llvm-6502/lib/CodeGen/PHIElimination.cpp
Cameron Zwarich 4930e7266b Don't consider definitions by other PHIs live-in when trimming a PHI source's
live range after inserting a copy at the end of a block.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@174945 91177308-0d34-0410-b5e6-96231b3b80d8
2013-02-12 05:48:58 +00:00

646 lines
26 KiB
C++

//===-- PhiElimination.cpp - Eliminate PHI nodes by inserting copies ------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass eliminates machine instruction PHI nodes by inserting copy
// instructions. This destroys SSA information, but is the desired input for
// some register allocators.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "phielim"
#include "llvm/CodeGen/Passes.h"
#include "PHIEliminationUtils.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/CodeGen/LiveIntervalAnalysis.h"
#include "llvm/CodeGen/LiveVariables.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/IR/Function.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
using namespace llvm;
static cl::opt<bool>
DisableEdgeSplitting("disable-phi-elim-edge-splitting", cl::init(false),
cl::Hidden, cl::desc("Disable critical edge splitting "
"during PHI elimination"));
static cl::opt<bool>
SplitAllCriticalEdges("phi-elim-split-all-critical-edges", cl::init(false),
cl::Hidden, cl::desc("Split all critical edges during "
"PHI elimination"));
namespace {
class PHIElimination : public MachineFunctionPass {
MachineRegisterInfo *MRI; // Machine register information
LiveVariables *LV;
LiveIntervals *LIS;
public:
static char ID; // Pass identification, replacement for typeid
PHIElimination() : MachineFunctionPass(ID) {
initializePHIEliminationPass(*PassRegistry::getPassRegistry());
}
virtual bool runOnMachineFunction(MachineFunction &Fn);
virtual void getAnalysisUsage(AnalysisUsage &AU) const;
private:
/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions
/// in predecessor basic blocks.
///
bool EliminatePHINodes(MachineFunction &MF, MachineBasicBlock &MBB);
void LowerPHINode(MachineBasicBlock &MBB,
MachineBasicBlock::iterator AfterPHIsIt);
/// analyzePHINodes - Gather information about the PHI nodes in
/// here. In particular, we want to map the number of uses of a virtual
/// register which is used in a PHI node. We map that to the BB the
/// vreg is coming from. This is used later to determine when the vreg
/// is killed in the BB.
///
void analyzePHINodes(const MachineFunction& Fn);
/// Split critical edges where necessary for good coalescer performance.
bool SplitPHIEdges(MachineFunction &MF, MachineBasicBlock &MBB,
MachineLoopInfo *MLI);
// These functions are temporary abstractions around LiveVariables and
// LiveIntervals, so they can go away when LiveVariables does.
bool isLiveIn(unsigned Reg, MachineBasicBlock *MBB);
bool isLiveOutPastPHIs(unsigned Reg, MachineBasicBlock *MBB);
typedef std::pair<unsigned, unsigned> BBVRegPair;
typedef DenseMap<BBVRegPair, unsigned> VRegPHIUse;
VRegPHIUse VRegPHIUseCount;
// Defs of PHI sources which are implicit_def.
SmallPtrSet<MachineInstr*, 4> ImpDefs;
// Map reusable lowered PHI node -> incoming join register.
typedef DenseMap<MachineInstr*, unsigned,
MachineInstrExpressionTrait> LoweredPHIMap;
LoweredPHIMap LoweredPHIs;
};
}
STATISTIC(NumLowered, "Number of phis lowered");
STATISTIC(NumCriticalEdgesSplit, "Number of critical edges split");
STATISTIC(NumReused, "Number of reused lowered phis");
char PHIElimination::ID = 0;
char& llvm::PHIEliminationID = PHIElimination::ID;
INITIALIZE_PASS_BEGIN(PHIElimination, "phi-node-elimination",
"Eliminate PHI nodes for register allocation",
false, false)
INITIALIZE_PASS_DEPENDENCY(LiveVariables)
INITIALIZE_PASS_END(PHIElimination, "phi-node-elimination",
"Eliminate PHI nodes for register allocation", false, false)
void PHIElimination::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addPreserved<LiveVariables>();
AU.addPreserved<LiveIntervals>();
AU.addPreserved<MachineDominatorTree>();
AU.addPreserved<MachineLoopInfo>();
MachineFunctionPass::getAnalysisUsage(AU);
}
bool PHIElimination::runOnMachineFunction(MachineFunction &MF) {
MRI = &MF.getRegInfo();
LV = getAnalysisIfAvailable<LiveVariables>();
LIS = getAnalysisIfAvailable<LiveIntervals>();
bool Changed = false;
// This pass takes the function out of SSA form.
