llvm-6502/lib/Target/R600/R600InstrInfo.cpp
Benjamin Kramer d628f19f5d [C++11] Replace llvm::next and llvm::prior with std::next and std::prev.
Remove the old functions.

git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@202636 91177308-0d34-0410-b5e6-96231b3b80d8
2014-03-02 12:27:27 +00:00

1396 lines
45 KiB
C++

//===-- R600InstrInfo.cpp - R600 Instruction Information ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief R600 Implementation of TargetInstrInfo.
//
//===----------------------------------------------------------------------===//
#include "R600InstrInfo.h"
#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "AMDGPUTargetMachine.h"
#include "R600Defines.h"
#include "R600MachineFunctionInfo.h"
#include "R600RegisterInfo.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#define GET_INSTRINFO_CTOR_DTOR
#include "AMDGPUGenDFAPacketizer.inc"
using namespace llvm;
R600InstrInfo::R600InstrInfo(AMDGPUTargetMachine &tm)
: AMDGPUInstrInfo(tm),
RI(tm),
ST(tm.getSubtarget<AMDGPUSubtarget>())
{ }
const R600RegisterInfo &R600InstrInfo::getRegisterInfo() const {
return RI;
}
bool R600InstrInfo::isTrig(const MachineInstr &MI) const {
return get(MI.getOpcode()).TSFlags & R600_InstFlag::TRIG;
}
bool R600InstrInfo::isVector(const MachineInstr &MI) const {
return get(MI.getOpcode()).TSFlags & R600_InstFlag::VECTOR;
}
void
R600InstrInfo::copyPhysReg(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MI, DebugLoc DL,
unsigned DestReg, unsigned SrcReg,
bool KillSrc) const {
unsigned VectorComponents = 0;
if (AMDGPU::R600_Reg128RegClass.contains(DestReg) &&
AMDGPU::R600_Reg128RegClass.contains(SrcReg)) {
VectorComponents = 4;
} else if(AMDGPU::R600_Reg64RegClass.contains(DestReg) &&
AMDGPU::R600_Reg64RegClass.contains(SrcReg)) {
VectorComponents = 2;
}
if (VectorComponents > 0) {
for (unsigned I = 0; I < VectorComponents; I++) {
unsigned SubRegIndex = RI.getSubRegFromChannel(I);
buildDefaultInstruction(MBB, MI, AMDGPU::MOV,
RI.getSubReg(DestReg, SubRegIndex),
RI.getSubReg(SrcReg, SubRegIndex))
.addReg(DestReg,
RegState::Define | RegState::Implicit);
}
} else {
MachineInstr *NewMI = buildDefaultInstruction(MBB, MI, AMDGPU::MOV,
DestReg, SrcReg);
NewMI->getOperand(getOperandIdx(*NewMI, AMDGPU::OpName::src0))
.setIsKill(KillSrc);
}
}
/// \returns true if \p MBBI can be moved into a new basic.
bool R600InstrInfo::isLegalToSplitMBBAt(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI) const {
for (MachineInstr::const_mop_iterator I = MBBI->operands_begin(),
E = MBBI->operands_end(); I != E; ++I) {
if (I->isReg() && !TargetRegisterInfo::isVirtualRegister(I->getReg()) &&
I->isUse() && RI.isPhysRegLiveAcrossClauses(I->getReg()))
return false;
}
return true;
}
unsigned R600InstrInfo::getIEQOpcode() const {
return AMDGPU::SETE_INT;
}
bool R600InstrInfo::isMov(unsigned Opcode) const {
switch(Opcode) {
default: return false;
case AMDGPU::MOV:
case AMDGPU::MOV_IMM_F32:
case AMDGPU::MOV_IMM_I32:
return true;
}
}
// Some instructions act as place holders to emulate operations that the GPU
// hardware does automatically. This function can be used to check if
// an opcode falls into this category.
bool R600InstrInfo::isPlaceHolderOpcode(unsigned Opcode) const {
switch (Opcode) {
default: return false;
case AMDGPU::RETURN:
return true;
}
}
bool R600InstrInfo::isReductionOp(unsigned Opcode) const {
return false;
}
bool R600InstrInfo::isCubeOp(unsigned Opcode) const {
switch(Opcode) {
default: return false;
case AMDGPU::CUBE_r600_pseudo:
case AMDGPU::CUBE_r600_real:
case AMDGPU::CUBE_eg_pseudo:
case AMDGPU::CUBE_eg_real:
return true;
}
}
bool R600InstrInfo::isALUInstr(unsigned Opcode) const {
unsigned TargetFlags = get(Opcode).TSFlags;
return (TargetFlags & R600_InstFlag::ALU_INST);
}
bool R600InstrInfo::hasInstrModifiers(unsigned Opcode) const {
unsigned TargetFlags = get(Opcode).TSFlags;
return ((TargetFlags & R600_InstFlag::OP1) |
(TargetFlags & R600_InstFlag::OP2) |
(TargetFlags & R600_InstFlag::OP3));
}
bool R600InstrInfo::isLDSInstr(unsigned Opcode) const {
unsigned TargetFlags = get(Opcode).TSFlags;
return ((TargetFlags & R600_InstFlag::LDS_1A) |
(TargetFlags & R600_InstFlag::LDS_1A1D) |
(TargetFlags & R600_InstFlag::LDS_1A2D));
}
bool R600InstrInfo::isLDSNoRetInstr(unsigned Opcode) const {
return isLDSInstr(Opcode) && getOperandIdx(Opcode, AMDGPU::OpName::dst) == -1;
}
bool R600InstrInfo::isLDSRetInstr(unsigned Opcode) const {
return isLDSInstr(Opcode) && getOperandIdx(Opcode, AMDGPU::OpName::dst) != -1;
}
bool R600InstrInfo::canBeConsideredALU(const MachineInstr *MI) const {
if (isALUInstr(MI->getOpcode()))
return true;
if (isVector(*MI) || isCubeOp(MI->getOpcode()))
return true;
switch (MI->getOpcode()) {
case AMDGPU::PRED_X:
case AMDGPU::INTERP_PAIR_XY:
case AMDGPU::INTERP_PAIR_ZW:
case AMDGPU::INTERP_VEC_LOAD:
case AMDGPU::COPY:
case AMDGPU::DOT_4:
return true;
default:
return false;
}
}
bool R600InstrInfo::isTransOnly(unsigned Opcode) const {
if (ST.hasCaymanISA())
