llvm-6502/lib/CodeGen/RegAllocGreedy.cpp
2010-12-09 21:20:46 +00:00

337 lines
12 KiB
C++

//===-- RegAllocGreedy.cpp - greedy register allocator --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file defines the RAGreedy function pass for register allocation in
// optimized builds.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "regalloc"
#include "LiveIntervalUnion.h"
#include "RegAllocBase.h"
#include "Spiller.h"
#include "VirtRegMap.h"
#include "VirtRegRewriter.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Function.h"
#include "llvm/PassAnalysisSupport.h"
#include "llvm/CodeGen/CalcSpillWeights.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveStackAnalysis.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/RegAllocRegistry.h"
#include "llvm/CodeGen/RegisterCoalescer.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
static RegisterRegAlloc greedyRegAlloc("greedy", "greedy register allocator",
createGreedyRegisterAllocator);
namespace {
class RAGreedy : public MachineFunctionPass, public RegAllocBase {
// context
MachineFunction *MF;
const TargetMachine *TM;
MachineRegisterInfo *MRI;
BitVector ReservedRegs;
// analyses
LiveStacks *LS;
// state
std::auto_ptr<Spiller> SpillerInstance;
public:
RAGreedy();
/// Return the pass name.
virtual const char* getPassName() const {
return "Basic Register Allocator";
}
/// RAGreedy analysis usage.
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
virtual void releaseMemory();
virtual Spiller &spiller() { return *SpillerInstance; }
virtual float getPriority(LiveInterval *LI);
virtual unsigned selectOrSplit(LiveInterval &VirtReg,
SmallVectorImpl<LiveInterval*> &SplitVRegs);
/// Perform register allocation.
virtual bool runOnMachineFunction(MachineFunction &mf);
static char ID;
private:
bool reassignVReg(LiveInterval &InterferingVReg, unsigned OldPhysReg);
bool reassignInterferences(LiveInterval &VirtReg, unsigned PhysReg);
};
} // end anonymous namespace
char RAGreedy::ID = 0;
FunctionPass* llvm::createGreedyRegisterAllocator() {
return new RAGreedy();
}
RAGreedy::RAGreedy(): MachineFunctionPass(ID) {
initializeLiveIntervalsPass(*PassRegistry::getPassRegistry());
initializeSlotIndexesPass(*PassRegistry::getPassRegistry());
initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry());
initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry());
initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry());
initializeLiveStacksPass(*PassRegistry::getPassRegistry());
initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry());
initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry());
initializeVirtRegMapPass(*PassRegistry::getPassRegistry());
}
void RAGreedy::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<AliasAnalysis>();
AU.addPreserved<AliasAnalysis>();
AU.addRequired<LiveIntervals>();
AU.addPreserved<SlotIndexes>();
if (StrongPHIElim)
AU.addRequiredID(StrongPHIEliminationID);
AU.addRequiredTransitive<RegisterCoalescer>();
AU.addRequired<CalculateSpillWeights>();
AU.addRequired<LiveStacks>();
AU.addPreserved<LiveStacks>();
AU.addRequiredID(MachineDominatorsID);
AU.addPreservedID(MachineDominatorsID);
AU.addRequired<MachineLoopInfo>();
AU.addPreserved<MachineLoopInfo>();
AU.addRequired<VirtRegMap>();
AU.addPreserved<VirtRegMap>();
MachineFunctionPass::getAnalysisUsage(AU);
}
void RAGreedy::releaseMemory() {
SpillerInstance.reset(0);
RegAllocBase::releaseMemory();
}
float RAGreedy::getPriority(LiveInterval *LI) {
float Priority = LI->weight;
// Prioritize hinted registers so they are allocated first.
std::pair<unsigned, unsigned> Hint;
if (Hint.first || Hint.second) {
// The hint can be target specific, a virtual register, or a physreg.
Priority *= 2;
// Prefer physreg hints above anything else.
if (Hint.first == 0 && TargetRegisterInfo::isPhysicalRegister(Hint.second))
Priority *= 2;
}
return Priority;
}
// Attempt to reassign this virtual register to a different physical register.
//
// FIXME: we are not yet caching these "second-level" interferences discovered
// in the sub-queries. These interferences can change with each call to
// selectOrSplit. However, we could implement a "may-interfere" cache that
// could be conservatively dirtied when we reassign or split.
//
// FIXME: This may result in a lot of alias queries. We could summarize alias
// live intervals in their parent register's live union, but it's messy.
bool RAGreedy::reassignVReg(LiveInterval &InterferingVReg,
unsigned OldPhysReg) {
assert(OldPhysReg == VRM->getPhys(InterferingVReg.reg) &&
"inconsistent phys reg assigment");
const TargetRegisterClass *TRC = MRI->getRegClass(InterferingVReg.reg);
for (TargetRegisterClass::iterator I = TRC->allocation_order_begin(*MF),
E = TRC->allocation_order_end(*MF);
I != E; ++I) {
unsigned PhysReg = *I;
if (PhysReg == OldPhysReg || ReservedRegs.test(PhysReg))
continue;
// Instantiate a "subquery", not to be confused with the Queries array.
LiveIntervalUnion::Query subQ(&InterferingVReg,
&PhysReg2LiveUnion[PhysReg]);
if (subQ.checkInterference())
continue;
for (const unsigned *AliasI = TRI->getAliasSet(PhysReg);
*AliasI; ++AliasI) {
subQ.init(&InterferingVReg, &PhysReg2LiveUnion[*AliasI]);
if (subQ.checkInterference())
continue;
}
DEBUG(dbgs() << "reassigning: " << InterferingVReg << " from " <<
TRI->getName(OldPhysReg) << " to " << TRI->getName(PhysReg) << '\n');
// Reassign the interfering virtual reg to this physical reg.
