llvm-6502/lib/CodeGen/SelectionDAG/ScheduleDAG.cpp
Jeff Cohen fef80f43e0 Silence VC++ redeclaration warnings.
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@23516 91177308-0d34-0410-b5e6-96231b3b80d8
2005-09-29 01:59:49 +00:00

952 lines
32 KiB
C++

//===-- ScheduleDAG.cpp - Implement a trivial DAG scheduler ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file was developed by Chris Lattner and is distributed under the
// University of Illinois Open Source License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This implements a simple two pass scheduler. The first pass attempts to push
// backward any lengthy instructions and critical paths. The second pass packs
// instructions into semi-optimal time slots.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "sched"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/SelectionDAGISel.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/SSARegMap.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetLowering.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include <iostream>
using namespace llvm;
namespace {
// Style of scheduling to use.
enum ScheduleChoices {
noScheduling,
simpleScheduling,
};
} // namespace
cl::opt<ScheduleChoices> ScheduleStyle("sched",
cl::desc("Choose scheduling style"),
cl::init(noScheduling),
cl::values(
clEnumValN(noScheduling, "none",
"Trivial emission with no analysis"),
clEnumValN(simpleScheduling, "simple",
"Minimize critical path and maximize processor utilization"),
clEnumValEnd));
#ifndef NDEBUG
static cl::opt<bool>
ViewDAGs("view-sched-dags", cl::Hidden,
cl::desc("Pop up a window to show sched dags as they are processed"));
#else
static const bool ViewDAGs = 0;
#endif
namespace {
//===----------------------------------------------------------------------===//
///
/// BitsIterator - Provides iteration through individual bits in a bit vector.
///
template<class T>
class BitsIterator {
private:
T Bits; // Bits left to iterate through
public:
/// Ctor.
BitsIterator(T Initial) : Bits(Initial) {}
/// Next - Returns the next bit set or zero if exhausted.
inline T Next() {
// Get the rightmost bit set
T Result = Bits & -Bits;
// Remove from rest
Bits &= ~Result;
// Return single bit or zero
return Result;
}
};
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
///
/// ResourceTally - Manages the use of resources over time intervals. Each
/// item (slot) in the tally vector represents the resources used at a given
/// moment. A bit set to 1 indicates that a resource is in use, otherwise
/// available. An assumption is made that the tally is large enough to schedule
/// all current instructions (asserts otherwise.)
///
template<class T>
class ResourceTally {
private:
std::vector<T> Tally; // Resources used per slot
typedef typename std::vector<T>::iterator Iter;
// Tally iterator
/// AllInUse - Test to see if all of the resources in the slot are busy (set.)
inline bool AllInUse(Iter Cursor, unsigned ResourceSet) {
return (*Cursor & ResourceSet) == ResourceSet;
}
/// Skip - Skip over slots that use all of the specified resource (all are
/// set.)
Iter Skip(Iter Cursor, unsigned ResourceSet) {
assert(ResourceSet && "At least one resource bit needs to bet set");
// Continue to the end
while (true) {
// Break out if one of the resource bits is not set
if (!AllInUse(Cursor, ResourceSet)) return Cursor;
// Try next slot
Cursor++;
assert(Cursor < Tally.end() && "Tally is not large enough for schedule");
}
}
/// FindSlots - Starting from Begin, locate N consecutive slots where at least
/// one of the resource bits is available. Returns the address of first slot.
Iter FindSlots(Iter Begin, unsigned N, unsigned ResourceSet,
unsigned &Resource) {
// Track position
Iter Cursor = Begin;
// Try all possible slots forward
while (true) {
// Skip full slots
Cursor = Skip(Cursor, ResourceSet);
// Determine end of interval
Iter End = Cursor + N;
assert(End <= Tally.end() && "Tally is not large enough for schedule");
// Iterate thru each resource
BitsIterator<T> Resources(ResourceSet & ~*Cursor);
while (unsigned Res = Resources.Next()) {
// Check if resource is available for next N slots
// Break out if resource is busy
Iter Interval = Cursor;
for (; Interval < End && !(*Interval & Res); Interval++) {}
// If available for interval, return where and which resource
if (Interval == End) {
Resource = Res;
return Cursor;
}
// Otherwise, check if worth checking other resources
if (AllInUse(Interval, ResourceSet)) {
// Start looking beyond interval
Cursor = Interval;
break;
}
}
Cursor++;
}
}
/// Reserve - Mark busy (set) the specified N slots.
