mirror of
https://github.com/c64scene-ar/llvm-6502.git
synced 2025-01-21 19:32:16 +00:00
d04a8d4b33
Sooooo many of these had incorrect or strange main module includes. I have manually inspected all of these, and fixed the main module include to be the nearest plausible thing I could find. If you own or care about any of these source files, I encourage you to take some time and check that these edits were sensible. I can't have broken anything (I strictly added headers, and reordered them, never removed), but they may not be the headers you'd really like to identify as containing the API being implemented. Many forward declarations and missing includes were added to a header files to allow them to parse cleanly when included first. The main module rule does in fact have its merits. =] git-svn-id: https://llvm.org/svn/llvm-project/llvm/trunk@169131 91177308-0d34-0410-b5e6-96231b3b80d8
1763 lines
72 KiB
C++
1763 lines
72 KiB
C++
//===- InstCombineCasts.cpp -----------------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the visit functions for cast operations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InstCombine.h"
|
|
#include "llvm/Analysis/ConstantFolding.h"
|
|
#include "llvm/DataLayout.h"
|
|
#include "llvm/Support/PatternMatch.h"
|
|
#include "llvm/Target/TargetLibraryInfo.h"
|
|
using namespace llvm;
|
|
using namespace PatternMatch;
|
|
|
|
/// DecomposeSimpleLinearExpr - Analyze 'Val', seeing if it is a simple linear
|
|
/// expression. If so, decompose it, returning some value X, such that Val is
|
|
/// X*Scale+Offset.
|
|
///
|
|
static Value *DecomposeSimpleLinearExpr(Value *Val, unsigned &Scale,
|
|
uint64_t &Offset) {
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(Val)) {
|
|
Offset = CI->getZExtValue();
|
|
Scale = 0;
|
|
return ConstantInt::get(Val->getType(), 0);
|
|
}
|
|
|
|
if (BinaryOperator *I = dyn_cast<BinaryOperator>(Val)) {
|
|
// Cannot look past anything that might overflow.
|
|
OverflowingBinaryOperator *OBI = dyn_cast<OverflowingBinaryOperator>(Val);
|
|
if (OBI && !OBI->hasNoUnsignedWrap() && !OBI->hasNoSignedWrap()) {
|
|
Scale = 1;
|
|
Offset = 0;
|
|
return Val;
|
|
}
|
|
|
|
if (ConstantInt *RHS = dyn_cast<ConstantInt>(I->getOperand(1))) {
|
|
if (I->getOpcode() == Instruction::Shl) {
|
|
// This is a value scaled by '1 << the shift amt'.
|
|
Scale = UINT64_C(1) << RHS->getZExtValue();
|
|
Offset = 0;
|
|
return I->getOperand(0);
|
|
}
|
|
|
|
if (I->getOpcode() == Instruction::Mul) {
|
|
// This value is scaled by 'RHS'.
|
|
Scale = RHS->getZExtValue();
|
|
Offset = 0;
|
|
return I->getOperand(0);
|
|
}
|
|
|
|
if (I->getOpcode() == Instruction::Add) {
|
|
// We have X+C. Check to see if we really have (X*C2)+C1,
|
|
// where C1 is divisible by C2.
|
|
unsigned SubScale;
|
|
Value *SubVal =
|
|
DecomposeSimpleLinearExpr(I->getOperand(0), SubScale, Offset);
|
|
Offset += RHS->getZExtValue();
|
|
Scale = SubScale;
|
|
return SubVal;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Otherwise, we can't look past this.
|
|
Scale = 1;
|
|
Offset = 0;
|
|
return Val;
|
|
}
|
|
|
|
/// PromoteCastOfAllocation - If we find a cast of an allocation instruction,
|
|
/// try to eliminate the cast by moving the type information into the alloc.
|
|
Instruction *InstCombiner::PromoteCastOfAllocation(BitCastInst &CI,
|
|
AllocaInst &AI) {
|
|
// This requires DataLayout to get the alloca alignment and size information.
|
|
if (!TD) return 0;
|
|
|
|
PointerType *PTy = cast<PointerType>(CI.getType());
|
|
|
|
BuilderTy AllocaBuilder(*Builder);
|
|
AllocaBuilder.SetInsertPoint(AI.getParent(), &AI);
|
|
|
|
// Get the type really allocated and the type casted to.