return false;
return (get(Opcode).getSchedClass() == AMDGPU::Sched::TransALU);
}
bool R600InstrInfo::isTransOnly(const MachineInstr *MI) const {
return isTransOnly(MI->getOpcode());
}
bool R600InstrInfo::isVectorOnly(unsigned Opcode) const {
return (get(Opcode).getSchedClass() == AMDGPU::Sched::VecALU);
}
bool R600InstrInfo::isVectorOnly(const MachineInstr *MI) const {
return isVectorOnly(MI->getOpcode());
}
bool R600InstrInfo::isExport(unsigned Opcode) const {
return (get(Opcode).TSFlags & R600_InstFlag::IS_EXPORT);
}
bool R600InstrInfo::usesVertexCache(unsigned Opcode) const {
return ST.hasVertexCache() && IS_VTX(get(Opcode));
}
bool R600InstrInfo::usesVertexCache(const MachineInstr *MI) const {
const R600MachineFunctionInfo *MFI = MI->getParent()->getParent()->getInfo<R600MachineFunctionInfo>();
return MFI->ShaderType != ShaderType::COMPUTE && usesVertexCache(MI->getOpcode());
}
bool R600InstrInfo::usesTextureCache(unsigned Opcode) const {
return (!ST.hasVertexCache() && IS_VTX(get(Opcode))) || IS_TEX(get(Opcode));
}
bool R600InstrInfo::usesTextureCache(const MachineInstr *MI) const {
const R600MachineFunctionInfo *MFI = MI->getParent()->getParent()->getInfo<R600MachineFunctionInfo>();
return (MFI->ShaderType == ShaderType::COMPUTE && usesVertexCache(MI->getOpcode())) ||
usesTextureCache(MI->getOpcode());
}
bool R600InstrInfo::mustBeLastInClause(unsigned Opcode) const {
switch (Opcode) {
case AMDGPU::KILLGT:
case AMDGPU::GROUP_BARRIER:
return true;
default:
return false;
}
}
bool R600InstrInfo::usesAddressRegister(MachineInstr *MI) const {
return MI->findRegisterUseOperandIdx(AMDGPU::AR_X) != -1;
}
bool R600InstrInfo::definesAddressRegister(MachineInstr *MI) const {
return MI->findRegisterDefOperandIdx(AMDGPU::AR_X) != -1;
}
bool R600InstrInfo::readsLDSSrcReg(const MachineInstr *MI) const {
if (!isALUInstr(MI->getOpcode())) {
return false;
}
for (MachineInstr::const_mop_iterator I = MI->operands_begin(),
E = MI->operands_end(); I != E; ++I) {
if (!I->isReg() || !I->isUse() ||
TargetRegisterInfo::isVirtualRegister(I->getReg()))
continue;
if (AMDGPU::R600_LDS_SRC_REGRegClass.contains(I->getReg()))
return true;
}
return false;
}
int R600InstrInfo::getSrcIdx(unsigned Opcode, unsigned SrcNum) const {
static const unsigned OpTable[] = {
AMDGPU::OpName::src0,
AMDGPU::OpName::src1,
AMDGPU::OpName::src2
};
assert (SrcNum < 3);
return getOperandIdx(Opcode, OpTable[SrcNum]);
}
#define SRC_SEL_ROWS 11
int R600InstrInfo::getSelIdx(unsigned Opcode, unsigned SrcIdx) const {
static const unsigned SrcSelTable[SRC_SEL_ROWS][2] = {
{AMDGPU::OpName::src0, AMDGPU::OpName::src0_sel},
{AMDGPU::OpName::src1, AMDGPU::OpName::src1_sel},
{AMDGPU::OpName::src2, AMDGPU::OpName::src2_sel},
{AMDGPU::OpName::src0_X, AMDGPU::OpName::src0_sel_X},
{AMDGPU::OpName::src0_Y, AMDGPU::OpName::src0_sel_Y},
{AMDGPU::OpName::src0_Z, AMDGPU::OpName::src0_sel_Z},
{AMDGPU::OpName::src0_W, AMDGPU::OpName::src0_sel_W},
{AMDGPU::OpName::src1_X, AMDGPU::OpName::src1_sel_X},
{AMDGPU::OpName::src1_Y, AMDGPU::OpName::src1_sel_Y},
{AMDGPU::OpName::src1_Z, AMDGPU::OpName::src1_sel_Z},
{AMDGPU::OpName::src1_W, AMDGPU::OpName::src1_sel_W}
};
for (unsigned i = 0; i < SRC_SEL_ROWS; ++i) {
if (getOperandIdx(Opcode, SrcSelTable[i][0]) == (int)SrcIdx) {
return getOperandIdx(Opcode, SrcSelTable[i][1]);
}
}
return -1;
}
#undef SRC_SEL_ROWS
SmallVector<std::pair<MachineOperand *, int64_t>, 3>
R600InstrInfo::getSrcs(MachineInstr *MI) const {
SmallVector<std::pair<MachineOperand *, int64_t>, 3> Result;
if (MI->getOpcode() == AMDGPU::DOT_4) {
static const unsigned OpTable[8][2] = {
{AMDGPU::OpName::src0_X, AMDGPU::OpName::src0_sel_X},
{AMDGPU::OpName::src0_Y, AMDGPU::OpName::src0_sel_Y},
{AMDGPU::OpName::src0_Z, AMDGPU::OpName::src0_sel_Z},
{AMDGPU::OpName::src0_W, AMDGPU::OpName::src0_sel_W},
{AMDGPU::OpName::src1_X, AMDGPU::OpName::src1_sel_X},
{AMDGPU::OpName::src1_Y, AMDGPU::OpName::src1_sel_Y},
{AMDGPU::OpName::src1_Z, AMDGPU::OpName::src1_sel_Z},
{AMDGPU::OpName::src1_W, AMDGPU::OpName::src1_sel_W},
};
for (unsigned j = 0; j < 8; j++) {
MachineOperand &MO = MI->getOperand(getOperandIdx(MI->getOpcode(),
OpTable[j][0]));
unsigned Reg = MO.getReg();
if (Reg == AMDGPU::ALU_CONST) {
unsigned Sel = MI->getOperand(getOperandIdx(MI->getOpcode(),
OpTable[j][1])).getImm();
Result.push_back(std::pair<MachineOperand *, int64_t>(&MO, Sel));
continue;
}
}
return Result;
}
static const unsigned OpTable[3][2] = {
{AMDGPU::OpName::src0, AMDGPU::OpName::src0_sel},
{AMDGPU::OpName::src1, AMDGPU::OpName::src1_sel},
{AMDGPU::OpName::src2, AMDGPU::OpName::src2_sel},
};
for (unsigned j = 0; j < 3; j++) {
int SrcIdx = getOperandIdx(MI->getOpcode(), OpTable[j][0]);
if (SrcIdx < 0)
break;
MachineOperand &MO = MI->getOperand(SrcIdx);
unsigned Reg = MI->getOperand(SrcIdx).getReg();
if (Reg == AMDGPU::ALU_CONST) {
unsigned Sel = MI->getOperand(
getOperandIdx(MI->getOpcode(), OpTable[j][1])).getImm();
Result.push_back(std::pair<MachineOperand *, int64_t>(&MO, Sel));