void Reserve(Iter Begin, unsigned N, unsigned Resource) {
// Determine end of interval
Iter End = Begin + N;
assert(End <= Tally.end() && "Tally is not large enough for schedule");
// Set resource bit in each slot
for (; Begin < End; Begin++)
*Begin |= Resource;
}
public:
/// Initialize - Resize and zero the tally to the specified number of time
/// slots.
inline void Initialize(unsigned N) {
Tally.assign(N, 0); // Initialize tally to all zeros.
}
// FindAndReserve - Locate and mark busy (set) N bits started at slot I, using
// ResourceSet for choices.
unsigned FindAndReserve(unsigned I, unsigned N, unsigned ResourceSet) {
// Which resource used
unsigned Resource;
// Find slots for instruction.
Iter Where = FindSlots(Tally.begin() + I, N, ResourceSet, Resource);
// Reserve the slots
Reserve(Where, N, Resource);
// Return time slot (index)
return Where - Tally.begin();
}
};
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
// This struct tracks information used to schedule the a node.
struct ScheduleInfo {
SDOperand Op; // Operand information
unsigned Latency; // Cycles to complete instruction
unsigned ResourceSet; // Bit vector of usable resources
unsigned Slot; // Operand's time slot
// Ctor.
ScheduleInfo(SDOperand op)
: Op(op)
, Latency(0)
, ResourceSet(0)
, Slot(0)
{}
};
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
class SimpleSched {
private:
// TODO - get ResourceSet from TII
enum {
RSInteger = 0x3, // Two integer units
RSFloat = 0xC, // Two float units
RSLoadStore = 0x30, // Two load store units
RSOther = 0 // Processing unit independent
};
MachineBasicBlock *BB; // Current basic block
SelectionDAG &DAG; // DAG of the current basic block
const TargetMachine &TM; // Target processor
const TargetInstrInfo &TII; // Target instruction information
const MRegisterInfo &MRI; // Target processor register information
SSARegMap *RegMap; // Virtual/real register map
MachineConstantPool *ConstPool; // Target constant pool
std::vector<ScheduleInfo> Operands; // All operands to be scheduled
std::vector<ScheduleInfo*> Ordering; // Emit ordering of operands
std::map<SDNode *, int> Visited; // Operands that have been visited
ResourceTally<unsigned> Tally; // Resource usage tally
unsigned NSlots; // Total latency
std::map<SDNode *, unsigned>VRMap; // Operand to VR map
static const unsigned NotFound = ~0U; // Search marker
public:
// Ctor.
SimpleSched(SelectionDAG &D, MachineBasicBlock *bb)
: BB(bb), DAG(D), TM(D.getTarget()), TII(*TM.getInstrInfo()),
MRI(*TM.getRegisterInfo()), RegMap(BB->getParent()->getSSARegMap()),
ConstPool(BB->getParent()->getConstantPool()),
NSlots(0) {
assert(&TII && "Target doesn't provide instr info?");
assert(&MRI && "Target doesn't provide register info?");
}
// Run - perform scheduling.
