llvm-6502/lib/CodeGen/MachineLICM.cpp
David Greene 65a41eb59e Change errs() to dbgs().
git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@92547 91177308-0d34-0410-b5e6-96231b3b80d8
2010-01-05 00:03:48 +00:00

544 lines
20 KiB
C++

//===-- MachineLICM.cpp - Machine Loop Invariant Code Motion Pass ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This pass performs loop invariant code motion on machine instructions. We
// attempt to remove as much code from the body of a loop as possible.
//
// This pass does not attempt to throttle itself to limit register pressure.
// The register allocation phases are expected to perform rematerialization
// to recover when register pressure is high.
//
// This pass is not intended to be a replacement or a complete alternative
// for the LLVM-IR-level LICM pass. It is only designed to hoist simple
// constructs that are not exposed before lowering and instruction selection.
//
//===----------------------------------------------------------------------===//
#define DEBUG_TYPE "machine-licm"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineDominators.h"
#include "llvm/CodeGen/MachineLoopInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/Target/TargetRegisterInfo.h"
#include "llvm/Target/TargetInstrInfo.h"
#include "llvm/Target/TargetMachine.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
using namespace llvm;
STATISTIC(NumHoisted, "Number of machine instructions hoisted out of loops");
STATISTIC(NumCSEed, "Number of hoisted machine instructions CSEed");
namespace {
class MachineLICM : public MachineFunctionPass {
MachineConstantPool *MCP;
const TargetMachine *TM;
const TargetInstrInfo *TII;
const TargetRegisterInfo *TRI;
BitVector AllocatableSet;
// Various analyses that we use...
AliasAnalysis *AA; // Alias analysis info.
MachineLoopInfo *LI; // Current MachineLoopInfo
MachineDominatorTree *DT; // Machine dominator tree for the cur loop
MachineRegisterInfo *RegInfo; // Machine register information
// State that is updated as we process loops
bool Changed; // True if a loop is changed.
bool FirstInLoop; // True if it's the first LICM in the loop.
MachineLoop *CurLoop; // The current loop we are working on.
MachineBasicBlock *CurPreheader; // The preheader for CurLoop.
// For each opcode, keep a list of potentail CSE instructions.
DenseMap<unsigned, std::vector<const MachineInstr*> > CSEMap;
public:
static char ID; // Pass identification, replacement for typeid
MachineLICM() : MachineFunctionPass(&ID) {}
virtual bool runOnMachineFunction(MachineFunction &MF);
const char *getPassName() const { return "Machine Instruction LICM"; }
// FIXME: Loop preheaders?
virtual void getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesCFG();
AU.addRequired<MachineLoopInfo>();
AU.addRequired<MachineDominatorTree>();
AU.addRequired<AliasAnalysis>();
AU.addPreserved<MachineLoopInfo>();
AU.addPreserved<MachineDominatorTree>();
MachineFunctionPass::getAnalysisUsage(AU);
}
virtual void releaseMemory() {
CSEMap.clear();
}
private:
/// IsLoopInvariantInst - Returns true if the instruction is loop
/// invariant. I.e., all virtual register operands are defined outside of
/// the loop, physical registers aren't accessed (explicitly or implicitly),
/// and the instruction is hoistable.
///
bool IsLoopInvariantInst(MachineInstr &I);
/// IsProfitableToHoist - Return true if it is potentially profitable to
/// hoist the given loop invariant.
bool IsProfitableToHoist(MachineInstr &MI);
/// HoistRegion - Walk the specified region of the CFG (defined by all
/// blocks dominated by the specified block, and that are in the current
/// loop) in depth first order w.r.t the DominatorTree. This allows us to
/// visit definitions before uses, allowing us to hoist a loop body in one
/// pass without iteration.
///
void HoistRegion(MachineDomTreeNode *N);
/// isLoadFromConstantMemory - Return true if the given instruction is a
/// load from constant memory.
bool isLoadFromConstantMemory(MachineInstr *MI);
/// ExtractHoistableLoad - Unfold a load from the given machineinstr if
/// the load itself could be hoisted. Return the unfolded and hoistable
/// load, or null if the load couldn't be unfolded or if it wouldn't
/// be hoistable.