continue;
}
if (Reg == AMDGPU::ALU_LITERAL_X) {
unsigned Imm = MI->getOperand(
getOperandIdx(MI->getOpcode(), AMDGPU::OpName::literal)).getImm();
Result.push_back(std::pair<MachineOperand *, int64_t>(&MO, Imm));
continue;
}
Result.push_back(std::pair<MachineOperand *, int64_t>(&MO, 0));
}
return Result;
}
std::vector<std::pair<int, unsigned> >
R600InstrInfo::ExtractSrcs(MachineInstr *MI,
const DenseMap<unsigned, unsigned> &PV,
unsigned &ConstCount) const {
ConstCount = 0;
const SmallVector<std::pair<MachineOperand *, int64_t>, 3> Srcs = getSrcs(MI);
const std::pair<int, unsigned> DummyPair(-1, 0);
std::vector<std::pair<int, unsigned> > Result;
unsigned i = 0;
for (unsigned n = Srcs.size(); i < n; ++i) {
unsigned Reg = Srcs[i].first->getReg();
unsigned Index = RI.getEncodingValue(Reg) & 0xff;
if (Reg == AMDGPU::OQAP) {
Result.push_back(std::pair<int, unsigned>(Index, 0));
}
if (PV.find(Reg) != PV.end()) {
// 255 is used to tells its a PS/PV reg
Result.push_back(std::pair<int, unsigned>(255, 0));
continue;
}
if (Index > 127) {
ConstCount++;
Result.push_back(DummyPair);
continue;
}
unsigned Chan = RI.getHWRegChan(Reg);
Result.push_back(std::pair<int, unsigned>(Index, Chan));
}
for (; i < 3; ++i)
Result.push_back(DummyPair);
return Result;
}
static std::vector<std::pair<int, unsigned> >
Swizzle(std::vector<std::pair<int, unsigned> > Src,
R600InstrInfo::BankSwizzle Swz) {
if (Src[0] == Src[1])
Src[1].first = -1;
switch (Swz) {
case R600InstrInfo::ALU_VEC_012_SCL_210:
break;
case R600InstrInfo::ALU_VEC_021_SCL_122:
std::swap(Src[1], Src[2]);
break;
case R600InstrInfo::ALU_VEC_102_SCL_221:
std::swap(Src[0], Src[1]);
break;
case R600InstrInfo::ALU_VEC_120_SCL_212:
std::swap(Src[0], Src[1]);
std::swap(Src[0], Src[2]);
break;
case R600InstrInfo::ALU_VEC_201:
std::swap(Src[0], Src[2]);
std::swap(Src[0], Src[1]);
break;
case R600InstrInfo::ALU_VEC_210:
std::swap(Src[0], Src[2]);
break;
}
return Src;
}
static unsigned
getTransSwizzle(R600InstrInfo::BankSwizzle Swz, unsigned Op) {
switch (Swz) {
case R600InstrInfo::ALU_VEC_012_SCL_210: {
unsigned Cycles[3] = { 2, 1, 0};
return Cycles[Op];
}
case R600InstrInfo::ALU_VEC_021_SCL_122: {
unsigned Cycles[3] = { 1, 2, 2};
return Cycles[Op];
}
case R600InstrInfo::ALU_VEC_120_SCL_212: {
unsigned Cycles[3] = { 2, 1, 2};
return Cycles[Op];
}
case R600InstrInfo::ALU_VEC_102_SCL_221: {
unsigned Cycles[3] = { 2, 2, 1};
return Cycles[Op];
}
default:
llvm_unreachable("Wrong Swizzle for Trans Slot");
return 0;
}
}
/// returns how many MIs (whose inputs are represented by IGSrcs) can be packed
/// in the same Instruction Group while meeting read port limitations given a
/// Swz swizzle sequence.
unsigned R600InstrInfo::isLegalUpTo(
const std::vector<std::vector<std::pair<int, unsigned> > > &IGSrcs,
const std::vector<R600InstrInfo::BankSwizzle> &Swz,
const std::vector<std::pair<int, unsigned> > &TransSrcs,
R600InstrInfo::BankSwizzle TransSwz) const {
int Vector[4][3];
memset(Vector, -1, sizeof(Vector));
for (unsigned i = 0, e = IGSrcs.size(); i < e; i++) {
const std::vector<std::pair<int, unsigned> > &Srcs =
Swizzle(IGSrcs[i], Swz[i]);
for (unsigned j = 0; j < 3; j++) {
const std::pair<int, unsigned> &Src = Srcs[j];
if (Src.first < 0 || Src.first == 255)
continue;
if (Src.first == GET_REG_INDEX(RI.getEncodingValue(AMDGPU::OQAP))) {
if (Swz[i] != R600InstrInfo::ALU_VEC_012_SCL_210 &&
Swz[i] != R600InstrInfo::ALU_VEC_021_SCL_122) {
// The value from output queue A (denoted by register OQAP) can
// only be fetched during the first cycle.
return false;
}
// OQAP does not count towards the normal read port restrictions
continue;
}
if (Vector[Src.second][j] < 0)
Vector[Src.second][j] = Src.first;
if (Vector[Src.second][j] != Src.first)
return i;
}
}
// Now check Trans Alu
for (unsigned i = 0, e = TransSrcs.size(); i < e; ++i) {
const std::pair<int, unsigned> &Src = TransSrcs[i];
unsigned Cycle = getTransSwizzle(TransSwz, i);
if (Src.first < 0)
continue;
if (Src.first == 255)
continue;
if (Vector[Src.second][Cycle] < 0)
Vector[Src.second][Cycle] = Src.first;
if (Vector[Src.second][Cycle] != Src.first)
return IGSrcs.size() - 1;
}
return IGSrcs.size();
}
/// Given a swizzle sequence SwzCandidate and an index Idx, returns the next
/// (in lexicographic term) swizzle sequence assuming that all swizzles after
/// Idx can be skipped
static bool
NextPossibleSolution(
std::vector<R600InstrInfo::BankSwizzle> &SwzCandidate,
unsigned Idx) {
assert(Idx < SwzCandidate.size());
int ResetIdx = Idx;
while (ResetIdx > -1 && SwzCandidate[ResetIdx] == R600InstrInfo::ALU_VEC_210)
ResetIdx --;
for (unsigned i = ResetIdx + 1, e = SwzCandidate.size(); i < e; i++) {
SwzCandidate[i] = R600InstrInfo::ALU_VEC_012_SCL_210;
}
if (ResetIdx == -1)
return false;
int NextSwizzle = SwzCandidate[ResetIdx] + 1;
SwzCandidate[ResetIdx] = (R600InstrInfo::BankSwizzle)NextSwizzle;
return true;
}
/// Enumerate all possible Swizzle sequence to find one that can meet all
/// read port requirements.