MachineBasicBlock *Run() {
Schedule();
return BB;
}
private:
static bool isFlagDefiner(SDOperand Op) { return isFlagDefiner(Op.Val); }
static bool isFlagUser(SDOperand Op) { return isFlagUser(Op.Val); }
static bool isFlagDefiner(SDNode *A);
static bool isFlagUser(SDNode *A);
static bool isDefiner(SDNode *A, SDNode *B);
static bool isPassiveOperand(SDOperand Op);
void IncludeOperand(SDOperand Op);
void VisitAll();
void Schedule();
void GatherOperandInfo();
bool isStrongDependency(SDOperand A, SDOperand B) {
return isStrongDependency(A.Val, B.Val);
}
bool isWeakDependency(SDOperand A, SDOperand B) {
return isWeakDependency(A.Val, B.Val);
}
static bool isStrongDependency(SDNode *A, SDNode *B);
static bool isWeakDependency(SDNode *A, SDNode *B);
void ScheduleBackward();
void ScheduleForward();
void EmitAll();
void EmitFlagUsers(SDOperand Op);
static unsigned CountResults(SDOperand Op);
static unsigned CountOperands(SDOperand Op);
unsigned CreateVirtualRegisters(SDOperand Op, MachineInstr *MI,
unsigned NumResults,
const TargetInstrDescriptor &II);
unsigned Emit(SDOperand A);
void printSI(std::ostream &O, ScheduleInfo *SI) const ;
void print(std::ostream &O) const ;
inline void dump(const char *tag) const { std::cerr << tag; dump(); }
void dump() const;
};
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
class FlagUserIterator {
private:
SDNode *Definer; // Node defining flag
SDNode::use_iterator UI; // User node iterator
SDNode::use_iterator E; // End of user nodes
unsigned MinRes; // Minimum flag result
public:
// Ctor.
FlagUserIterator(SDNode *D)
: Definer(D)
, UI(D->use_begin())
, E(D->use_end())
, MinRes(D->getNumValues()) {
// Find minimum flag result.
while (MinRes && D->getValueType(MinRes - 1) == MVT::Flag) --MinRes;
}
/// isFlagUser - Return true if node uses definer's flag.
bool isFlagUser(SDNode *U) {
// For each operand (in reverse to only look at flags)
for (unsigned N = U->getNumOperands(); 0 < N--;) {
// Get operand
SDOperand Op = U->getOperand(N);
// Not user if there are no flags
if (Op.getValueType() != MVT::Flag) return false;
// Return true if it is one of the flag results
if (Op.Val == Definer && Op.ResNo >= MinRes) return true;
}
// Not a flag user
return false;
}
SDNode *next() {
// Continue to next user
while (UI != E) {
// Next user node
SDNode *User = *UI++;
// Return true if is a flag user
if (isFlagUser(User)) return User;
}
// No more user nodes
return NULL;
}
};
} // namespace
//===----------------------------------------------------------------------===//
/// isFlagDefiner - Returns true if the operand defines a flag result.
bool SimpleSched::isFlagDefiner(SDNode *A) {
unsigned N = A->getNumValues();
return N && A->getValueType(N - 1) == MVT::Flag;
}
/// isFlagUser - Returns true if the operand uses a flag result.
///
bool SimpleSched::isFlagUser(SDNode *A) {
unsigned N = A->getNumOperands();
return N && A->getOperand(N - 1).getValueType() == MVT::Flag;
}
/// isDefiner - Return true if Node A is a definder for B.
///
bool SimpleSched::isDefiner(SDNode *A, SDNode *B) {
for (unsigned i = 0, N = B->getNumOperands(); i < N; i++) {
if (B->getOperand(i).Val == A) return true;
}
return false;
}
/// isPassiveOperand - Return true if the operand is a non-scheduled leaf
/// operand.
bool SimpleSched::isPassiveOperand(SDOperand Op) {
if (isa<ConstantSDNode>(Op)) return true;
if (isa<RegisterSDNode>(Op)) return true;
if (isa<GlobalAddressSDNode>(Op)) return true;
if (isa<BasicBlockSDNode>(Op)) return true;
if (isa<FrameIndexSDNode>(Op)) return true;
if (isa<ConstantPoolSDNode>(Op)) return true;
if (isa<ExternalSymbolSDNode>(Op)) return true;
return false;
}
/// IncludeOperand - Add operand to ScheduleInfo vector.