MachineInstr *ExtractHoistableLoad(MachineInstr *MI);
/// LookForDuplicate - Find an instruction amount PrevMIs that is a
/// duplicate of MI. Return this instruction if it's found.
const MachineInstr *LookForDuplicate(const MachineInstr *MI,
std::vector<const MachineInstr*> &PrevMIs);
/// EliminateCSE - Given a LICM'ed instruction, look for an instruction on
/// the preheader that compute the same value. If it's found, do a RAU on
/// with the definition of the existing instruction rather than hoisting
/// the instruction to the preheader.
bool EliminateCSE(MachineInstr *MI,
DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI);
/// Hoist - When an instruction is found to only use loop invariant operands
/// that is safe to hoist, this instruction is called to do the dirty work.
///
void Hoist(MachineInstr *MI);
/// InitCSEMap - Initialize the CSE map with instructions that are in the
/// current loop preheader that may become duplicates of instructions that
/// are hoisted out of the loop.
void InitCSEMap(MachineBasicBlock *BB);
};
} // end anonymous namespace
char MachineLICM::ID = 0;
static RegisterPass<MachineLICM>
X("machinelicm", "Machine Loop Invariant Code Motion");
FunctionPass *llvm::createMachineLICMPass() { return new MachineLICM(); }
/// LoopIsOuterMostWithPreheader - Test if the given loop is the outer-most
/// loop that has a preheader.
static bool LoopIsOuterMostWithPreheader(MachineLoop *CurLoop) {
for (MachineLoop *L = CurLoop->getParentLoop(); L; L = L->getParentLoop())
if (L->getLoopPreheader())
return false;
return true;
}
/// Hoist expressions out of the specified loop. Note, alias info for inner loop
/// is not preserved so it is not a good idea to run LICM multiple times on one
/// loop.
///
bool MachineLICM::runOnMachineFunction(MachineFunction &MF) {
DEBUG(dbgs() << "******** Machine LICM ********\n");
Changed = FirstInLoop = false;
MCP = MF.getConstantPool();
TM = &MF.getTarget();
TII = TM->getInstrInfo();
TRI = TM->getRegisterInfo();
RegInfo = &MF.getRegInfo();
AllocatableSet = TRI->getAllocatableSet(MF);
// Get our Loop information...
LI = &getAnalysis<MachineLoopInfo>();
DT = &getAnalysis<MachineDominatorTree>();
AA = &getAnalysis<AliasAnalysis>();
for (MachineLoopInfo::iterator I = LI->begin(), E = LI->end(); I != E; ++I) {
CurLoop = *I;
// Only visit outer-most preheader-sporting loops.
if (!LoopIsOuterMostWithPreheader(CurLoop))
continue;
// Determine the block to which to hoist instructions. If we can't find a
// suitable loop preheader, we can't do any hoisting.
//
// FIXME: We are only hoisting if the basic block coming into this loop
// has only one successor. This isn't the case in general because we haven't
// broken critical edges or added preheaders.
CurPreheader = CurLoop->getLoopPreheader();
if (!CurPreheader)
continue;
// CSEMap is initialized for loop header when the first instruction is
// being hoisted.
FirstInLoop = true;
HoistRegion(DT->getNode(CurLoop->getHeader()));
CSEMap.clear();
}
return Changed;
}
/// HoistRegion - Walk the specified region of the CFG (defined by all blocks
/// dominated by the specified block, and that are in the current loop) in depth
/// first order w.r.t the DominatorTree. This allows us to visit definitions
/// before uses, allowing us to hoist a loop body in one pass without iteration.