bool R600InstrInfo::FindSwizzleForVectorSlot(
const std::vector<std::vector<std::pair<int, unsigned> > > &IGSrcs,
std::vector<R600InstrInfo::BankSwizzle> &SwzCandidate,
const std::vector<std::pair<int, unsigned> > &TransSrcs,
R600InstrInfo::BankSwizzle TransSwz) const {
unsigned ValidUpTo = 0;
do {
ValidUpTo = isLegalUpTo(IGSrcs, SwzCandidate, TransSrcs, TransSwz);
if (ValidUpTo == IGSrcs.size())
return true;
} while (NextPossibleSolution(SwzCandidate, ValidUpTo));
return false;
}
/// Instructions in Trans slot can't read gpr at cycle 0 if they also read
/// a const, and can't read a gpr at cycle 1 if they read 2 const.
static bool
isConstCompatible(R600InstrInfo::BankSwizzle TransSwz,
const std::vector<std::pair<int, unsigned> > &TransOps,
unsigned ConstCount) {
// TransALU can't read 3 constants
if (ConstCount > 2)
return false;
for (unsigned i = 0, e = TransOps.size(); i < e; ++i) {
const std::pair<int, unsigned> &Src = TransOps[i];
unsigned Cycle = getTransSwizzle(TransSwz, i);
if (Src.first < 0)
continue;
if (ConstCount > 0 && Cycle == 0)
return false;
if (ConstCount > 1 && Cycle == 1)
return false;
}
return true;
}
bool
R600InstrInfo::fitsReadPortLimitations(const std::vector<MachineInstr *> &IG,
const DenseMap<unsigned, unsigned> &PV,
std::vector<BankSwizzle> &ValidSwizzle,
bool isLastAluTrans)
const {
//Todo : support shared src0 - src1 operand
std::vector<std::vector<std::pair<int, unsigned> > > IGSrcs;
ValidSwizzle.clear();
unsigned ConstCount;
BankSwizzle TransBS = ALU_VEC_012_SCL_210;
for (unsigned i = 0, e = IG.size(); i < e; ++i) {
IGSrcs.push_back(ExtractSrcs(IG[i], PV, ConstCount));
unsigned Op = getOperandIdx(IG[i]->getOpcode(),
AMDGPU::OpName::bank_swizzle);
ValidSwizzle.push_back( (R600InstrInfo::BankSwizzle)
IG[i]->getOperand(Op).getImm());
}
std::vector<std::pair<int, unsigned> > TransOps;
if (!isLastAluTrans)
return FindSwizzleForVectorSlot(IGSrcs, ValidSwizzle, TransOps, TransBS);
TransOps = IGSrcs.back();
IGSrcs.pop_back();
ValidSwizzle.pop_back();
static const R600InstrInfo::BankSwizzle TransSwz[] = {
ALU_VEC_012_SCL_210,
ALU_VEC_021_SCL_122,
ALU_VEC_120_SCL_212,
ALU_VEC_102_SCL_221
};
for (unsigned i = 0; i < 4; i++) {
TransBS = TransSwz[i];
if (!isConstCompatible(TransBS, TransOps, ConstCount))
continue;
bool Result = FindSwizzleForVectorSlot(IGSrcs, ValidSwizzle, TransOps,
TransBS);
if (Result) {
ValidSwizzle.push_back(TransBS);
return true;
}
}
return false;
}
bool
R600InstrInfo::fitsConstReadLimitations(const std::vector<unsigned> &Consts)
const {
assert (Consts.size() <= 12 && "Too many operands in instructions group");
unsigned Pair1 = 0, Pair2 = 0;
for (unsigned i = 0, n = Consts.size(); i < n; ++i) {
unsigned ReadConstHalf = Consts[i] & 2;
unsigned ReadConstIndex = Consts[i] & (~3);
unsigned ReadHalfConst = ReadConstIndex | ReadConstHalf;
if (!Pair1) {
Pair1 = ReadHalfConst;
continue;
}
if (Pair1 == ReadHalfConst)
continue;
if (!Pair2) {
Pair2 = ReadHalfConst;
continue;
}
if (Pair2 != ReadHalfConst)
return false;
}
return true;
}
bool
R600InstrInfo::fitsConstReadLimitations(const std::vector<MachineInstr *> &MIs)
const {
std::vector<unsigned> Consts;
SmallSet<int64_t, 4> Literals;
for (unsigned i = 0, n = MIs.size(); i < n; i++) {
MachineInstr *MI = MIs[i];
if (!isALUInstr(MI->getOpcode()))
continue;
const SmallVectorImpl<std::pair<MachineOperand *, int64_t> > &Srcs =
getSrcs(MI);
for (unsigned j = 0, e = Srcs.size(); j < e; j++) {
std::pair<MachineOperand *, unsigned> Src = Srcs[j];
if (Src.first->getReg() == AMDGPU::ALU_LITERAL_X)
Literals.insert(Src.second);
if (Literals.size() > 4)
return false;
if (Src.first->getReg() == AMDGPU::ALU_CONST)
Consts.push_back(Src.second);
if (AMDGPU::R600_KC0RegClass.contains(Src.first->getReg()) ||
AMDGPU::R600_KC1RegClass.contains(Src.first->getReg())) {
unsigned Index = RI.getEncodingValue(Src.first->getReg()) & 0xff;
unsigned Chan = RI.getHWRegChan(Src.first->getReg());
Consts.push_back((Index << 2) | Chan);
}
}
}
return fitsConstReadLimitations(Consts);
}
DFAPacketizer *R600InstrInfo::CreateTargetScheduleState(const TargetMachine *TM,
const ScheduleDAG *DAG) const {
const InstrItineraryData *II = TM->getInstrItineraryData();
return TM->getSubtarget<AMDGPUSubtarget>().createDFAPacketizer(II);
}
static bool
isPredicateSetter(unsigned Opcode) {
switch (Opcode) {
case AMDGPU::PRED_X:
return true;
default:
return false;
}
}
static MachineInstr *
findFirstPredicateSetterFrom(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I) {
while (I != MBB.begin()) {
--I;
MachineInstr *MI = I;
if (isPredicateSetter(MI->getOpcode()))
return MI;
}
return NULL;
}
static
bool isJump(unsigned Opcode) {
return Opcode == AMDGPU::JUMP || Opcode == AMDGPU::JUMP_COND;
}
static bool isBranch(unsigned Opcode) {
return Opcode == AMDGPU::BRANCH || Opcode == AMDGPU::BRANCH_COND_i32 ||
Opcode == AMDGPU::BRANCH_COND_f32;
}
bool
R600InstrInfo::AnalyzeBranch(MachineBasicBlock &MBB,
MachineBasicBlock *&TBB,
MachineBasicBlock *&FBB,
SmallVectorImpl<MachineOperand> &Cond,
bool AllowModify) const {
// Most of the following comes from the ARM implementation of AnalyzeBranch
// If the block has no terminators, it just falls into the block after it.