///
void SimpleSched::IncludeOperand(SDOperand Op) {
// Ignore entry node
if (Op.getOpcode() == ISD::EntryToken) return;
// Check current count for operand
int Count = Visited[Op.Val];
// If the operand is already in list
if (Count < 0) return;
// If this the first time then get count
if (!Count) Count = Op.Val->use_size();
// Decrement count to indicate a visit
Count--;
// If count has gone to zero then add operand to list
if (!Count) {
// Add operand
Operands.push_back(ScheduleInfo(Op));
// indicate operand has been added
Count--;
}
// Mark as visited with new count
Visited[Op.Val] = Count;
}
/// VisitAll - Visit each operand breadth-wise to produce an initial ordering.
/// Note that the ordering in the Operands vector is reversed.
void SimpleSched::VisitAll() {
// Add first element to list
Operands.push_back(DAG.getRoot());
for (unsigned i = 0; i < Operands.size(); i++) { // note: size() varies
// Get next operand. Need copy because Operands vector is growing and
// addresses can be ScheduleInfo changing.
SDOperand Op = Operands[i].Op;
// Get the number of real operands
unsigned NodeOperands = CountOperands(Op);
// Get the total number of operands
unsigned NumOperands = Op.getNumOperands();
// Visit all operands skipping the Other operand if present
for (unsigned i = NumOperands; 0 < i--;) {
SDOperand OpI = Op.getOperand(i);
// Ignore passive operands
if (isPassiveOperand(OpI)) continue;
// Check out operand
IncludeOperand(OpI);
}
}
// Add entry node last (IncludeOperand filters entry nodes)
if (DAG.getEntryNode().Val != DAG.getRoot().Val)
Operands.push_back(DAG.getEntryNode());
}
/// GatherOperandInfo - Get latency and resource information about each operand.
///
void SimpleSched::GatherOperandInfo() {
// Add addresses of operand info to ordering vector
// Get number of operands
unsigned N = Operands.size();
// FIXME: This is an ugly (but temporary!) hack to test the scheduler before
// we have real target info.
// For each operand being scheduled
for (unsigned i = 0; i < N; i++) {
ScheduleInfo* SI = &Operands[N - i - 1];
SDOperand Op = SI->Op;
MVT::ValueType VT = Op.Val->getValueType(0);
if (Op.isTargetOpcode()) {
MachineOpCode TOpc = Op.getTargetOpcode();
// FIXME SI->Latency = std::max(1, TII.maxLatency(TOpc));
// FIXME SI->ResourceSet = TII.resources(TOpc);
if (TII.isCall(TOpc)) {
SI->ResourceSet = RSInteger;
SI->Latency = 40;
} else if (TII.isLoad(TOpc)) {
SI->ResourceSet = RSLoadStore;
SI->Latency = 5;
} else if (TII.isStore(TOpc)) {
SI->ResourceSet = RSLoadStore;
SI->Latency = 2;
} else if (MVT::isInteger(VT)) {
SI->ResourceSet = RSInteger;
SI->Latency = 2;
} else if (MVT::isFloatingPoint(VT)) {
SI->ResourceSet = RSFloat;
SI->Latency = 3;
} else {
SI->ResourceSet = RSOther;
SI->Latency = 0;
}
} else {
if (MVT::isInteger(VT)) {
SI->ResourceSet = RSInteger;
SI->Latency = 2;
} else if (MVT::isFloatingPoint(VT)) {
SI->ResourceSet = RSFloat;
SI->Latency = 3;
} else {
SI->ResourceSet = RSOther;
SI->Latency = 0;
}
}
// Add one slot for the instruction itself
SI->Latency++;
// Sum up all the latencies for max tally size
NSlots += SI->Latency;
// Place in initial sorted order
// FIXME - PUNT - ignore flag users
if (!isFlagUser(Op)) Ordering.push_back(SI);
}
}
/// isStrongDependency - Return true if operand A has results used by operand B.