|
|
Type *AllocElTy = AI.getAllocatedType();
|
|
Type *CastElTy = PTy->getElementType();
|
|
if (!AllocElTy->isSized() || !CastElTy->isSized()) return 0;
|
|
|
|
unsigned AllocElTyAlign = TD->getABITypeAlignment(AllocElTy);
|
|
unsigned CastElTyAlign = TD->getABITypeAlignment(CastElTy);
|
|
if (CastElTyAlign < AllocElTyAlign) return 0;
|
|
|
|
// If the allocation has multiple uses, only promote it if we are strictly
|
|
// increasing the alignment of the resultant allocation. If we keep it the
|
|
// same, we open the door to infinite loops of various kinds.
|
|
if (!AI.hasOneUse() && CastElTyAlign == AllocElTyAlign) return 0;
|
|
|
|
uint64_t AllocElTySize = TD->getTypeAllocSize(AllocElTy);
|
|
uint64_t CastElTySize = TD->getTypeAllocSize(CastElTy);
|
|
if (CastElTySize == 0 || AllocElTySize == 0) return 0;
|
|
|
|
// See if we can satisfy the modulus by pulling a scale out of the array
|
|
// size argument.
|
|
unsigned ArraySizeScale;
|
|
uint64_t ArrayOffset;
|
|
Value *NumElements = // See if the array size is a decomposable linear expr.
|
|
DecomposeSimpleLinearExpr(AI.getOperand(0), ArraySizeScale, ArrayOffset);
|
|
|
|
// If we can now satisfy the modulus, by using a non-1 scale, we really can
|
|
// do the xform.
|
|
if ((AllocElTySize*ArraySizeScale) % CastElTySize != 0 ||
|
|
(AllocElTySize*ArrayOffset ) % CastElTySize != 0) return 0;
|
|
|
|
unsigned Scale = (AllocElTySize*ArraySizeScale)/CastElTySize;
|
|
Value *Amt = 0;
|
|
if (Scale == 1) {
|
|
Amt = NumElements;
|
|
} else {
|
|
Amt = ConstantInt::get(AI.getArraySize()->getType(), Scale);
|
|
// Insert before the alloca, not before the cast.
|
|
Amt = AllocaBuilder.CreateMul(Amt, NumElements);
|
|
}
|
|
|
|
if (uint64_t Offset = (AllocElTySize*ArrayOffset)/CastElTySize) {
|
|
Value *Off = ConstantInt::get(AI.getArraySize()->getType(),
|
|
Offset, true);
|
|
Amt = AllocaBuilder.CreateAdd(Amt, Off);
|
|
}
|
|
|
|
AllocaInst *New = AllocaBuilder.CreateAlloca(CastElTy, Amt);
|
|
New->setAlignment(AI.getAlignment());
|
|
New->takeName(&AI);
|
|
|
|
// If the allocation has multiple real uses, insert a cast and change all
|
|
// things that used it to use the new cast. This will also hack on CI, but it
|
|
// will die soon.
|
|
if (!AI.hasOneUse()) {
|
|
// New is the allocation instruction, pointer typed. AI is the original
|
|
// allocation instruction, also pointer typed. Thus, cast to use is BitCast.
|
|
Value *NewCast = AllocaBuilder.CreateBitCast(New, AI.getType(), "tmpcast");
|
|
ReplaceInstUsesWith(AI, NewCast);
|
|
}
|
|
return ReplaceInstUsesWith(CI, New);
|
|
}
|
|
|
|
/// EvaluateInDifferentType - Given an expression that
|
|
/// CanEvaluateTruncated or CanEvaluateSExtd returns true for, actually
|
|
/// insert the code to evaluate the expression.
|
|
Value *InstCombiner::EvaluateInDifferentType(Value *V, Type *Ty,
|
|
bool isSigned) {
|
|
if (Constant *C = dyn_cast<Constant>(V)) {
|
|
C = ConstantExpr::getIntegerCast(C, Ty, isSigned /*Sext or ZExt*/);
|
|
// If we got a constantexpr back, try to simplify it with TD info.