///
void MachineLICM::HoistRegion(MachineDomTreeNode *N) {
assert(N != 0 && "Null dominator tree node?");
MachineBasicBlock *BB = N->getBlock();
// If this subregion is not in the top level loop at all, exit.
if (!CurLoop->contains(BB)) return;
for (MachineBasicBlock::iterator
MII = BB->begin(), E = BB->end(); MII != E; ) {
MachineBasicBlock::iterator NextMII = MII; ++NextMII;
Hoist(&*MII);
MII = NextMII;
}
const std::vector<MachineDomTreeNode*> &Children = N->getChildren();
for (unsigned I = 0, E = Children.size(); I != E; ++I)
HoistRegion(Children[I]);
}
/// IsLoopInvariantInst - Returns true if the instruction is loop
/// invariant. I.e., all virtual register operands are defined outside of the
/// loop, physical registers aren't accessed explicitly, and there are no side
/// effects that aren't captured by the operands or other flags.
///
bool MachineLICM::IsLoopInvariantInst(MachineInstr &I) {
const TargetInstrDesc &TID = I.getDesc();
// Ignore stuff that we obviously can't hoist.
if (TID.mayStore() || TID.isCall() || TID.isTerminator() ||
TID.hasUnmodeledSideEffects())
return false;
if (TID.mayLoad()) {
// Okay, this instruction does a load. As a refinement, we allow the target
// to decide whether the loaded value is actually a constant. If so, we can
// actually use it as a load.
if (!I.isInvariantLoad(AA))
// FIXME: we should be able to hoist loads with no other side effects if
// there are no other instructions which can change memory in this loop.
// This is a trivial form of alias analysis.
return false;
}
DEBUG({
dbgs() << "--- Checking if we can hoist " << I;
if (I.getDesc().getImplicitUses()) {
dbgs() << " * Instruction has implicit uses:\n";
const TargetRegisterInfo *TRI = TM->getRegisterInfo();
for (const unsigned *ImpUses = I.getDesc().getImplicitUses();
*ImpUses; ++ImpUses)
dbgs() << " -> " << TRI->getName(*ImpUses) << "\n";
}
if (I.getDesc().getImplicitDefs()) {
dbgs() << " * Instruction has implicit defines:\n";
const TargetRegisterInfo *TRI = TM->getRegisterInfo();
for (const unsigned *ImpDefs = I.getDesc().getImplicitDefs();
*ImpDefs; ++ImpDefs)
dbgs() << " -> " << TRI->getName(*ImpDefs) << "\n";
}
});
if (I.getDesc().getImplicitDefs() || I.getDesc().getImplicitUses()) {
DEBUG(dbgs() << "Cannot hoist with implicit defines or uses\n");
return false;
}
// The instruction is loop invariant if all of its operands are.
for (unsigned i = 0, e = I.getNumOperands(); i != e; ++i) {
const MachineOperand &MO = I.getOperand(i);
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
if (Reg == 0) continue;
// Don't hoist an instruction that uses or defines a physical register.
if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
if (MO.isUse()) {
// If the physreg has no defs anywhere, it's just an ambient register
// and we can freely move its uses. Alternatively, if it's allocatable,
// it could get allocated to something with a def during allocation.
if (!RegInfo->def_empty(Reg))
return false;
if (AllocatableSet.test(Reg))
return false;
// Check for a def among the register's aliases too.
for (const unsigned *Alias = TRI->getAliasSet(Reg); *Alias; ++Alias) {
unsigned AliasReg = *Alias;
if (!RegInfo->def_empty(AliasReg))
return false;
if (AllocatableSet.test(AliasReg))
return false;
}
// Otherwise it's safe to move.
continue;
} else if (!MO.isDead()) {
// A def that isn't dead. We can't move it.
return false;
}
}
if (!MO.isUse())
continue;
assert(RegInfo->getVRegDef(Reg) &&
"Machine instr not mapped for this vreg?!");
// If the loop contains the definition of an operand, then the instruction
// isn't loop invariant.
if (CurLoop->contains(RegInfo->getVRegDef(Reg)))
return false;
}
// If we got this far, the instruction is loop invariant!
return true;
}
/// HasPHIUses - Return true if the specified register has any PHI use.
