigned ShiftAmt = MI.getOperand(3).getImm();
if (ShiftAmt == 32 && Opc == ARM_AM::asr)
ShiftAmt = 0;
assert(ShiftAmt < 32 && "shift_imm range is 0 to 31!");
Binary |= ShiftAmt << ARMII::ShiftShift;
}
emitWordLE(Binary);
}
void ARMCodeEmitter::emitBranchInstruction(const MachineInstr &MI) {
const MCInstrDesc &MCID = MI.getDesc();
if (MCID.Opcode == ARM::TPsoft) {
llvm_unreachable("ARM::TPsoft FIXME"); // FIXME
}
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
// Set signed_immed_24 field
Binary |= getMachineOpValue(MI, 0);
emitWordLE(Binary);
}
void ARMCodeEmitter::emitInlineJumpTable(unsigned JTIndex) {
// Remember the base address of the inline jump table.
uintptr_t JTBase = MCE.getCurrentPCValue();
JTI->addJumpTableBaseAddr(JTIndex, JTBase);
DEBUG(errs() << " ** Jump Table #" << JTIndex << " @ " << (void*)JTBase
<< '\n');
// Now emit the jump table entries.
const std::vector<MachineBasicBlock*> &MBBs = (*MJTEs)[JTIndex].MBBs;
for (unsigned i = 0, e = MBBs.size(); i != e; ++i) {
if (IsPIC)
// DestBB address - JT base.
emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_pic_jt, JTBase);
else
// Absolute DestBB address.
emitMachineBasicBlock(MBBs[i], ARM::reloc_arm_absolute);
emitWordLE(0);
}
}
void ARMCodeEmitter::emitMiscBranchInstruction(const MachineInstr &MI) {
const MCInstrDesc &MCID = MI.getDesc();
// Handle jump tables.
if (MCID.Opcode == ARM::BR_JTr || MCID.Opcode == ARM::BR_JTadd) {
// First emit a ldr pc, [] instruction.
emitDataProcessingInstruction(MI, ARM::PC);
// Then emit the inline jump table.
unsigned JTIndex =
(MCID.Opcode == ARM::BR_JTr)
? MI.getOperand(1).getIndex() : MI.getOperand(2).getIndex();
emitInlineJumpTable(JTIndex);
return;
} else if (MCID.Opcode == ARM::BR_JTm) {
// First emit a ldr pc, [] instruction.
emitLoadStoreInstruction(MI, ARM::PC);
// Then emit the inline jump table.
emitInlineJumpTable(MI.getOperand(3).getIndex());
return;
}
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
if (MCID.Opcode == ARM::BX_RET || MCID.Opcode == ARM::MOVPCLR)
// The return register is LR.
Binary |= getARMRegisterNumbering(ARM::LR);
else
// otherwise, set the return register
Binary |= getMachineOpValue(MI, 0);
emitWordLE(Binary);
}
static unsigned encodeVFPRd(const MachineInstr &MI, unsigned OpIdx) {
unsigned RegD = MI.getOperand(OpIdx).getReg();
unsigned Binary = 0;
bool isSPVFP = ARM::SPRRegisterClass->contains(RegD);
RegD = getARMRegisterNumbering(RegD);
if (!isSPVFP)
Binary |= RegD << ARMII::RegRdShift;
else {
Binary |= ((RegD & 0x1E) >> 1) << ARMII::RegRdShift;
Binary |= (RegD & 0x01) << ARMII::D_BitShift;
}
return Binary;
}
static unsigned encodeVFPRn(const MachineInstr &MI, unsigned OpIdx) {
unsigned RegN = MI.getOperand(OpIdx).getReg();
unsigned Binary = 0;
bool isSPVFP = ARM::SPRRegisterClass->contains(RegN);
RegN = getARMRegisterNumbering(RegN);
if (!isSPVFP)
Binary |= RegN << ARMII::RegRnShift;
else {
Binary |= ((RegN & 0x1E) >> 1) << ARMII::RegRnShift;
Binary |= (RegN & 0x01) << ARMII::N_BitShift;
}
return Binary;
}
static unsigned encodeVFPRm(const MachineInstr &MI, unsigned OpIdx) {
unsigned RegM = MI.getOperand(OpIdx).getReg();
unsigned Binary = 0;
bool isSPVFP = ARM::SPRRegisterClass->contains(RegM);
RegM = getARMRegisterNumbering(RegM);
if (!isSPVFP)
Binary |= RegM;
else {
Binary |= ((RegM & 0x1E) >> 1);
Binary |= (RegM & 0x01) << ARMII::M_BitShift;
}
return Binary;
}
void ARMCodeEmitter::emitVFPArithInstruction(const MachineInstr &MI) {
const MCInstrDesc &MCID = MI.getDesc();
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
unsigned OpIdx = 0;
assert((Binary & ARMII::D_BitShift) == 0 &&
(Binary & ARMII::N_BitShift) == 0 &&
(Binary & ARMII::M_BitShift) == 0 && "VFP encoding bug!");
// Encode Dd / Sd.