MachineBasicBlock::iterator I = MBB.end();
if (I == MBB.begin())
return false;
--I;
while (I->isDebugValue()) {
if (I == MBB.begin())
return false;
--I;
}
// AMDGPU::BRANCH* instructions are only available after isel and are not
// handled
if (isBranch(I->getOpcode()))
return true;
if (!isJump(static_cast<MachineInstr *>(I)->getOpcode())) {
return false;
}
// Remove successive JUMP
while (I != MBB.begin() && std::prev(I)->getOpcode() == AMDGPU::JUMP) {
MachineBasicBlock::iterator PriorI = std::prev(I);
if (AllowModify)
I->removeFromParent();
I = PriorI;
}
MachineInstr *LastInst = I;
// If there is only one terminator instruction, process it.
unsigned LastOpc = LastInst->getOpcode();
if (I == MBB.begin() ||
!isJump(static_cast<MachineInstr *>(--I)->getOpcode())) {
if (LastOpc == AMDGPU::JUMP) {
TBB = LastInst->getOperand(0).getMBB();
return false;
} else if (LastOpc == AMDGPU::JUMP_COND) {
MachineInstr *predSet = I;
while (!isPredicateSetter(predSet->getOpcode())) {
predSet = --I;
}
TBB = LastInst->getOperand(0).getMBB();
Cond.push_back(predSet->getOperand(1));
Cond.push_back(predSet->getOperand(2));
Cond.push_back(MachineOperand::CreateReg(AMDGPU::PRED_SEL_ONE, false));
return false;
}
return true; // Can't handle indirect branch.
}
// Get the instruction before it if it is a terminator.
MachineInstr *SecondLastInst = I;
unsigned SecondLastOpc = SecondLastInst->getOpcode();
// If the block ends with a B and a Bcc, handle it.
if (SecondLastOpc == AMDGPU::JUMP_COND && LastOpc == AMDGPU::JUMP) {
MachineInstr *predSet = --I;
while (!isPredicateSetter(predSet->getOpcode())) {
predSet = --I;
}
TBB = SecondLastInst->getOperand(0).getMBB();
FBB = LastInst->getOperand(0).getMBB();
Cond.push_back(predSet->getOperand(1));
Cond.push_back(predSet->getOperand(2));
Cond.push_back(MachineOperand::CreateReg(AMDGPU::PRED_SEL_ONE, false));
return false;
}
// Otherwise, can't handle this.
return true;
}
int R600InstrInfo::getBranchInstr(const MachineOperand &op) const {
const MachineInstr *MI = op.getParent();
switch (MI->getDesc().OpInfo->RegClass) {
default: // FIXME: fallthrough??
case AMDGPU::GPRI32RegClassID: return AMDGPU::BRANCH_COND_i32;
case AMDGPU::GPRF32RegClassID: return AMDGPU::BRANCH_COND_f32;
};
}
static
MachineBasicBlock::iterator FindLastAluClause(MachineBasicBlock &MBB) {
for (MachineBasicBlock::reverse_iterator It = MBB.rbegin(), E = MBB.rend();
It != E; ++It) {
if (It->getOpcode() == AMDGPU::CF_ALU ||
It->getOpcode() == AMDGPU::CF_ALU_PUSH_BEFORE)
return std::prev(It.base());
}
return MBB.end();
}
unsigned
R600InstrInfo::InsertBranch(MachineBasicBlock &MBB,
MachineBasicBlock *TBB,
MachineBasicBlock *FBB,
const SmallVectorImpl<MachineOperand> &Cond,
DebugLoc DL) const {
assert(TBB && "InsertBranch must not be told to insert a fallthrough");
if (FBB == 0) {
if (Cond.empty()) {
BuildMI(&MBB, DL, get(AMDGPU::JUMP)).addMBB(TBB);
return 1;
} else {
MachineInstr *PredSet = findFirstPredicateSetterFrom(MBB, MBB.end());
assert(PredSet && "No previous predicate !");
addFlag(PredSet, 0, MO_FLAG_PUSH);
PredSet->getOperand(2).setImm(Cond[1].getImm());
BuildMI(&MBB, DL, get(AMDGPU::JUMP_COND))
.addMBB(TBB)
.addReg(AMDGPU::PREDICATE_BIT, RegState::Kill);
MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
if (CfAlu == MBB.end())
return 1;
assert (CfAlu->getOpcode() == AMDGPU::CF_ALU);
CfAlu->setDesc(get(AMDGPU::CF_ALU_PUSH_BEFORE));
return 1;
}
} else {
MachineInstr *PredSet = findFirstPredicateSetterFrom(MBB, MBB.end());
assert(PredSet && "No previous predicate !");
addFlag(PredSet, 0, MO_FLAG_PUSH);
PredSet->getOperand(2).setImm(Cond[1].getImm());
BuildMI(&MBB, DL, get(AMDGPU::JUMP_COND))
.addMBB(TBB)
.addReg(AMDGPU::PREDICATE_BIT, RegState::Kill);
BuildMI(&MBB, DL, get(AMDGPU::JUMP)).addMBB(FBB);
MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
if (CfAlu == MBB.end())
return 2;
assert (CfAlu->getOpcode() == AMDGPU::CF_ALU);
CfAlu->setDesc(get(AMDGPU::CF_ALU_PUSH_BEFORE));
return 2;
}
}
unsigned
R600InstrInfo::RemoveBranch(MachineBasicBlock &MBB) const {
// Note : we leave PRED* instructions there.
// They may be needed when predicating instructions.