MRI->leaveSSA();
// Split critical edges to help the coalescer. This does not yet support
// updating LiveIntervals, so we disable it.
if (!DisableEdgeSplitting && (LV || LIS)) {
MachineLoopInfo *MLI = getAnalysisIfAvailable<MachineLoopInfo>();
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
Changed |= SplitPHIEdges(MF, *I, MLI);
}
// Populate VRegPHIUseCount
analyzePHINodes(MF);
// Eliminate PHI instructions by inserting copies into predecessor blocks.
for (MachineFunction::iterator I = MF.begin(), E = MF.end(); I != E; ++I)
Changed |= EliminatePHINodes(MF, *I);
// Remove dead IMPLICIT_DEF instructions.
for (SmallPtrSet<MachineInstr*, 4>::iterator I = ImpDefs.begin(),
E = ImpDefs.end(); I != E; ++I) {
MachineInstr *DefMI = *I;
unsigned DefReg = DefMI->getOperand(0).getReg();
if (MRI->use_nodbg_empty(DefReg)) {
if (LIS)
LIS->RemoveMachineInstrFromMaps(DefMI);
DefMI->eraseFromParent();
}
}
// Clean up the lowered PHI instructions.
for (LoweredPHIMap::iterator I = LoweredPHIs.begin(), E = LoweredPHIs.end();
I != E; ++I) {
if (LIS)
LIS->RemoveMachineInstrFromMaps(I->first);
MF.DeleteMachineInstr(I->first);
}
LoweredPHIs.clear();
ImpDefs.clear();
VRegPHIUseCount.clear();
if (LIS)
MF.verify(this, "After PHI elimination");
return Changed;
}
/// EliminatePHINodes - Eliminate phi nodes by inserting copy instructions in
/// predecessor basic blocks.
///
bool PHIElimination::EliminatePHINodes(MachineFunction &MF,
MachineBasicBlock &MBB) {
if (MBB.empty() || !MBB.front().isPHI())
return false; // Quick exit for basic blocks without PHIs.
// Get an iterator to the first instruction after the last PHI node (this may
// also be the end of the basic block).
MachineBasicBlock::iterator AfterPHIsIt = MBB.SkipPHIsAndLabels(MBB.begin());
while (MBB.front().isPHI())
LowerPHINode(MBB, AfterPHIsIt);
return true;
}
/// isImplicitlyDefined - Return true if all defs of VirtReg are implicit-defs.
/// This includes registers with no defs.
static bool isImplicitlyDefined(unsigned VirtReg,
const MachineRegisterInfo *MRI) {
for (MachineRegisterInfo::def_iterator DI = MRI->def_begin(VirtReg),
DE = MRI->def_end(); DI != DE; ++DI)
if (!DI->isImplicitDef())
return false;
return true;
}
/// isSourceDefinedByImplicitDef - Return true if all sources of the phi node
/// are implicit_def's.
static bool isSourceDefinedByImplicitDef(const MachineInstr *MPhi,
const MachineRegisterInfo *MRI) {
for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
if (!isImplicitlyDefined(MPhi->getOperand(i).getReg(), MRI))
return false;
return true;
}
/// LowerPHINode - Lower the PHI node at the top of the specified block,
///
void PHIElimination::LowerPHINode(MachineBasicBlock &MBB,
MachineBasicBlock::iterator AfterPHIsIt) {
++NumLowered;
// Unlink the PHI node from the basic block, but don't delete the PHI yet.
MachineInstr *MPhi = MBB.remove(MBB.begin());
unsigned NumSrcs = (MPhi->getNumOperands() - 1) / 2;
unsigned DestReg = MPhi->getOperand(0).getReg();
assert(MPhi->getOperand(0).getSubReg() == 0 && "Can't handle sub-reg PHIs");
bool isDead = MPhi->getOperand(0).isDead();
// Create a new register for the incoming PHI arguments.
MachineFunction &MF = *MBB.getParent();
unsigned IncomingReg = 0;
bool reusedIncoming = false; // Is IncomingReg reused from an earlier PHI?