/// I.E., B must wait for latency of A.
bool SimpleSched::isStrongDependency(SDNode *A, SDNode *B) {
// If A defines for B then it's a strong dependency
if (isDefiner(A, B)) return true;
// If A defines a flag then it's users are part of the dependency
if (isFlagDefiner(A)) {
// Check each flag user
FlagUserIterator FI(A);
while (SDNode *User = FI.next()) {
// If flag user has strong dependency so does B
if (isStrongDependency(User, B)) return true;
}
}
// If B defines a flag then it's users are part of the dependency
if (isFlagDefiner(B)) {
// Check each flag user
FlagUserIterator FI(B);
while (SDNode *User = FI.next()) {
// If flag user has strong dependency so does B
if (isStrongDependency(A, User)) return true;
}
}
return false;
}
/// isWeakDependency Return true if operand A produces a result that will
/// conflict with operands of B.
bool SimpleSched::isWeakDependency(SDNode *A, SDNode *B) {
// TODO check for conflicting real registers and aliases
#if 0 // Since we are in SSA form and not checking register aliasing
return A->getOpcode() == ISD::EntryToken || isStrongDependency(B, A);
#else
return A->getOpcode() == ISD::EntryToken;
#endif
}
/// ScheduleBackward - Schedule instructions so that any long latency
/// instructions and the critical path get pushed back in time. Time is run in
/// reverse to allow code reuse of the Tally and eliminate the overhead of
/// biasing every slot indices against NSlots.
void SimpleSched::ScheduleBackward() {
// Size and clear the resource tally
Tally.Initialize(NSlots);
// Get number of operands to schedule
unsigned N = Ordering.size();
// For each operand being scheduled
for (unsigned i = N; 0 < i--;) {
ScheduleInfo *SI = Ordering[i];
// Track insertion
unsigned Slot = NotFound;
// Compare against those previously scheduled operands
unsigned j = i + 1;
for (; j < N; j++) {
// Get following instruction
ScheduleInfo *Other = Ordering[j];
// Check dependency against previously inserted operands
if (isStrongDependency(SI->Op, Other->Op)) {
Slot = Other->Slot + Other->Latency;
break;
} else if (isWeakDependency(SI->Op, Other->Op)) {
Slot = Other->Slot;
break;
}
}
// If independent of others (or first entry)
if (Slot == NotFound) Slot = 0;
// Find a slot where the needed resources are available
if (SI->ResourceSet)
Slot = Tally.FindAndReserve(Slot, SI->Latency, SI->ResourceSet);
// Set operand slot
SI->Slot = Slot;
// Insert sort based on slot
j = i + 1;
for (; j < N; j++) {
// Get following instruction
ScheduleInfo *Other = Ordering[j];
// Should we look further
if (Slot >= Other->Slot) break;
// Shuffle other into ordering
Ordering[j - 1] = Other;
}
// Insert operand in proper slot
if (j != i + 1) Ordering[j - 1] = SI;
}
}
/// ScheduleForward - Schedule instructions to maximize packing.
///
void SimpleSched::ScheduleForward() {
// Size and clear the resource tally
Tally.Initialize(NSlots);
// Get number of operands to schedule
unsigned N = Ordering.size();
// For each operand being scheduled
for (unsigned i = 0; i < N; i++) {
ScheduleInfo *SI = Ordering[i];
// Track insertion
unsigned Slot = NotFound;
// Compare against those previously scheduled operands
unsigned j = i;
for (; 0 < j--;) {
// Get following instruction
ScheduleInfo *Other = Ordering[j];
// Check dependency against previously inserted operands
if (isStrongDependency(Other->Op, SI->Op)) {
Slot = Other->Slot + Other->Latency;
break;
} else if (isWeakDependency(Other->Op, SI->Op)) {
Slot = Other->Slot;
break;
}
}
// If independent of others (or first entry)
if (Slot == NotFound) Slot = 0;
// Find a slot where the needed resources are available
if (SI->ResourceSet)
Slot = Tally.FindAndReserve(Slot, SI->Latency, SI->ResourceSet);
// Set operand slot
SI->Slot = Slot;
// Insert sort based on slot
j = i;
for (; 0 < j--;) {
// Get following instruction
ScheduleInfo *Other = Ordering[j];
// Should we look further
if (Slot >= Other->Slot) break;
// Shuffle other into ordering
Ordering[j + 1] = Other;
}
// Insert operand in proper slot
if (j != i) Ordering[j + 1] = SI;
}
}
/// EmitAll - Emit all operands in schedule sorted order.