|
|
if (ConstantExpr *CE = dyn_cast<ConstantExpr>(C))
|
|
C = ConstantFoldConstantExpression(CE, TD, TLI);
|
|
return C;
|
|
}
|
|
|
|
// Otherwise, it must be an instruction.
|
|
Instruction *I = cast<Instruction>(V);
|
|
Instruction *Res = 0;
|
|
unsigned Opc = I->getOpcode();
|
|
switch (Opc) {
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
case Instruction::Mul:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
case Instruction::AShr:
|
|
case Instruction::LShr:
|
|
case Instruction::Shl:
|
|
case Instruction::UDiv:
|
|
case Instruction::URem: {
|
|
Value *LHS = EvaluateInDifferentType(I->getOperand(0), Ty, isSigned);
|
|
Value *RHS = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
|
|
Res = BinaryOperator::Create((Instruction::BinaryOps)Opc, LHS, RHS);
|
|
break;
|
|
}
|
|
case Instruction::Trunc:
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
// If the source type of the cast is the type we're trying for then we can
|
|
// just return the source. There's no need to insert it because it is not
|
|
// new.
|
|
if (I->getOperand(0)->getType() == Ty)
|
|
return I->getOperand(0);
|
|
|
|
// Otherwise, must be the same type of cast, so just reinsert a new one.
|
|
// This also handles the case of zext(trunc(x)) -> zext(x).
|
|
Res = CastInst::CreateIntegerCast(I->getOperand(0), Ty,
|
|
Opc == Instruction::SExt);
|
|
break;
|
|
case Instruction::Select: {
|
|
Value *True = EvaluateInDifferentType(I->getOperand(1), Ty, isSigned);
|
|
Value *False = EvaluateInDifferentType(I->getOperand(2), Ty, isSigned);
|
|
Res = SelectInst::Create(I->getOperand(0), True, False);
|
|
break;
|
|
}
|
|
case Instruction::PHI: {
|
|
PHINode *OPN = cast<PHINode>(I);
|
|
PHINode *NPN = PHINode::Create(Ty, OPN->getNumIncomingValues());
|
|
for (unsigned i = 0, e = OPN->getNumIncomingValues(); i != e; ++i) {
|
|
Value *V =EvaluateInDifferentType(OPN->getIncomingValue(i), Ty, isSigned);
|
|
NPN->addIncoming(V, OPN->getIncomingBlock(i));
|
|
}
|
|
Res = NPN;
|
|
break;
|
|
}
|
|
default:
|
|
// TODO: Can handle more cases here.
|
|
llvm_unreachable("Unreachable!");
|
|
}
|
|
|
|
Res->takeName(I);
|
|
return InsertNewInstWith(Res, *I);
|
|
}
|
|
|
|
|
|
/// This function is a wrapper around CastInst::isEliminableCastPair. It
|
|
/// simply extracts arguments and returns what that function returns.
|
|
static Instruction::CastOps
|
|
isEliminableCastPair(
|
|
const CastInst *CI, ///< The first cast instruction
|
|
unsigned opcode, ///< The opcode of the second cast instruction
|
|
Type *DstTy, ///< The target type for the second cast instruction
|
|
DataLayout *TD ///< The target data for pointer size
|
|
) {
|
|
|
|
Type *SrcTy = CI->getOperand(0)->getType(); // A from above
|
|
Type *MidTy = CI->getType(); // B from above
|
|
|
|
// Get the opcodes of the two Cast instructions
|
|
Instruction::CastOps firstOp = Instruction::CastOps(CI->getOpcode());
|
|
Instruction::CastOps secondOp = Instruction::CastOps(opcode);
|
|
Type *SrcIntPtrTy = TD && SrcTy->isPtrOrPtrVectorTy() ?
|
|
TD->getIntPtrType(SrcTy) : 0;
|
|
Type *MidIntPtrTy = TD && MidTy->isPtrOrPtrVectorTy() ?
|
|
TD->getIntPtrType(MidTy) : 0;
|
|
Type *DstIntPtrTy = TD && DstTy->isPtrOrPtrVectorTy() ?