// Insert a register to register copy at the top of the current block (but
// after any remaining phi nodes) which copies the new incoming register
// into the phi node destination.
const TargetInstrInfo *TII = MF.getTarget().getInstrInfo();
if (isSourceDefinedByImplicitDef(MPhi, MRI))
// If all sources of a PHI node are implicit_def, just emit an
// implicit_def instead of a copy.
BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
TII->get(TargetOpcode::IMPLICIT_DEF), DestReg);
else {
// Can we reuse an earlier PHI node? This only happens for critical edges,
// typically those created by tail duplication.
unsigned &entry = LoweredPHIs[MPhi];
if (entry) {
// An identical PHI node was already lowered. Reuse the incoming register.
IncomingReg = entry;
reusedIncoming = true;
++NumReused;
DEBUG(dbgs() << "Reusing " << PrintReg(IncomingReg) << " for " << *MPhi);
} else {
const TargetRegisterClass *RC = MF.getRegInfo().getRegClass(DestReg);
entry = IncomingReg = MF.getRegInfo().createVirtualRegister(RC);
}
BuildMI(MBB, AfterPHIsIt, MPhi->getDebugLoc(),
TII->get(TargetOpcode::COPY), DestReg)
.addReg(IncomingReg);
}
// Update live variable information if there is any.
if (LV) {
MachineInstr *PHICopy = prior(AfterPHIsIt);
if (IncomingReg) {
LiveVariables::VarInfo &VI = LV->getVarInfo(IncomingReg);
// Increment use count of the newly created virtual register.
LV->setPHIJoin(IncomingReg);
// When we are reusing the incoming register, it may already have been
// killed in this block. The old kill will also have been inserted at
// AfterPHIsIt, so it appears before the current PHICopy.
if (reusedIncoming)
if (MachineInstr *OldKill = VI.findKill(&MBB)) {
DEBUG(dbgs() << "Remove old kill from " << *OldKill);
LV->removeVirtualRegisterKilled(IncomingReg, OldKill);
DEBUG(MBB.dump());
}
// Add information to LiveVariables to know that the incoming value is
// killed. Note that because the value is defined in several places (once
// each for each incoming block), the "def" block and instruction fields
// for the VarInfo is not filled in.
LV->addVirtualRegisterKilled(IncomingReg, PHICopy);
}
// Since we are going to be deleting the PHI node, if it is the last use of
// any registers, or if the value itself is dead, we need to move this
// information over to the new copy we just inserted.
LV->removeVirtualRegistersKilled(MPhi);
// If the result is dead, update LV.
if (isDead) {
LV->addVirtualRegisterDead(DestReg, PHICopy);
LV->removeVirtualRegisterDead(DestReg, MPhi);
}
}
// Update LiveIntervals for the new copy or implicit def.
if (LIS) {
MachineInstr *NewInstr = prior(AfterPHIsIt);
LIS->InsertMachineInstrInMaps(NewInstr);
SlotIndex MBBStartIndex = LIS->getMBBStartIdx(&MBB);
SlotIndex DestCopyIndex = LIS->getInstructionIndex(NewInstr);
if (IncomingReg) {
// Add the region from the beginning of MBB to the copy instruction to
// IncomingReg's live interval.
LiveInterval &IncomingLI = LIS->getOrCreateInterval(IncomingReg);
VNInfo *IncomingVNI = IncomingLI.getVNInfoAt(MBBStartIndex);
if (!IncomingVNI)
IncomingVNI = IncomingLI.getNextValue(MBBStartIndex,
LIS->getVNInfoAllocator());
IncomingLI.addRange(LiveRange(MBBStartIndex,
DestCopyIndex.getRegSlot(),
IncomingVNI));
}
LiveInterval &DestLI = LIS->getOrCreateInterval(DestReg);
if (NewInstr->getOperand(0).isDead()) {
// A dead PHI's live range begins and ends at the start of the MBB, but
// the lowered copy, which will still be dead, needs to begin and end at
// the copy instruction.
VNInfo *OrigDestVNI = DestLI.getVNInfoAt(MBBStartIndex);
assert(OrigDestVNI && "PHI destination should be live at block entry.");
DestLI.removeRange(MBBStartIndex, MBBStartIndex.getDeadSlot());
DestLI.createDeadDef(DestCopyIndex.getRegSlot(),
LIS->getVNInfoAllocator());
DestLI.removeValNo(OrigDestVNI);
} else {
// Otherwise, remove the region from the beginning of MBB to the copy
// instruction from DestReg's live interval.