MachineBasicBlock::iterator I = MBB.end();
if (I == MBB.begin()) {
return 0;
}
--I;
switch (I->getOpcode()) {
default:
return 0;
case AMDGPU::JUMP_COND: {
MachineInstr *predSet = findFirstPredicateSetterFrom(MBB, I);
clearFlag(predSet, 0, MO_FLAG_PUSH);
I->eraseFromParent();
MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
if (CfAlu == MBB.end())
break;
assert (CfAlu->getOpcode() == AMDGPU::CF_ALU_PUSH_BEFORE);
CfAlu->setDesc(get(AMDGPU::CF_ALU));
break;
}
case AMDGPU::JUMP:
I->eraseFromParent();
break;
}
I = MBB.end();
if (I == MBB.begin()) {
return 1;
}
--I;
switch (I->getOpcode()) {
// FIXME: only one case??
default:
return 1;
case AMDGPU::JUMP_COND: {
MachineInstr *predSet = findFirstPredicateSetterFrom(MBB, I);
clearFlag(predSet, 0, MO_FLAG_PUSH);
I->eraseFromParent();
MachineBasicBlock::iterator CfAlu = FindLastAluClause(MBB);
if (CfAlu == MBB.end())
break;
assert (CfAlu->getOpcode() == AMDGPU::CF_ALU_PUSH_BEFORE);
CfAlu->setDesc(get(AMDGPU::CF_ALU));
break;
}
case AMDGPU::JUMP:
I->eraseFromParent();
break;
}
return 2;
}
bool
R600InstrInfo::isPredicated(const MachineInstr *MI) const {
int idx = MI->findFirstPredOperandIdx();
if (idx < 0)
return false;
unsigned Reg = MI->getOperand(idx).getReg();
switch (Reg) {
default: return false;
case AMDGPU::PRED_SEL_ONE:
case AMDGPU::PRED_SEL_ZERO:
case AMDGPU::PREDICATE_BIT:
return true;
}
}
bool
R600InstrInfo::isPredicable(MachineInstr *MI) const {
// XXX: KILL* instructions can be predicated, but they must be the last
// instruction in a clause, so this means any instructions after them cannot
// be predicated. Until we have proper support for instruction clauses in the
// backend, we will mark KILL* instructions as unpredicable.
if (MI->getOpcode() == AMDGPU::KILLGT) {
return false;
} else if (MI->getOpcode() == AMDGPU::CF_ALU) {
// If the clause start in the middle of MBB then the MBB has more
// than a single clause, unable to predicate several clauses.
if (MI->getParent()->begin() != MachineBasicBlock::iterator(MI))
return false;
// TODO: We don't support KC merging atm
if (MI->getOperand(3).getImm() != 0 || MI->getOperand(4).getImm() != 0)
return false;
return true;
} else if (isVector(*MI)) {
return false;
} else {
return AMDGPUInstrInfo::isPredicable(MI);
}
}
bool
R600InstrInfo::isProfitableToIfCvt(MachineBasicBlock &MBB,
unsigned NumCyles,
unsigned ExtraPredCycles,
const BranchProbability &Probability) const{
return true;
}
bool
R600InstrInfo::isProfitableToIfCvt(MachineBasicBlock &TMBB,
unsigned NumTCycles,
unsigned ExtraTCycles,
MachineBasicBlock &FMBB,
unsigned NumFCycles,
unsigned ExtraFCycles,
const BranchProbability &Probability) const {
return true;
}
bool
R600InstrInfo::isProfitableToDupForIfCvt(MachineBasicBlock &MBB,
unsigned NumCyles,
const BranchProbability &Probability)
const {
return true;
}
bool
R600InstrInfo::isProfitableToUnpredicate(MachineBasicBlock &TMBB,
MachineBasicBlock &FMBB) const {
return false;
}
bool
R600InstrInfo::ReverseBranchCondition(SmallVectorImpl<MachineOperand> &Cond) const {
MachineOperand &MO = Cond[1];
switch (MO.getImm()) {
case OPCODE_IS_ZERO_INT:
MO.setImm(OPCODE_IS_NOT_ZERO_INT);
break;
case OPCODE_IS_NOT_ZERO_INT:
MO.setImm(OPCODE_IS_ZERO_INT);
break;
case OPCODE_IS_ZERO:
MO.setImm(OPCODE_IS_NOT_ZERO);
break;
case OPCODE_IS_NOT_ZERO:
MO.setImm(OPCODE_IS_ZERO);
break;
default:
return true;
}
MachineOperand &MO2 = Cond[2];
switch (MO2.getReg()) {
case AMDGPU::PRED_SEL_ZERO:
MO2.setReg(AMDGPU::PRED_SEL_ONE);
break;
case AMDGPU::PRED_SEL_ONE:
MO2.setReg(AMDGPU::PRED_SEL_ZERO);
break;
default:
return true;
}
return false;
}
bool
R600InstrInfo::DefinesPredicate(MachineInstr *MI,
std::vector<MachineOperand> &Pred) const {
return isPredicateSetter(MI->getOpcode());
}
bool
R600InstrInfo::SubsumesPredicate(const SmallVectorImpl<MachineOperand> &Pred1,
const SmallVectorImpl<MachineOperand> &Pred2) const {
return false;
}
bool
R600InstrInfo::PredicateInstruction(MachineInstr *MI,
const SmallVectorImpl<MachineOperand> &Pred) const {
int PIdx = MI->findFirstPredOperandIdx();
if (MI->getOpcode() == AMDGPU::CF_ALU) {
MI->getOperand(8).setImm(0);
return true;
}
if (MI->getOpcode() == AMDGPU::DOT_4) {
MI->getOperand(getOperandIdx(*MI, AMDGPU::OpName::pred_sel_X))
.setReg(Pred[2].getReg());
MI->getOperand(getOperandIdx(*MI, AMDGPU::OpName::pred_sel_Y))
.setReg(Pred[2].getReg());
MI->getOperand(getOperandIdx(*MI, AMDGPU::OpName::pred_sel_Z))
.setReg(Pred[2].getReg());
MI->getOperand(getOperandIdx(*MI, AMDGPU::OpName::pred_sel_W))
.setReg(Pred[2].getReg());
MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
MIB.addReg(AMDGPU::PREDICATE_BIT, RegState::Implicit);
return true;
}
if (PIdx != -1) {
MachineOperand &PMO = MI->getOperand(PIdx);
PMO.setReg(Pred[2].getReg());
MachineInstrBuilder MIB(*MI->getParent()->getParent(), MI);
MIB.addReg(AMDGPU::PREDICATE_BIT, RegState::Implicit);
return true;
}
return false;
}
unsigned int R600InstrInfo::getPredicationCost(const MachineInstr *) const {
return 2;
}