///
void SimpleSched::EmitAll() {
// For each operand in the ordering
for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
// Get the scheduling info
ScheduleInfo *SI = Ordering[i];
// Get the operand
SDOperand Op = SI->Op;
// Emit the operand
Emit(Op);
// FIXME - PUNT - If Op defines a flag then it's users need to be emitted now
if (isFlagDefiner(Op)) EmitFlagUsers(Op);
}
}
/// EmitFlagUsers - Emit users of operands flag.
///
void SimpleSched::EmitFlagUsers(SDOperand Op) {
// Check each flag user
FlagUserIterator FI(Op.Val);
while (SDNode *User = FI.next()) {
// Construct user node as operand
SDOperand OpU(User, 0);
// Emit user node
Emit(OpU);
// If user defines a flag then it's users need to be emitted now
if (isFlagDefiner(User)) EmitFlagUsers(OpU);
}
}
/// CountResults - The results of target nodes have register or immediate
/// operands first, then an optional chain, and optional flag operands (which do
/// not go into the machine instrs.)
unsigned SimpleSched::CountResults(SDOperand Op) {
unsigned N = Op.Val->getNumValues();
while (N && Op.Val->getValueType(N - 1) == MVT::Flag)
--N;
if (N && Op.Val->getValueType(N - 1) == MVT::Other)
--N; // Skip over chain result.
return N;
}
/// CountOperands The inputs to target nodes have any actual inputs first,
/// followed by an optional chain operand, then flag operands. Compute the
/// number of actual operands that will go into the machine instr.
unsigned SimpleSched::CountOperands(SDOperand Op) {
unsigned N = Op.getNumOperands();
while (N && Op.getOperand(N - 1).getValueType() == MVT::Flag)
--N;
if (N && Op.getOperand(N - 1).getValueType() == MVT::Other)
--N; // Ignore chain if it exists.
return N;
}
/// CreateVirtualRegisters - Add result register values for things that are
/// defined by this instruction.
unsigned SimpleSched::CreateVirtualRegisters(SDOperand Op, MachineInstr *MI,
unsigned NumResults,
const TargetInstrDescriptor &II) {
// Create the result registers for this node and add the result regs to
// the machine instruction.
const TargetOperandInfo *OpInfo = II.OpInfo;
unsigned ResultReg = RegMap->createVirtualRegister(OpInfo[0].RegClass);
MI->addRegOperand(ResultReg, MachineOperand::Def);
for (unsigned i = 1; i != NumResults; ++i) {
assert(OpInfo[i].RegClass && "Isn't a register operand!");
MI->addRegOperand(RegMap->createVirtualRegister(OpInfo[0].RegClass),
MachineOperand::Def);
}
return ResultReg;
}
/// Emit - Generate machine code for an operand and needed dependencies.
///
unsigned SimpleSched::Emit(SDOperand Op) {
std::map<SDNode *, unsigned>::iterator OpI = VRMap.lower_bound(Op.Val);
if (OpI != VRMap.end() && OpI->first == Op.Val)
return OpI->second + Op.ResNo;
unsigned &OpSlot = VRMap.insert(OpI, std::make_pair(Op.Val, 0))->second;
unsigned ResultReg = 0;
if (Op.isTargetOpcode()) {
unsigned Opc = Op.getTargetOpcode();
const TargetInstrDescriptor &II = TII.get(Opc);
unsigned NumResults = CountResults(Op);
unsigned NodeOperands = CountOperands(Op);
unsigned NumMIOperands = NodeOperands + NumResults;
#ifndef NDEBUG
assert((unsigned(II.numOperands) == NumMIOperands || II.numOperands == -1)&&
"#operands for dag node doesn't match .td file!");
#endif
// Create the new machine instruction.