Binary |= encodeVFPRd(MI, OpIdx++);
// If this is a two-address operand, skip it, e.g. FMACD.
if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
++OpIdx;
// Encode Dn / Sn.
if ((MCID.TSFlags & ARMII::FormMask) == ARMII::VFPBinaryFrm)
Binary |= encodeVFPRn(MI, OpIdx++);
if (OpIdx == MCID.getNumOperands() ||
MCID.OpInfo[OpIdx].isPredicate() ||
MCID.OpInfo[OpIdx].isOptionalDef()) {
// FCMPEZD etc. has only one operand.
emitWordLE(Binary);
return;
}
// Encode Dm / Sm.
Binary |= encodeVFPRm(MI, OpIdx);
emitWordLE(Binary);
}
void ARMCodeEmitter::emitVFPConversionInstruction(const MachineInstr &MI) {
const MCInstrDesc &MCID = MI.getDesc();
unsigned Form = MCID.TSFlags & ARMII::FormMask;
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
switch (Form) {
default: break;
case ARMII::VFPConv1Frm:
case ARMII::VFPConv2Frm:
case ARMII::VFPConv3Frm:
// Encode Dd / Sd.
Binary |= encodeVFPRd(MI, 0);
break;
case ARMII::VFPConv4Frm:
// Encode Dn / Sn.
Binary |= encodeVFPRn(MI, 0);
break;
case ARMII::VFPConv5Frm:
// Encode Dm / Sm.
Binary |= encodeVFPRm(MI, 0);
break;
}
switch (Form) {
default: break;
case ARMII::VFPConv1Frm:
// Encode Dm / Sm.
Binary |= encodeVFPRm(MI, 1);
break;
case ARMII::VFPConv2Frm:
case ARMII::VFPConv3Frm:
// Encode Dn / Sn.
Binary |= encodeVFPRn(MI, 1);
break;
case ARMII::VFPConv4Frm:
case ARMII::VFPConv5Frm:
// Encode Dd / Sd.
Binary |= encodeVFPRd(MI, 1);
break;
}
if (Form == ARMII::VFPConv5Frm)
// Encode Dn / Sn.
Binary |= encodeVFPRn(MI, 2);
else if (Form == ARMII::VFPConv3Frm)
// Encode Dm / Sm.
Binary |= encodeVFPRm(MI, 2);
emitWordLE(Binary);
}
void ARMCodeEmitter::emitVFPLoadStoreInstruction(const MachineInstr &MI) {
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
unsigned OpIdx = 0;
// Encode Dd / Sd.
Binary |= encodeVFPRd(MI, OpIdx++);
// Encode address base.
const MachineOperand &Base = MI.getOperand(OpIdx++);
Binary |= getMachineOpValue(MI, Base) << ARMII::RegRnShift;
// If there is a non-zero immediate offset, encode it.
if (Base.isReg()) {
const MachineOperand &Offset = MI.getOperand(OpIdx);
if (unsigned ImmOffs = ARM_AM::getAM5Offset(Offset.getImm())) {
if (ARM_AM::getAM5Op(Offset.getImm()) == ARM_AM::add)
Binary |= 1 << ARMII::U_BitShift;
Binary |= ImmOffs;
emitWordLE(Binary);
return;
}
}
// If immediate offset is omitted, default to +0.