unsigned int R600InstrInfo::getInstrLatency(const InstrItineraryData *ItinData,
const MachineInstr *MI,
unsigned *PredCost) const {
if (PredCost)
*PredCost = 2;
return 2;
}
void R600InstrInfo::reserveIndirectRegisters(BitVector &Reserved,
const MachineFunction &MF) const {
const AMDGPUFrameLowering *TFL =
static_cast<const AMDGPUFrameLowering*>(TM.getFrameLowering());
unsigned StackWidth = TFL->getStackWidth(MF);
int End = getIndirectIndexEnd(MF);
if (End == -1)
return;
for (int Index = getIndirectIndexBegin(MF); Index <= End; ++Index) {
unsigned SuperReg = AMDGPU::R600_Reg128RegClass.getRegister(Index);
Reserved.set(SuperReg);
for (unsigned Chan = 0; Chan < StackWidth; ++Chan) {
unsigned Reg = AMDGPU::R600_TReg32RegClass.getRegister((4 * Index) + Chan);
Reserved.set(Reg);
}
}
}
unsigned R600InstrInfo::calculateIndirectAddress(unsigned RegIndex,
unsigned Channel) const {
// XXX: Remove when we support a stack width > 2
assert(Channel == 0);
return RegIndex;
}
const TargetRegisterClass *R600InstrInfo::getIndirectAddrRegClass() const {
return &AMDGPU::R600_TReg32_XRegClass;
}
MachineInstrBuilder R600InstrInfo::buildIndirectWrite(MachineBasicBlock *MBB,
MachineBasicBlock::iterator I,
unsigned ValueReg, unsigned Address,
unsigned OffsetReg) const {
unsigned AddrReg = AMDGPU::R600_AddrRegClass.getRegister(Address);
MachineInstr *MOVA = buildDefaultInstruction(*MBB, I, AMDGPU::MOVA_INT_eg,
AMDGPU::AR_X, OffsetReg);
setImmOperand(MOVA, AMDGPU::OpName::write, 0);
MachineInstrBuilder Mov = buildDefaultInstruction(*MBB, I, AMDGPU::MOV,
AddrReg, ValueReg)
.addReg(AMDGPU::AR_X,
RegState::Implicit | RegState::Kill);
setImmOperand(Mov, AMDGPU::OpName::dst_rel, 1);
return Mov;
}
MachineInstrBuilder R600InstrInfo::buildIndirectRead(MachineBasicBlock *MBB,
MachineBasicBlock::iterator I,
unsigned ValueReg, unsigned Address,
unsigned OffsetReg) const {
unsigned AddrReg = AMDGPU::R600_AddrRegClass.getRegister(Address);
MachineInstr *MOVA = buildDefaultInstruction(*MBB, I, AMDGPU::MOVA_INT_eg,
AMDGPU::AR_X,
OffsetReg);
setImmOperand(MOVA, AMDGPU::OpName::write, 0);
MachineInstrBuilder Mov = buildDefaultInstruction(*MBB, I, AMDGPU::MOV,
ValueReg,
AddrReg)
.addReg(AMDGPU::AR_X,
RegState::Implicit | RegState::Kill);
setImmOperand(Mov, AMDGPU::OpName::src0_rel, 1);
return Mov;
}
unsigned R600InstrInfo::getMaxAlusPerClause() const {
return 115;
}
MachineInstrBuilder R600InstrInfo::buildDefaultInstruction(MachineBasicBlock &MBB,
MachineBasicBlock::iterator I,
unsigned Opcode,
unsigned DstReg,
unsigned Src0Reg,
unsigned Src1Reg) const {
MachineInstrBuilder MIB = BuildMI(MBB, I, MBB.findDebugLoc(I), get(Opcode),
DstReg); // $dst
if (Src1Reg) {
MIB.addImm(0) // $update_exec_mask
.addImm(0); // $update_predicate
}
MIB.addImm(1) // $write
.addImm(0) // $omod
.addImm(0) // $dst_rel
.addImm(0) // $dst_clamp
.addReg(Src0Reg) // $src0
.addImm(0) // $src0_neg
.addImm(0) // $src0_rel
.addImm(0) // $src0_abs
.addImm(-1); // $src0_sel
if (Src1Reg) {
MIB.addReg(Src1Reg) // $src1
.addImm(0) // $src1_neg
.addImm(0) // $src1_rel
.addImm(0) // $src1_abs
.addImm(-1); // $src1_sel
}
//XXX: The r600g finalizer expects this to be 1, once we've moved the
//scheduling to the backend, we can change the default to 0.
MIB.addImm(1) // $last
.addReg(AMDGPU::PRED_SEL_OFF) // $pred_sel
.addImm(0) // $literal
.addImm(0); // $bank_swizzle
return MIB;
}
#define OPERAND_CASE(Label) \
case Label: { \
static const unsigned Ops[] = \
{ \
Label##_X, \
Label##_Y, \
Label##_Z, \
Label##_W \
}; \
return Ops[Slot]; \
}
static unsigned getSlotedOps(unsigned Op, unsigned Slot) {
switch (Op) {
OPERAND_CASE(AMDGPU::OpName::update_exec_mask)
OPERAND_CASE(AMDGPU::OpName::update_pred)
OPERAND_CASE(AMDGPU::OpName::write)
OPERAND_CASE(AMDGPU::OpName::omod)
OPERAND_CASE(AMDGPU::OpName::dst_rel)
OPERAND_CASE(AMDGPU::OpName::clamp)
OPERAND_CASE(AMDGPU::OpName::src0)
OPERAND_CASE(AMDGPU::OpName::src0_neg)
OPERAND_CASE(AMDGPU::OpName::src0_rel)
OPERAND_CASE(AMDGPU::OpName::src0_abs)
OPERAND_CASE(AMDGPU::OpName::src0_sel)
OPERAND_CASE(AMDGPU::OpName::src1)
OPERAND_CASE(AMDGPU::OpName::src1_neg)
OPERAND_CASE(AMDGPU::OpName::src1_rel)
OPERAND_CASE(AMDGPU::OpName::src1_abs)
OPERAND_CASE(AMDGPU::OpName::src1_sel)
OPERAND_CASE(AMDGPU::OpName::pred_sel)
default:
llvm_unreachable("Wrong Operand");
}
}
#undef OPERAND_CASE
MachineInstr *R600InstrInfo::buildSlotOfVectorInstruction(
MachineBasicBlock &MBB, MachineInstr *MI, unsigned Slot, unsigned DstReg)
const {
assert (MI->getOpcode() == AMDGPU::DOT_4 && "Not Implemented");
unsigned Opcode;
const AMDGPUSubtarget &ST = TM.getSubtarget<AMDGPUSubtarget>();
if (ST.getGeneration() <= AMDGPUSubtarget::R700)
Opcode = AMDGPU::DOT4_r600;
else
Opcode = AMDGPU::DOT4_eg;
MachineBasicBlock::iterator I = MI;
MachineOperand &Src0 = MI->getOperand(
getOperandIdx(MI->getOpcode(), getSlotedOps(AMDGPU::OpName::src0, Slot)));
MachineOperand &Src1 = MI->getOperand(
getOperandIdx(MI->getOpcode(), getSlotedOps(AMDGPU::OpName::src1, Slot)));