static bool HasPHIUses(unsigned Reg, MachineRegisterInfo *RegInfo) {
for (MachineRegisterInfo::use_iterator UI = RegInfo->use_begin(Reg),
UE = RegInfo->use_end(); UI != UE; ++UI) {
MachineInstr *UseMI = &*UI;
if (UseMI->getOpcode() == TargetInstrInfo::PHI)
return true;
}
return false;
}
/// isLoadFromConstantMemory - Return true if the given instruction is a
/// load from constant memory. Machine LICM will hoist these even if they are
/// not re-materializable.
bool MachineLICM::isLoadFromConstantMemory(MachineInstr *MI) {
if (!MI->getDesc().mayLoad()) return false;
if (!MI->hasOneMemOperand()) return false;
MachineMemOperand *MMO = *MI->memoperands_begin();
if (MMO->isVolatile()) return false;
if (!MMO->getValue()) return false;
const PseudoSourceValue *PSV = dyn_cast<PseudoSourceValue>(MMO->getValue());
if (PSV) {
MachineFunction &MF = *MI->getParent()->getParent();
return PSV->isConstant(MF.getFrameInfo());
} else {
return AA->pointsToConstantMemory(MMO->getValue());
}
}
/// IsProfitableToHoist - Return true if it is potentially profitable to hoist
/// the given loop invariant.
bool MachineLICM::IsProfitableToHoist(MachineInstr &MI) {
if (MI.getOpcode() == TargetInstrInfo::IMPLICIT_DEF)
return false;
// FIXME: For now, only hoist re-materilizable instructions. LICM will
// increase register pressure. We want to make sure it doesn't increase
// spilling.
// Also hoist loads from constant memory, e.g. load from stubs, GOT. Hoisting
// these tend to help performance in low register pressure situation. The
// trade off is it may cause spill in high pressure situation. It will end up
// adding a store in the loop preheader. But the reload is no more expensive.
// The side benefit is these loads are frequently CSE'ed.
if (!TII->isTriviallyReMaterializable(&MI, AA)) {
if (!isLoadFromConstantMemory(&MI))
return false;
}
// If result(s) of this instruction is used by PHIs, then don't hoist it.
// The presence of joins makes it difficult for current register allocator
// implementation to perform remat.
for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI.getOperand(i);
if (!MO.isReg() || !MO.isDef())
continue;
if (HasPHIUses(MO.getReg(), RegInfo))
return false;
}
return true;
}
MachineInstr *MachineLICM::ExtractHoistableLoad(MachineInstr *MI) {
// If not, we may be able to unfold a load and hoist that.
// First test whether the instruction is loading from an amenable
// memory location.
if (!isLoadFromConstantMemory(MI))
return 0;
// Next determine the register class for a temporary register.
unsigned LoadRegIndex;
unsigned NewOpc =
TII->getOpcodeAfterMemoryUnfold(MI->getOpcode(),
/*UnfoldLoad=*/true,
/*UnfoldStore=*/false,
&LoadRegIndex);
if (NewOpc == 0) return 0;
const TargetInstrDesc &TID = TII->get(NewOpc);
if (TID.getNumDefs() != 1) return 0;
const TargetRegisterClass *RC = TID.OpInfo[LoadRegIndex].getRegClass(TRI);
// Ok, we're unfolding. Create a temporary register and do the unfold.
unsigned Reg = RegInfo->createVirtualRegister(RC);
MachineFunction &MF = *MI->getParent()->getParent();
SmallVector<MachineInstr *, 2> NewMIs;
bool Success =
TII->unfoldMemoryOperand(MF, MI, Reg,
/*UnfoldLoad=*/true, /*UnfoldStore=*/false,
NewMIs);
(void)Success;
assert(Success &&
"unfoldMemoryOperand failed when getOpcodeAfterMemoryUnfold "
"succeeded!");
assert(NewMIs.size() == 2 &&
"Unfolded a load into multiple instructions!");
MachineBasicBlock *MBB = MI->getParent();
MBB->insert(MI, NewMIs[0]);
MBB->insert(MI, NewMIs[1]);
// If unfolding produced a load that wasn't loop-invariant or profitable to
// hoist, discard the new instructions and bail.
if (!IsLoopInvariantInst(*NewMIs[0]) || !IsProfitableToHoist(*NewMIs[0])) {
NewMIs[0]->eraseFromParent();
NewMIs[1]->eraseFromParent();
return 0;
}
// Otherwise we successfully unfolded a load that we can hoist.