|
|
TD->getIntPtrType(DstTy) : 0;
|
|
unsigned Res = CastInst::isEliminableCastPair(firstOp, secondOp, SrcTy, MidTy,
|
|
DstTy, SrcIntPtrTy, MidIntPtrTy,
|
|
DstIntPtrTy);
|
|
|
|
// We don't want to form an inttoptr or ptrtoint that converts to an integer
|
|
// type that differs from the pointer size.
|
|
if ((Res == Instruction::IntToPtr && SrcTy != DstIntPtrTy) ||
|
|
(Res == Instruction::PtrToInt && DstTy != SrcIntPtrTy))
|
|
Res = 0;
|
|
|
|
return Instruction::CastOps(Res);
|
|
}
|
|
|
|
/// ShouldOptimizeCast - Return true if the cast from "V to Ty" actually
|
|
/// results in any code being generated and is interesting to optimize out. If
|
|
/// the cast can be eliminated by some other simple transformation, we prefer
|
|
/// to do the simplification first.
|
|
bool InstCombiner::ShouldOptimizeCast(Instruction::CastOps opc, const Value *V,
|
|
Type *Ty) {
|
|
// Noop casts and casts of constants should be eliminated trivially.
|
|
if (V->getType() == Ty || isa<Constant>(V)) return false;
|
|
|
|
// If this is another cast that can be eliminated, we prefer to have it
|
|
// eliminated.
|
|
if (const CastInst *CI = dyn_cast<CastInst>(V))
|
|
if (isEliminableCastPair(CI, opc, Ty, TD))
|
|
return false;
|
|
|
|
// If this is a vector sext from a compare, then we don't want to break the
|
|
// idiom where each element of the extended vector is either zero or all ones.
|
|
if (opc == Instruction::SExt && isa<CmpInst>(V) && Ty->isVectorTy())
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
/// @brief Implement the transforms common to all CastInst visitors.
|
|
Instruction *InstCombiner::commonCastTransforms(CastInst &CI) {
|
|
Value *Src = CI.getOperand(0);
|
|
|
|
// Many cases of "cast of a cast" are eliminable. If it's eliminable we just
|
|
// eliminate it now.
|
|
if (CastInst *CSrc = dyn_cast<CastInst>(Src)) { // A->B->C cast
|
|
if (Instruction::CastOps opc =
|
|
isEliminableCastPair(CSrc, CI.getOpcode(), CI.getType(), TD)) {
|
|
// The first cast (CSrc) is eliminable so we need to fix up or replace
|
|
// the second cast (CI). CSrc will then have a good chance of being dead.
|
|
return CastInst::Create(opc, CSrc->getOperand(0), CI.getType());
|
|
}
|
|
}
|
|
|
|
// If we are casting a select then fold the cast into the select
|
|
if (SelectInst *SI = dyn_cast<SelectInst>(Src))
|
|
if (Instruction *NV = FoldOpIntoSelect(CI, SI))
|
|
return NV;
|
|
|
|
// If we are casting a PHI then fold the cast into the PHI
|
|
if (isa<PHINode>(Src)) {
|
|
// We don't do this if this would create a PHI node with an illegal type if
|
|
// it is currently legal.
|
|
if (!Src->getType()->isIntegerTy() ||
|
|
!CI.getType()->isIntegerTy() ||
|
|
ShouldChangeType(CI.getType(), Src->getType()))
|
|
if (Instruction *NV = FoldOpIntoPhi(CI))
|
|
return NV;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// CanEvaluateTruncated - Return true if we can evaluate the specified
|
|
/// expression tree as type Ty instead of its larger type, and arrive with the
|
|
/// same value. This is used by code that tries to eliminate truncates.
|
|
///
|
|
/// Ty will always be a type smaller than V. We should return true if trunc(V)
|
|
/// can be computed by computing V in the smaller type. If V is an instruction,
|
|
/// then trunc(inst(x,y)) can be computed as inst(trunc(x),trunc(y)), which only
|
|
/// makes sense if x and y can be efficiently truncated.
|
|
///
|
|
/// This function works on both vectors and scalars.
|
|
///
|
|
static bool CanEvaluateTruncated(Value *V, Type *Ty) {
|
|
// We can always evaluate constants in another type.