DestLI.removeRange(MBBStartIndex, DestCopyIndex.getRegSlot());
VNInfo *DestVNI = DestLI.getVNInfoAt(DestCopyIndex.getRegSlot());
assert(DestVNI && "PHI destination should be live at its definition.");
DestVNI->def = DestCopyIndex.getRegSlot();
}
}
// Adjust the VRegPHIUseCount map to account for the removal of this PHI node.
for (unsigned i = 1; i != MPhi->getNumOperands(); i += 2)
--VRegPHIUseCount[BBVRegPair(MPhi->getOperand(i+1).getMBB()->getNumber(),
MPhi->getOperand(i).getReg())];
// Now loop over all of the incoming arguments, changing them to copy into the
// IncomingReg register in the corresponding predecessor basic block.
SmallPtrSet<MachineBasicBlock*, 8> MBBsInsertedInto;
for (int i = NumSrcs - 1; i >= 0; --i) {
unsigned SrcReg = MPhi->getOperand(i*2+1).getReg();
unsigned SrcSubReg = MPhi->getOperand(i*2+1).getSubReg();
bool SrcUndef = MPhi->getOperand(i*2+1).isUndef() ||
isImplicitlyDefined(SrcReg, MRI);
assert(TargetRegisterInfo::isVirtualRegister(SrcReg) &&
"Machine PHI Operands must all be virtual registers!");
// Get the MachineBasicBlock equivalent of the BasicBlock that is the source
// path the PHI.
MachineBasicBlock &opBlock = *MPhi->getOperand(i*2+2).getMBB();
// Check to make sure we haven't already emitted the copy for this block.
// This can happen because PHI nodes may have multiple entries for the same
// basic block.
if (!MBBsInsertedInto.insert(&opBlock))
continue; // If the copy has already been emitted, we're done.
// Find a safe location to insert the copy, this may be the first terminator
// in the block (or end()).
MachineBasicBlock::iterator InsertPos =
findPHICopyInsertPoint(&opBlock, &MBB, SrcReg);
// Insert the copy.
MachineInstr *NewSrcInstr = 0;
if (!reusedIncoming && IncomingReg) {
if (SrcUndef) {
// The source register is undefined, so there is no need for a real
// COPY, but we still need to ensure joint dominance by defs.
// Insert an IMPLICIT_DEF instruction.
NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
TII->get(TargetOpcode::IMPLICIT_DEF),
IncomingReg);
// Clean up the old implicit-def, if there even was one.
if (MachineInstr *DefMI = MRI->getVRegDef(SrcReg))
if (DefMI->isImplicitDef())
ImpDefs.insert(DefMI);
} else {
NewSrcInstr = BuildMI(opBlock, InsertPos, MPhi->getDebugLoc(),
TII->get(TargetOpcode::COPY), IncomingReg)
.addReg(SrcReg, 0, SrcSubReg);
}
}
// We only need to update the LiveVariables kill of SrcReg if this was the
// last PHI use of SrcReg to be lowered on this CFG edge and it is not live
// out of the predecessor. We can also ignore undef sources.
if (LV && !SrcUndef &&
!VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)] &&
!LV->isLiveOut(SrcReg, opBlock)) {
// We want to be able to insert a kill of the register if this PHI (aka,
// the copy we just inserted) is the last use of the source value. Live
// variable analysis conservatively handles this by saying that the value
// is live until the end of the block the PHI entry lives in. If the value
// really is dead at the PHI copy, there will be no successor blocks which
// have the value live-in.
// Okay, if we now know that the value is not live out of the block, we
// can add a kill marker in this block saying that it kills the incoming
// value!
// In our final twist, we have to decide which instruction kills the
// register. In most cases this is the copy, however, terminator
// instructions at the end of the block may also use the value. In this
// case, we should mark the last such terminator as being the killing
// block, not the copy.
MachineBasicBlock::iterator KillInst = opBlock.end();
MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
for (MachineBasicBlock::iterator Term = FirstTerm;
Term != opBlock.end(); ++Term) {
if (Term->readsRegister(SrcReg))
KillInst = Term;
}
if (KillInst == opBlock.end()) {
// No terminator uses the register.
if (reusedIncoming || !IncomingReg) {
// We may have to rewind a bit if we didn't insert a copy this time.