Binary |= 1 << ARMII::U_BitShift;
emitWordLE(Binary);
}
void
ARMCodeEmitter::emitVFPLoadStoreMultipleInstruction(const MachineInstr &MI) {
const MCInstrDesc &MCID = MI.getDesc();
bool IsUpdating = (MCID.TSFlags & ARMII::IndexModeMask) != 0;
// Part of binary is determined by TableGn.
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= II->getPredicate(&MI) << ARMII::CondShift;
// Skip operand 0 of an instruction with base register update.
unsigned OpIdx = 0;
if (IsUpdating)
++OpIdx;
// Set base address operand
Binary |= getMachineOpValue(MI, OpIdx++) << ARMII::RegRnShift;
// Set addressing mode by modifying bits U(23) and P(24)
ARM_AM::AMSubMode Mode = ARM_AM::getLoadStoreMultipleSubMode(MI.getOpcode());
Binary |= getAddrModeUPBits(ARM_AM::getAM4SubMode(Mode));
// Set bit W(21)
if (IsUpdating)
Binary |= 0x1 << ARMII::W_BitShift;
// First register is encoded in Dd.
Binary |= encodeVFPRd(MI, OpIdx+2);
// Count the number of registers.
unsigned NumRegs = 1;
for (unsigned i = OpIdx+3, e = MI.getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (!MO.isReg() || MO.isImplicit())
break;
++NumRegs;
}
// Bit 8 will be set if <list> is consecutive 64-bit registers (e.g., D0)
// Otherwise, it will be 0, in the case of 32-bit registers.
if(Binary & 0x100)
Binary |= NumRegs * 2;
else
Binary |= NumRegs;
emitWordLE(Binary);
}
static unsigned encodeNEONRd(const MachineInstr &MI, unsigned OpIdx) {
unsigned RegD = MI.getOperand(OpIdx).getReg();
unsigned Binary = 0;
RegD = getARMRegisterNumbering(RegD);
Binary |= (RegD & 0xf) << ARMII::RegRdShift;
Binary |= ((RegD >> 4) & 1) << ARMII::D_BitShift;
return Binary;
}
static unsigned encodeNEONRn(const MachineInstr &MI, unsigned OpIdx) {
unsigned RegN = MI.getOperand(OpIdx).getReg();
unsigned Binary = 0;
RegN = getARMRegisterNumbering(RegN);
Binary |= (RegN & 0xf) << ARMII::RegRnShift;
Binary |= ((RegN >> 4) & 1) << ARMII::N_BitShift;
return Binary;
}
static unsigned encodeNEONRm(const MachineInstr &MI, unsigned OpIdx) {
unsigned RegM = MI.getOperand(OpIdx).getReg();
unsigned Binary = 0;
RegM = getARMRegisterNumbering(RegM);
Binary |= (RegM & 0xf);
Binary |= ((RegM >> 4) & 1) << ARMII::M_BitShift;
return Binary;
}
/// convertNEONDataProcToThumb - Convert the ARM mode encoding for a NEON
/// data-processing instruction to the corresponding Thumb encoding.