|
|
if (isa<Constant>(V))
|
|
return true;
|
|
|
|
Instruction *I = dyn_cast<Instruction>(V);
|
|
if (!I) return false;
|
|
|
|
Type *OrigTy = V->getType();
|
|
|
|
// If this is an extension from the dest type, we can eliminate it, even if it
|
|
// has multiple uses.
|
|
if ((isa<ZExtInst>(I) || isa<SExtInst>(I)) &&
|
|
I->getOperand(0)->getType() == Ty)
|
|
return true;
|
|
|
|
// We can't extend or shrink something that has multiple uses: doing so would
|
|
// require duplicating the instruction in general, which isn't profitable.
|
|
if (!I->hasOneUse()) return false;
|
|
|
|
unsigned Opc = I->getOpcode();
|
|
switch (Opc) {
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
case Instruction::Mul:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
// These operators can all arbitrarily be extended or truncated.
|
|
return CanEvaluateTruncated(I->getOperand(0), Ty) &&
|
|
CanEvaluateTruncated(I->getOperand(1), Ty);
|
|
|
|
case Instruction::UDiv:
|
|
case Instruction::URem: {
|
|
// UDiv and URem can be truncated if all the truncated bits are zero.
|
|
uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
|
|
uint32_t BitWidth = Ty->getScalarSizeInBits();
|
|
if (BitWidth < OrigBitWidth) {
|
|
APInt Mask = APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth);
|
|
if (MaskedValueIsZero(I->getOperand(0), Mask) &&
|
|
MaskedValueIsZero(I->getOperand(1), Mask)) {
|
|
return CanEvaluateTruncated(I->getOperand(0), Ty) &&
|
|
CanEvaluateTruncated(I->getOperand(1), Ty);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
case Instruction::Shl:
|
|
// If we are truncating the result of this SHL, and if it's a shift of a
|
|
// constant amount, we can always perform a SHL in a smaller type.
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
|
|
uint32_t BitWidth = Ty->getScalarSizeInBits();
|
|
if (CI->getLimitedValue(BitWidth) < BitWidth)
|
|
return CanEvaluateTruncated(I->getOperand(0), Ty);
|
|
}
|
|
break;
|
|
case Instruction::LShr:
|
|
// If this is a truncate of a logical shr, we can truncate it to a smaller
|
|
// lshr iff we know that the bits we would otherwise be shifting in are
|
|
// already zeros.
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1))) {
|
|
uint32_t OrigBitWidth = OrigTy->getScalarSizeInBits();
|
|
uint32_t BitWidth = Ty->getScalarSizeInBits();
|
|
if (MaskedValueIsZero(I->getOperand(0),
|
|
APInt::getHighBitsSet(OrigBitWidth, OrigBitWidth-BitWidth)) &&
|
|
CI->getLimitedValue(BitWidth) < BitWidth) {
|
|
return CanEvaluateTruncated(I->getOperand(0), Ty);
|
|
}
|
|
}
|
|
break;
|
|
case Instruction::Trunc:
|
|
// trunc(trunc(x)) -> trunc(x)
|
|
return true;
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
// trunc(ext(x)) -> ext(x) if the source type is smaller than the new dest
|
|
// trunc(ext(x)) -> trunc(x) if the source type is larger than the new dest
|
|
return true;
|
|
case Instruction::Select: {
|
|
SelectInst *SI = cast<SelectInst>(I);
|
|
return CanEvaluateTruncated(SI->getTrueValue(), Ty) &&
|
|
CanEvaluateTruncated(SI->getFalseValue(), Ty);
|
|
}
|
|
case Instruction::PHI: {
|
|
// We can change a phi if we can change all operands. Note that we never
|
|
// get into trouble with cyclic PHIs here because we only consider
|
|
// instructions with a single use.
|
|
PHINode *PN = cast<PHINode>(I);
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
if (!CanEvaluateTruncated(PN->getIncomingValue(i), Ty))
|
|
return false;
|
|
return true;
|
|
}
|
|
default:
|
|
// TODO: Can handle more cases here.