MI->eraseFromParent();
return NewMIs[0];
}
void MachineLICM::InitCSEMap(MachineBasicBlock *BB) {
for (MachineBasicBlock::iterator I = BB->begin(),E = BB->end(); I != E; ++I) {
const MachineInstr *MI = &*I;
// FIXME: For now, only hoist re-materilizable instructions. LICM will
// increase register pressure. We want to make sure it doesn't increase
// spilling.
if (TII->isTriviallyReMaterializable(MI, AA)) {
unsigned Opcode = MI->getOpcode();
DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
CI = CSEMap.find(Opcode);
if (CI != CSEMap.end())
CI->second.push_back(MI);
else {
std::vector<const MachineInstr*> CSEMIs;
CSEMIs.push_back(MI);
CSEMap.insert(std::make_pair(Opcode, CSEMIs));
}
}
}
}
const MachineInstr*
MachineLICM::LookForDuplicate(const MachineInstr *MI,
std::vector<const MachineInstr*> &PrevMIs) {
for (unsigned i = 0, e = PrevMIs.size(); i != e; ++i) {
const MachineInstr *PrevMI = PrevMIs[i];
if (TII->isIdentical(MI, PrevMI, RegInfo))
return PrevMI;
}
return 0;
}
bool MachineLICM::EliminateCSE(MachineInstr *MI,
DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator &CI) {
if (CI == CSEMap.end())
return false;
if (const MachineInstr *Dup = LookForDuplicate(MI, CI->second)) {
DEBUG(dbgs() << "CSEing " << *MI << " with " << *Dup);
for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
const MachineOperand &MO = MI->getOperand(i);
if (MO.isReg() && MO.isDef())
RegInfo->replaceRegWith(MO.getReg(), Dup->getOperand(i).getReg());
}
MI->eraseFromParent();
++NumCSEed;
return true;
}
return false;
}
/// Hoist - When an instruction is found to use only loop invariant operands
/// that are safe to hoist, this instruction is called to do the dirty work.
///
void MachineLICM::Hoist(MachineInstr *MI) {
// First check whether we should hoist this instruction.
if (!IsLoopInvariantInst(*MI) || !IsProfitableToHoist(*MI)) {
// If not, try unfolding a hoistable load.
MI = ExtractHoistableLoad(MI);
if (!MI) return;
}
// Now move the instructions to the predecessor, inserting it before any
// terminator instructions.
DEBUG({
dbgs() << "Hoisting " << *MI;
if (CurPreheader->getBasicBlock())
dbgs() << " to MachineBasicBlock "
<< CurPreheader->getName();
if (MI->getParent()->getBasicBlock())
dbgs() << " from MachineBasicBlock "
<< MI->getParent()->getName();
dbgs() << "\n";
});
// If this is the first instruction being hoisted to the preheader,
// initialize the CSE map with potential common expressions.
InitCSEMap(CurPreheader);
// Look for opportunity to CSE the hoisted instruction.
unsigned Opcode = MI->getOpcode();
DenseMap<unsigned, std::vector<const MachineInstr*> >::iterator
CI = CSEMap.find(Opcode);
if (!EliminateCSE(MI, CI)) {
// Otherwise, splice the instruction to the preheader.
CurPreheader->splice(CurPreheader->getFirstTerminator(),MI->getParent(),MI);
// Add to the CSE map.
if (CI != CSEMap.end())
CI->second.push_back(MI);
else {
std::vector<const MachineInstr*> CSEMIs;
CSEMIs.push_back(MI);
CSEMap.insert(std::make_pair(Opcode, CSEMIs));
}
}
++NumHoisted;
Changed = true;
}