static unsigned convertNEONDataProcToThumb(unsigned Binary) {
assert((Binary & 0xfe000000) == 0xf2000000 &&
"not an ARM NEON data-processing instruction");
unsigned UBit = (Binary >> 24) & 1;
return 0xef000000 | (UBit << 28) | (Binary & 0xffffff);
}
void ARMCodeEmitter::emitNEONLaneInstruction(const MachineInstr &MI) {
unsigned Binary = getBinaryCodeForInstr(MI);
unsigned RegTOpIdx, RegNOpIdx, LnOpIdx;
const MCInstrDesc &MCID = MI.getDesc();
if ((MCID.TSFlags & ARMII::FormMask) == ARMII::NGetLnFrm) {
RegTOpIdx = 0;
RegNOpIdx = 1;
LnOpIdx = 2;
} else { // ARMII::NSetLnFrm
RegTOpIdx = 2;
RegNOpIdx = 0;
LnOpIdx = 3;
}
// Set the conditional execution predicate
Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
unsigned RegT = MI.getOperand(RegTOpIdx).getReg();
RegT = getARMRegisterNumbering(RegT);
Binary |= (RegT << ARMII::RegRdShift);
Binary |= encodeNEONRn(MI, RegNOpIdx);
unsigned LaneShift;
if ((Binary & (1 << 22)) != 0)
LaneShift = 0; // 8-bit elements
else if ((Binary & (1 << 5)) != 0)
LaneShift = 1; // 16-bit elements
else
LaneShift = 2; // 32-bit elements
unsigned Lane = MI.getOperand(LnOpIdx).getImm() << LaneShift;
unsigned Opc1 = Lane >> 2;
unsigned Opc2 = Lane & 3;
assert((Opc1 & 3) == 0 && "out-of-range lane number operand");
Binary |= (Opc1 << 21);
Binary |= (Opc2 << 5);
emitWordLE(Binary);
}
void ARMCodeEmitter::emitNEONDupInstruction(const MachineInstr &MI) {
unsigned Binary = getBinaryCodeForInstr(MI);
// Set the conditional execution predicate
Binary |= (IsThumb ? ARMCC::AL : II->getPredicate(&MI)) << ARMII::CondShift;
unsigned RegT = MI.getOperand(1).getReg();
RegT = getARMRegisterNumbering(RegT);
Binary |= (RegT << ARMII::RegRdShift);
Binary |= encodeNEONRn(MI, 0);
emitWordLE(Binary);
}
void ARMCodeEmitter::emitNEON1RegModImmInstruction(const MachineInstr &MI) {
unsigned Binary = getBinaryCodeForInstr(MI);
// Destination register is encoded in Dd.
Binary |= encodeNEONRd(MI, 0);
// Immediate fields: Op, Cmode, I, Imm3, Imm4
unsigned Imm = MI.getOperand(1).getImm();
unsigned Op = (Imm >> 12) & 1;
unsigned Cmode = (Imm >> 8) & 0xf;
unsigned I = (Imm >> 7) & 1;
unsigned Imm3 = (Imm >> 4) & 0x7;
unsigned Imm4 = Imm & 0xf;
Binary |= (I << 24) | (Imm3 << 16) | (Cmode << 8) | (Op << 5) | Imm4;
if (IsThumb)
Binary = convertNEONDataProcToThumb(Binary);
emitWordLE(Binary);
}
void ARMCodeEmitter::emitNEON2RegInstruction(const MachineInstr &MI) {
const MCInstrDesc &MCID = MI.getDesc();
unsigned Binary = getBinaryCodeForInstr(MI);
// Destination register is encoded in Dd; source register in Dm.
unsigned OpIdx = 0;
Binary |= encodeNEONRd(MI, OpIdx++);
if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
++OpIdx;
Binary |= encodeNEONRm(MI, OpIdx);
if (IsThumb)
Binary = convertNEONDataProcToThumb(Binary);
// FIXME: This does not handle VDUPfdf or VDUPfqf.
emitWordLE(Binary);
}
void ARMCodeEmitter::emitNEON3RegInstruction(const MachineInstr &MI) {
const MCInstrDesc &MCID = MI.getDesc();
unsigned Binary = getBinaryCodeForInstr(MI);
// Destination register is encoded in Dd; source registers in Dn and Dm.
unsigned OpIdx = 0;
Binary |= encodeNEONRd(MI, OpIdx++);
if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
++OpIdx;
Binary |= encodeNEONRn(MI, OpIdx++);
if (MCID.getOperandConstraint(OpIdx, MCOI::TIED_TO) != -1)
++OpIdx;
Binary |= encodeNEONRm(MI, OpIdx);
if (IsThumb)
Binary = convertNEONDataProcToThumb(Binary);
// FIXME: This does not handle VMOVDneon or VMOVQ.
emitWordLE(Binary);
}
#include "ARMGenCodeEmitter.inc"