PhysReg2LiveUnion[OldPhysReg].extract(InterferingVReg);
VRM->clearVirt(InterferingVReg.reg);
VRM->assignVirt2Phys(InterferingVReg.reg, PhysReg);
PhysReg2LiveUnion[PhysReg].unify(InterferingVReg);
return true;
}
return false;
}
// Collect all virtual regs currently assigned to PhysReg that interfere with
// VirtReg.
//
// Currently, for simplicity, we only attempt to reassign a single interference
// within the same register class.
bool RAGreedy::reassignInterferences(LiveInterval &VirtReg, unsigned PhysReg) {
LiveIntervalUnion::Query &Q = query(VirtReg, PhysReg);
// Limit the interference search to one interference.
Q.collectInterferingVRegs(1);
assert(Q.interferingVRegs().size() == 1 &&
"expected at least one interference");
// Do not attempt reassignment unless we find only a single interference.
if (!Q.seenAllInterferences())
return false;
// Don't allow any interferences on aliases.
for (const unsigned *AliasI = TRI->getAliasSet(PhysReg); *AliasI; ++AliasI) {
if (query(VirtReg, *AliasI).checkInterference())
return false;
}
return reassignVReg(*Q.interferingVRegs()[0], PhysReg);
}
unsigned RAGreedy::selectOrSplit(LiveInterval &VirtReg,
SmallVectorImpl<LiveInterval*> &SplitVRegs) {
// Populate a list of physical register spill candidates.
SmallVector<unsigned, 8> PhysRegSpillCands, ReassignCands;
// Check for an available register in this class.
const TargetRegisterClass *TRC = MRI->getRegClass(VirtReg.reg);
DEBUG(dbgs() << "RegClass: " << TRC->getName() << ' ');
// Preferred physical register computed from hints.
unsigned Hint = VRM->getRegAllocPref(VirtReg.reg);
// Try a hinted allocation.
if (Hint && !ReservedRegs.test(Hint) && TRC->contains(Hint) &&
checkPhysRegInterference(VirtReg, Hint) == 0)
return Hint;
for (TargetRegisterClass::iterator I = TRC->allocation_order_begin(*MF),
E = TRC->allocation_order_end(*MF);
I != E; ++I) {
unsigned PhysReg = *I;
if (ReservedRegs.test(PhysReg)) continue;
// Check interference and as a side effect, intialize queries for this
// VirtReg and its aliases.
unsigned InterfReg = checkPhysRegInterference(VirtReg, PhysReg);
if (InterfReg == 0) {
// Found an available register.
return PhysReg;
}
assert(!VirtReg.empty() && "Empty VirtReg has interference");
LiveInterval *InterferingVirtReg =
Queries[InterfReg].firstInterference().liveUnionPos().value();
// The current VirtReg must either be spillable, or one of its interferences
// must have less spill weight.
if (InterferingVirtReg->weight < VirtReg.weight ) {
// For simplicity, only consider reassigning registers in the same class.
if (InterfReg == PhysReg)
ReassignCands.push_back(PhysReg);
else
PhysRegSpillCands.push_back(PhysReg);
}
}
// Try to reassign interfering physical register. Priority among
// PhysRegSpillCands does not matter yet, because the reassigned virtual
// registers will still be assigned to physical registers.
for (SmallVectorImpl<unsigned>::iterator PhysRegI = ReassignCands.begin(),
PhysRegE = ReassignCands.end(); PhysRegI != PhysRegE; ++PhysRegI) {
if (reassignInterferences(VirtReg, *PhysRegI))
// Reassignment successfull. The caller may allocate now to this PhysReg.
return *PhysRegI;
}
PhysRegSpillCands.insert(PhysRegSpillCands.end(), ReassignCands.begin(),
ReassignCands.end());
// Try to spill another interfering reg with less spill weight.
//
// FIXME: do this in two steps: (1) check for unspillable interferences while
// accumulating spill weight; (2) spill the interferences with lowest
// aggregate spill weight.
for (SmallVectorImpl<unsigned>::iterator PhysRegI = PhysRegSpillCands.begin(),
PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) {
if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs)) continue;
assert(checkPhysRegInterference(VirtReg, *PhysRegI) == 0 &&
"Interference after spill.");
// Tell the caller to allocate to this newly freed physical register.
return *PhysRegI;
}
// No other spill candidates were found, so spill the current VirtReg.
DEBUG(dbgs() << "spilling: " << VirtReg << '\n');
SmallVector<LiveInterval*, 1> pendingSpills;
spiller().spill(&VirtReg, SplitVRegs, pendingSpills);
// The live virtual register requesting allocation was spilled, so tell
// the caller not to allocate anything during this round.
return 0;
}
bool RAGreedy::runOnMachineFunction(MachineFunction &mf) {
DEBUG(dbgs() << "********** GREEDY REGISTER ALLOCATION **********\n"
<< "********** Function: "
<< ((Value*)mf.getFunction())->getName() << '\n');
MF = &mf;
TM = &mf.getTarget();
MRI = &mf.getRegInfo();
const TargetRegisterInfo *TRI = TM->getRegisterInfo();
RegAllocBase::init(*TRI, getAnalysis<VirtRegMap>(),
getAnalysis<LiveIntervals>());
ReservedRegs = TRI->getReservedRegs(*MF);
SpillerInstance.reset(createSpiller(*this, *MF, *VRM));
allocatePhysRegs();
addMBBLiveIns(MF);
// Run rewriter
std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter());
rewriter->runOnMachineFunction(*MF, *VRM, LIS);
// The pass output is in VirtRegMap. Release all the transient data.
releaseMemory();
return true;
}