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
Instruction *InstCombiner::visitTrunc(TruncInst &CI) {
|
|
if (Instruction *Result = commonCastTransforms(CI))
|
|
return Result;
|
|
|
|
// See if we can simplify any instructions used by the input whose sole
|
|
// purpose is to compute bits we don't care about.
|
|
if (SimplifyDemandedInstructionBits(CI))
|
|
return &CI;
|
|
|
|
Value *Src = CI.getOperand(0);
|
|
Type *DestTy = CI.getType(), *SrcTy = Src->getType();
|
|
|
|
// Attempt to truncate the entire input expression tree to the destination
|
|
// type. Only do this if the dest type is a simple type, don't convert the
|
|
// expression tree to something weird like i93 unless the source is also
|
|
// strange.
|
|
if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
|
|
CanEvaluateTruncated(Src, DestTy)) {
|
|
|
|
// If this cast is a truncate, evaluting in a different type always
|
|
// eliminates the cast, so it is always a win.
|
|
DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
|
|
" to avoid cast: " << CI << '\n');
|
|
Value *Res = EvaluateInDifferentType(Src, DestTy, false);
|
|
assert(Res->getType() == DestTy);
|
|
return ReplaceInstUsesWith(CI, Res);
|
|
}
|
|
|
|
// Canonicalize trunc x to i1 -> (icmp ne (and x, 1), 0), likewise for vector.
|
|
if (DestTy->getScalarSizeInBits() == 1) {
|
|
Constant *One = ConstantInt::get(Src->getType(), 1);
|
|
Src = Builder->CreateAnd(Src, One);
|
|
Value *Zero = Constant::getNullValue(Src->getType());
|
|
return new ICmpInst(ICmpInst::ICMP_NE, Src, Zero);
|
|
}
|
|
|
|
// Transform trunc(lshr (zext A), Cst) to eliminate one type conversion.
|
|
Value *A = 0; ConstantInt *Cst = 0;
|
|
if (Src->hasOneUse() &&
|
|
match(Src, m_LShr(m_ZExt(m_Value(A)), m_ConstantInt(Cst)))) {
|
|
// We have three types to worry about here, the type of A, the source of
|
|
// the truncate (MidSize), and the destination of the truncate. We know that
|
|
// ASize < MidSize and MidSize > ResultSize, but don't know the relation
|
|
// between ASize and ResultSize.
|
|
unsigned ASize = A->getType()->getPrimitiveSizeInBits();
|
|
|
|
// If the shift amount is larger than the size of A, then the result is
|
|
// known to be zero because all the input bits got shifted out.
|
|
if (Cst->getZExtValue() >= ASize)
|
|
return ReplaceInstUsesWith(CI, Constant::getNullValue(CI.getType()));
|
|
|
|
// Since we're doing an lshr and a zero extend, and know that the shift
|
|
// amount is smaller than ASize, it is always safe to do the shift in A's
|
|
// type, then zero extend or truncate to the result.
|
|
Value *Shift = Builder->CreateLShr(A, Cst->getZExtValue());
|
|
Shift->takeName(Src);
|
|
return CastInst::CreateIntegerCast(Shift, CI.getType(), false);
|
|
}
|
|
|
|
// Transform "trunc (and X, cst)" -> "and (trunc X), cst" so long as the dest
|
|
// type isn't non-native.
|
|
if (Src->hasOneUse() && isa<IntegerType>(Src->getType()) &&
|
|
ShouldChangeType(Src->getType(), CI.getType()) &&
|
|
match(Src, m_And(m_Value(A), m_ConstantInt(Cst)))) {
|
|
Value *NewTrunc = Builder->CreateTrunc(A, CI.getType(), A->getName()+".tr");
|
|
return BinaryOperator::CreateAnd(NewTrunc,
|
|
ConstantExpr::getTrunc(Cst, CI.getType()));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// transformZExtICmp - Transform (zext icmp) to bitwise / integer operations
|
|
/// in order to eliminate the icmp.
|
|
Instruction *InstCombiner::transformZExtICmp(ICmpInst *ICI, Instruction &CI,
|
|
bool DoXform) {
|
|
// If we are just checking for a icmp eq of a single bit and zext'ing it
|
|
// to an integer, then shift the bit to the appropriate place and then
|
|
// cast to integer to avoid the comparison.
|
|
if (ConstantInt *Op1C = dyn_cast<ConstantInt>(ICI->getOperand(1))) {
|
|
const APInt &Op1CV = Op1C->getValue();
|
|
|
|
// zext (x <s 0) to i32 --> x>>u31 true if signbit set.