MachineInstr *MI = new MachineInstr(Opc, NumMIOperands, true, true);
// Add result register values for things that are defined by this
// instruction.
if (NumResults) ResultReg = CreateVirtualRegisters(Op, MI, NumResults, II);
// If there is a token chain operand, emit it first, as a hack to get avoid
// really bad cases.
if (Op.getNumOperands() > NodeOperands &&
Op.getOperand(NodeOperands).getValueType() == MVT::Other) {
Emit(Op.getOperand(NodeOperands));
}
// Emit all of the actual operands of this instruction, adding them to the
// instruction as appropriate.
for (unsigned i = 0; i != NodeOperands; ++i) {
if (Op.getOperand(i).isTargetOpcode()) {
// Note that this case is redundant with the final else block, but we
// include it because it is the most common and it makes the logic
// simpler here.
assert(Op.getOperand(i).getValueType() != MVT::Other &&
Op.getOperand(i).getValueType() != MVT::Flag &&
"Chain and flag operands should occur at end of operand list!");
MI->addRegOperand(Emit(Op.getOperand(i)), MachineOperand::Use);
} else if (ConstantSDNode *C =
dyn_cast<ConstantSDNode>(Op.getOperand(i))) {
MI->addZeroExtImm64Operand(C->getValue());
} else if (RegisterSDNode*R =dyn_cast<RegisterSDNode>(Op.getOperand(i))) {
MI->addRegOperand(R->getReg(), MachineOperand::Use);
} else if (GlobalAddressSDNode *TGA =
dyn_cast<GlobalAddressSDNode>(Op.getOperand(i))) {
MI->addGlobalAddressOperand(TGA->getGlobal(), false, 0);
} else if (BasicBlockSDNode *BB =
dyn_cast<BasicBlockSDNode>(Op.getOperand(i))) {
MI->addMachineBasicBlockOperand(BB->getBasicBlock());
} else if (FrameIndexSDNode *FI =
dyn_cast<FrameIndexSDNode>(Op.getOperand(i))) {
MI->addFrameIndexOperand(FI->getIndex());
} else if (ConstantPoolSDNode *CP =
dyn_cast<ConstantPoolSDNode>(Op.getOperand(i))) {
unsigned Idx = ConstPool->getConstantPoolIndex(CP->get());
MI->addConstantPoolIndexOperand(Idx);
} else if (ExternalSymbolSDNode *ES =
dyn_cast<ExternalSymbolSDNode>(Op.getOperand(i))) {
MI->addExternalSymbolOperand(ES->getSymbol(), false);
} else {
assert(Op.getOperand(i).getValueType() != MVT::Other &&
Op.getOperand(i).getValueType() != MVT::Flag &&
"Chain and flag operands should occur at end of operand list!");
MI->addRegOperand(Emit(Op.getOperand(i)), MachineOperand::Use);
}
}
// Finally, if this node has any flag operands, we *must* emit them last, to
// avoid emitting operations that might clobber the flags.
if (Op.getNumOperands() > NodeOperands) {
unsigned i = NodeOperands;
if (Op.getOperand(i).getValueType() == MVT::Other)
++i; // the chain is already selected.
for (unsigned N = Op.getNumOperands(); i < N; i++) {
assert(Op.getOperand(i).getValueType() == MVT::Flag &&
"Must be flag operands!");
Emit(Op.getOperand(i));
}
}
// Now that we have emitted all operands, emit this instruction itself.
if ((II.Flags & M_USES_CUSTOM_DAG_SCHED_INSERTION) == 0) {
BB->insert(BB->end(), MI);
} else {
// Insert this instruction into the end of the basic block, potentially
// taking some custom action.
BB = DAG.getTargetLoweringInfo().InsertAtEndOfBasicBlock(MI, BB);
}
} else {
switch (Op.getOpcode()) {
default:
Op.Val->dump();
assert(0 && "This target-independent node should have been selected!");
case ISD::EntryToken: break;
case ISD::TokenFactor:
for (unsigned i = 0, N = Op.getNumOperands(); i < N; i++) {
Emit(Op.getOperand(i));
}
break;
case ISD::CopyToReg: {
SDOperand FlagOp;
if (Op.getNumOperands() == 4) {
FlagOp = Op.getOperand(3);
}
if (Op.getOperand(0).Val != FlagOp.Val) {
Emit(Op.getOperand(0)); // Emit the chain.