KillInst = FirstTerm;
while (KillInst != opBlock.begin()) {
--KillInst;
if (KillInst->isDebugValue())
continue;
if (KillInst->readsRegister(SrcReg))
break;
}
} else {
// We just inserted this copy.
KillInst = prior(InsertPos);
}
}
assert(KillInst->readsRegister(SrcReg) && "Cannot find kill instruction");
// Finally, mark it killed.
LV->addVirtualRegisterKilled(SrcReg, KillInst);
// This vreg no longer lives all of the way through opBlock.
unsigned opBlockNum = opBlock.getNumber();
LV->getVarInfo(SrcReg).AliveBlocks.reset(opBlockNum);
}
if (LIS) {
if (NewSrcInstr) {
LIS->InsertMachineInstrInMaps(NewSrcInstr);
LIS->addLiveRangeToEndOfBlock(IncomingReg, NewSrcInstr);
}
if (!SrcUndef &&
!VRegPHIUseCount[BBVRegPair(opBlock.getNumber(), SrcReg)]) {
LiveInterval &SrcLI = LIS->getInterval(SrcReg);
bool isLiveOut = false;
for (MachineBasicBlock::succ_iterator SI = opBlock.succ_begin(),
SE = opBlock.succ_end(); SI != SE; ++SI) {
SlotIndex startIdx = LIS->getMBBStartIdx(*SI);
VNInfo *VNI = SrcLI.getVNInfoAt(startIdx);
// Definitions by other PHIs are not truly live-in for our purposes.
if (VNI && VNI->def != startIdx) {
isLiveOut = true;
break;
}
}
if (!isLiveOut) {
MachineBasicBlock::iterator KillInst = opBlock.end();
MachineBasicBlock::iterator FirstTerm = opBlock.getFirstTerminator();
for (MachineBasicBlock::iterator Term = FirstTerm;
Term != opBlock.end(); ++Term) {
if (Term->readsRegister(SrcReg))
KillInst = Term;
}
if (KillInst == opBlock.end()) {
// No terminator uses the register.
if (reusedIncoming || !IncomingReg) {
// We may have to rewind a bit if we didn't just insert a copy.
KillInst = FirstTerm;
while (KillInst != opBlock.begin()) {
--KillInst;
if (KillInst->isDebugValue())
continue;
if (KillInst->readsRegister(SrcReg))
break;
}
} else {
// We just inserted this copy.
KillInst = prior(InsertPos);
}
}
assert(KillInst->readsRegister(SrcReg) &&
"Cannot find kill instruction");
SlotIndex LastUseIndex = LIS->getInstructionIndex(KillInst);
SrcLI.removeRange(LastUseIndex.getRegSlot(),
LIS->getMBBEndIdx(&opBlock));
}
}
}
}
// Really delete the PHI instruction now, if it is not in the LoweredPHIs map.
if (reusedIncoming || !IncomingReg) {
if (LIS)
LIS->RemoveMachineInstrFromMaps(MPhi);
MF.DeleteMachineInstr(MPhi);
}
}
/// analyzePHINodes - Gather information about the PHI nodes in here. In
/// particular, we want to map the number of uses of a virtual register which is
/// used in a PHI node. We map that to the BB the vreg is coming from. This is
/// used later to determine when the vreg is killed in the BB.
///
void PHIElimination::analyzePHINodes(const MachineFunction& MF) {
for (MachineFunction::const_iterator I = MF.begin(), E = MF.end();
I != E; ++I)
for (MachineBasicBlock::const_iterator BBI = I->begin(), BBE = I->end();
BBI != BBE && BBI->isPHI(); ++BBI)
for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2)
++VRegPHIUseCount[BBVRegPair(BBI->getOperand(i+1).getMBB()->getNumber(),
BBI->getOperand(i).getReg())];
}
bool PHIElimination::SplitPHIEdges(MachineFunction &MF,
MachineBasicBlock &MBB,
MachineLoopInfo *MLI) {
if (MBB.empty() || !MBB.front().isPHI() || MBB.isLandingPad())
return false; // Quick exit for basic blocks without PHIs.