MachineInstr *MIB = buildDefaultInstruction(
MBB, I, Opcode, DstReg, Src0.getReg(), Src1.getReg());
static const unsigned Operands[14] = {
AMDGPU::OpName::update_exec_mask,
AMDGPU::OpName::update_pred,
AMDGPU::OpName::write,
AMDGPU::OpName::omod,
AMDGPU::OpName::dst_rel,
AMDGPU::OpName::clamp,
AMDGPU::OpName::src0_neg,
AMDGPU::OpName::src0_rel,
AMDGPU::OpName::src0_abs,
AMDGPU::OpName::src0_sel,
AMDGPU::OpName::src1_neg,
AMDGPU::OpName::src1_rel,
AMDGPU::OpName::src1_abs,
AMDGPU::OpName::src1_sel,
};
MachineOperand &MO = MI->getOperand(getOperandIdx(MI->getOpcode(),
getSlotedOps(AMDGPU::OpName::pred_sel, Slot)));
MIB->getOperand(getOperandIdx(Opcode, AMDGPU::OpName::pred_sel))
.setReg(MO.getReg());
for (unsigned i = 0; i < 14; i++) {
MachineOperand &MO = MI->getOperand(
getOperandIdx(MI->getOpcode(), getSlotedOps(Operands[i], Slot)));
assert (MO.isImm());
setImmOperand(MIB, Operands[i], MO.getImm());
}
MIB->getOperand(20).setImm(0);
return MIB;
}
MachineInstr *R600InstrInfo::buildMovImm(MachineBasicBlock &BB,
MachineBasicBlock::iterator I,
unsigned DstReg,
uint64_t Imm) const {
MachineInstr *MovImm = buildDefaultInstruction(BB, I, AMDGPU::MOV, DstReg,
AMDGPU::ALU_LITERAL_X);
setImmOperand(MovImm, AMDGPU::OpName::literal, Imm);
return MovImm;
}
MachineInstr *R600InstrInfo::buildMovInstr(MachineBasicBlock *MBB,
MachineBasicBlock::iterator I,
unsigned DstReg, unsigned SrcReg) const {
return buildDefaultInstruction(*MBB, I, AMDGPU::MOV, DstReg, SrcReg);
}
int R600InstrInfo::getOperandIdx(const MachineInstr &MI, unsigned Op) const {
return getOperandIdx(MI.getOpcode(), Op);
}
int R600InstrInfo::getOperandIdx(unsigned Opcode, unsigned Op) const {
return AMDGPU::getNamedOperandIdx(Opcode, Op);
}
void R600InstrInfo::setImmOperand(MachineInstr *MI, unsigned Op,
int64_t Imm) const {
int Idx = getOperandIdx(*MI, Op);
assert(Idx != -1 && "Operand not supported for this instruction.");
assert(MI->getOperand(Idx).isImm());
MI->getOperand(Idx).setImm(Imm);
}
//===----------------------------------------------------------------------===//
// Instruction flag getters/setters
//===----------------------------------------------------------------------===//
bool R600InstrInfo::hasFlagOperand(const MachineInstr &MI) const {
return GET_FLAG_OPERAND_IDX(get(MI.getOpcode()).TSFlags) != 0;
}
MachineOperand &R600InstrInfo::getFlagOp(MachineInstr *MI, unsigned SrcIdx,
unsigned Flag) const {
unsigned TargetFlags = get(MI->getOpcode()).TSFlags;
int FlagIndex = 0;
if (Flag != 0) {
// If we pass something other than the default value of Flag to this
// function, it means we are want to set a flag on an instruction
// that uses native encoding.
assert(HAS_NATIVE_OPERANDS(TargetFlags));
bool IsOP3 = (TargetFlags & R600_InstFlag::OP3) == R600_InstFlag::OP3;
switch (Flag) {
case MO_FLAG_CLAMP:
FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::clamp);
break;
case MO_FLAG_MASK:
FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::write);
break;
case MO_FLAG_NOT_LAST:
case MO_FLAG_LAST:
FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::last);
break;
case MO_FLAG_NEG:
switch (SrcIdx) {
case 0: FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::src0_neg); break;
case 1: FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::src1_neg); break;
case 2: FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::src2_neg); break;
}
break;
case MO_FLAG_ABS:
assert(!IsOP3 && "Cannot set absolute value modifier for OP3 "
"instructions.");
(void)IsOP3;
switch (SrcIdx) {
case 0: FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::src0_abs); break;
case 1: FlagIndex = getOperandIdx(*MI, AMDGPU::OpName::src1_abs); break;
}
break;
default:
FlagIndex = -1;
break;
}
assert(FlagIndex != -1 && "Flag not supported for this instruction");
} else {
FlagIndex = GET_FLAG_OPERAND_IDX(TargetFlags);
assert(FlagIndex != 0 &&
"Instruction flags not supported for this instruction");
}
MachineOperand &FlagOp = MI->getOperand(FlagIndex);
assert(FlagOp.isImm());
return FlagOp;
}
void R600InstrInfo::addFlag(MachineInstr *MI, unsigned Operand,
unsigned Flag) const {
unsigned TargetFlags = get(MI->getOpcode()).TSFlags;
if (Flag == 0) {
return;
}
if (HAS_NATIVE_OPERANDS(TargetFlags)) {
MachineOperand &FlagOp = getFlagOp(MI, Operand, Flag);
if (Flag == MO_FLAG_NOT_LAST) {
clearFlag(MI, Operand, MO_FLAG_LAST);
} else if (Flag == MO_FLAG_MASK) {
clearFlag(MI, Operand, Flag);
} else {
FlagOp.setImm(1);
}
} else {
MachineOperand &FlagOp = getFlagOp(MI, Operand);
FlagOp.setImm(FlagOp.getImm() | (Flag << (NUM_MO_FLAGS * Operand)));
}
}
void R600InstrInfo::clearFlag(MachineInstr *MI, unsigned Operand,
unsigned Flag) const {
unsigned TargetFlags = get(MI->getOpcode()).TSFlags;
if (HAS_NATIVE_OPERANDS(TargetFlags)) {
MachineOperand &FlagOp = getFlagOp(MI, Operand, Flag);
FlagOp.setImm(0);
} else {
MachineOperand &FlagOp = getFlagOp(MI);
unsigned InstFlags = FlagOp.getImm();
InstFlags &= ~(Flag << (NUM_MO_FLAGS * Operand));
FlagOp.setImm(InstFlags);
}
}