}
unsigned Val = Emit(Op.getOperand(2));
if (FlagOp.Val) {
Emit(FlagOp);
}
MRI.copyRegToReg(*BB, BB->end(),
cast<RegisterSDNode>(Op.getOperand(1))->getReg(), Val,
RegMap->getRegClass(Val));
break;
}
case ISD::CopyFromReg: {
Emit(Op.getOperand(0)); // Emit the chain.
unsigned SrcReg = cast<RegisterSDNode>(Op.getOperand(1))->getReg();
// Figure out the register class to create for the destreg.
const TargetRegisterClass *TRC = 0;
if (MRegisterInfo::isVirtualRegister(SrcReg)) {
TRC = RegMap->getRegClass(SrcReg);
} else {
// FIXME: we don't know what register class to generate this for. Do
// a brute force search and pick the first match. :(
for (MRegisterInfo::regclass_iterator I = MRI.regclass_begin(),
E = MRI.regclass_end(); I != E; ++I)
if ((*I)->contains(SrcReg)) {
TRC = *I;
break;
}
assert(TRC && "Couldn't find register class for reg copy!");
}
// Create the reg, emit the copy.
ResultReg = RegMap->createVirtualRegister(TRC);
MRI.copyRegToReg(*BB, BB->end(), ResultReg, SrcReg, TRC);
break;
}
}
}
OpSlot = ResultReg;
return ResultReg+Op.ResNo;
}
/// Schedule - Order operands according to selected style.
///
void SimpleSched::Schedule() {
switch (ScheduleStyle) {
case simpleScheduling:
// Breadth first walk of DAG
VisitAll();
// Get latency and resource requirements
GatherOperandInfo();
// Don't waste time if is only entry and return
if (Operands.size() > 2) {
DEBUG(dump("Pre-"));
// Push back long instructions and critical path
ScheduleBackward();
DEBUG(dump("Mid-"));
// Pack instructions to maximize resource utilization
ScheduleForward();
DEBUG(dump("Post-"));
// Emit in scheduled order
EmitAll();
break;
} // fall thru
case noScheduling:
// Emit instructions in using a DFS from the exit root
Emit(DAG.getRoot());
break;
}
}
/// printSI - Print schedule info.
///
void SimpleSched::printSI(std::ostream &O, ScheduleInfo *SI) const {
#ifndef NDEBUG
using namespace std;
SDOperand Op = SI->Op;
O << " "
<< hex << Op.Val
<< ", RS=" << SI->ResourceSet
<< ", Lat=" << SI->Latency
<< ", Slot=" << SI->Slot
<< ", ARITY=(" << Op.getNumOperands() << ","
<< Op.Val->getNumValues() << ")"
<< " " << Op.Val->getOperationName(&DAG);
if (isFlagDefiner(Op)) O << "<#";
if (isFlagUser(Op)) O << ">#";
#endif
}
/// print - Print ordering to specified output stream.
///
void SimpleSched::print(std::ostream &O) const {
#ifndef NDEBUG
using namespace std;
O << "Ordering\n";
for (unsigned i = 0, N = Ordering.size(); i < N; i++) {
printSI(O, Ordering[i]);
O << "\n";
}
#endif
}
/// dump - Print ordering to std::cerr.
///
void SimpleSched::dump() const {
print(std::cerr);
}
//===----------------------------------------------------------------------===//
//===----------------------------------------------------------------------===//
/// ScheduleAndEmitDAG - Pick a safe ordering and emit instructions for each
/// target node in the graph.
void SelectionDAGISel::ScheduleAndEmitDAG(SelectionDAG &SD) {
if (ViewDAGs) SD.viewGraph();
BB = SimpleSched(SD, BB).Run();
}