const MachineLoop *CurLoop = MLI ? MLI->getLoopFor(&MBB) : 0;
bool IsLoopHeader = CurLoop && &MBB == CurLoop->getHeader();
bool Changed = false;
for (MachineBasicBlock::iterator BBI = MBB.begin(), BBE = MBB.end();
BBI != BBE && BBI->isPHI(); ++BBI) {
for (unsigned i = 1, e = BBI->getNumOperands(); i != e; i += 2) {
unsigned Reg = BBI->getOperand(i).getReg();
MachineBasicBlock *PreMBB = BBI->getOperand(i+1).getMBB();
// Is there a critical edge from PreMBB to MBB?
if (PreMBB->succ_size() == 1)
continue;
// Avoid splitting backedges of loops. It would introduce small
// out-of-line blocks into the loop which is very bad for code placement.
if (PreMBB == &MBB && !SplitAllCriticalEdges)
continue;
const MachineLoop *PreLoop = MLI ? MLI->getLoopFor(PreMBB) : 0;
if (IsLoopHeader && PreLoop == CurLoop && !SplitAllCriticalEdges)
continue;
// LV doesn't consider a phi use live-out, so isLiveOut only returns true
// when the source register is live-out for some other reason than a phi
// use. That means the copy we will insert in PreMBB won't be a kill, and
// there is a risk it may not be coalesced away.
//
// If the copy would be a kill, there is no need to split the edge.
if (!isLiveOutPastPHIs(Reg, PreMBB) && !SplitAllCriticalEdges)
continue;
DEBUG(dbgs() << PrintReg(Reg) << " live-out before critical edge BB#"
<< PreMBB->getNumber() << " -> BB#" << MBB.getNumber()
<< ": " << *BBI);
// If Reg is not live-in to MBB, it means it must be live-in to some
// other PreMBB successor, and we can avoid the interference by splitting
// the edge.
//
// If Reg *is* live-in to MBB, the interference is inevitable and a copy
// is likely to be left after coalescing. If we are looking at a loop
// exiting edge, split it so we won't insert code in the loop, otherwise
// don't bother.
bool ShouldSplit = !isLiveIn(Reg, &MBB) || SplitAllCriticalEdges;
// Check for a loop exiting edge.
if (!ShouldSplit && CurLoop != PreLoop) {
DEBUG({
dbgs() << "Split wouldn't help, maybe avoid loop copies?\n";
if (PreLoop) dbgs() << "PreLoop: " << *PreLoop;
if (CurLoop) dbgs() << "CurLoop: " << *CurLoop;
});
// This edge could be entering a loop, exiting a loop, or it could be
// both: Jumping directly form one loop to the header of a sibling
// loop.
// Split unless this edge is entering CurLoop from an outer loop.
ShouldSplit = PreLoop && !PreLoop->contains(CurLoop);
}
if (!ShouldSplit)
continue;
if (!PreMBB->SplitCriticalEdge(&MBB, this)) {
DEBUG(dbgs() << "Failed to split ciritcal edge.\n");
continue;
}
Changed = true;
++NumCriticalEdgesSplit;
}
}
return Changed;
}
bool PHIElimination::isLiveIn(unsigned Reg, MachineBasicBlock *MBB) {
assert((LV || LIS) &&
"isLiveIn() requires either LiveVariables or LiveIntervals");
if (LIS)
return LIS->isLiveInToMBB(LIS->getInterval(Reg), MBB);
else
return LV->isLiveIn(Reg, *MBB);
}
bool PHIElimination::isLiveOutPastPHIs(unsigned Reg, MachineBasicBlock *MBB) {
assert((LV || LIS) &&
"isLiveOutPastPHIs() requires either LiveVariables or LiveIntervals");
// LiveVariables considers uses in PHIs to be in the predecessor basic block,
// so that a register used only in a PHI is not live out of the block. In
// contrast, LiveIntervals considers uses in PHIs to be on the edge rather than
// in the predecessor basic block, so that a register used only in a PHI is live
// out of the block.
if (LIS) {
const LiveInterval &LI = LIS->getInterval(Reg);
for (MachineBasicBlock::succ_iterator SI = MBB->succ_begin(),
SE = MBB->succ_end(); SI != SE; ++SI) {
if (LI.liveAt(LIS->getMBBStartIdx(*SI)))
return true;
}
return false;
} else {
return LV->isLiveOut(Reg, *MBB);
}
}