|
|
// zext (x >s -1) to i32 --> (x>>u31)^1 true if signbit clear.
|
|
if ((ICI->getPredicate() == ICmpInst::ICMP_SLT && Op1CV == 0) ||
|
|
(ICI->getPredicate() == ICmpInst::ICMP_SGT &&Op1CV.isAllOnesValue())) {
|
|
if (!DoXform) return ICI;
|
|
|
|
Value *In = ICI->getOperand(0);
|
|
Value *Sh = ConstantInt::get(In->getType(),
|
|
In->getType()->getScalarSizeInBits()-1);
|
|
In = Builder->CreateLShr(In, Sh, In->getName()+".lobit");
|
|
if (In->getType() != CI.getType())
|
|
In = Builder->CreateIntCast(In, CI.getType(), false/*ZExt*/);
|
|
|
|
if (ICI->getPredicate() == ICmpInst::ICMP_SGT) {
|
|
Constant *One = ConstantInt::get(In->getType(), 1);
|
|
In = Builder->CreateXor(In, One, In->getName()+".not");
|
|
}
|
|
|
|
return ReplaceInstUsesWith(CI, In);
|
|
}
|
|
|
|
// zext (X == 0) to i32 --> X^1 iff X has only the low bit set.
|
|
// zext (X == 0) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
|
|
// zext (X == 1) to i32 --> X iff X has only the low bit set.
|
|
// zext (X == 2) to i32 --> X>>1 iff X has only the 2nd bit set.
|
|
// zext (X != 0) to i32 --> X iff X has only the low bit set.
|
|
// zext (X != 0) to i32 --> X>>1 iff X has only the 2nd bit set.
|
|
// zext (X != 1) to i32 --> X^1 iff X has only the low bit set.
|
|
// zext (X != 2) to i32 --> (X>>1)^1 iff X has only the 2nd bit set.
|
|
if ((Op1CV == 0 || Op1CV.isPowerOf2()) &&
|
|
// This only works for EQ and NE
|
|
ICI->isEquality()) {
|
|
// If Op1C some other power of two, convert:
|
|
uint32_t BitWidth = Op1C->getType()->getBitWidth();
|
|
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
|
|
ComputeMaskedBits(ICI->getOperand(0), KnownZero, KnownOne);
|
|
|
|
APInt KnownZeroMask(~KnownZero);
|
|
if (KnownZeroMask.isPowerOf2()) { // Exactly 1 possible 1?
|
|
if (!DoXform) return ICI;
|
|
|
|
bool isNE = ICI->getPredicate() == ICmpInst::ICMP_NE;
|
|
if (Op1CV != 0 && (Op1CV != KnownZeroMask)) {
|
|
// (X&4) == 2 --> false
|
|
// (X&4) != 2 --> true
|
|
Constant *Res = ConstantInt::get(Type::getInt1Ty(CI.getContext()),
|
|
isNE);
|
|
Res = ConstantExpr::getZExt(Res, CI.getType());
|
|
return ReplaceInstUsesWith(CI, Res);
|
|
}
|
|
|
|
uint32_t ShiftAmt = KnownZeroMask.logBase2();
|
|
Value *In = ICI->getOperand(0);
|
|
if (ShiftAmt) {
|
|
// Perform a logical shr by shiftamt.
|
|
// Insert the shift to put the result in the low bit.
|
|
In = Builder->CreateLShr(In, ConstantInt::get(In->getType(),ShiftAmt),
|
|
In->getName()+".lobit");
|
|
}
|
|
|
|
if ((Op1CV != 0) == isNE) { // Toggle the low bit.
|
|
Constant *One = ConstantInt::get(In->getType(), 1);
|
|
In = Builder->CreateXor(In, One);
|
|
}
|
|
|
|
if (CI.getType() == In->getType())
|
|
return ReplaceInstUsesWith(CI, In);
|
|
return CastInst::CreateIntegerCast(In, CI.getType(), false/*ZExt*/);
|
|
}
|
|
}
|
|
}
|
|
|
|
// icmp ne A, B is equal to xor A, B when A and B only really have one bit.
|
|
// It is also profitable to transform icmp eq into not(xor(A, B)) because that
|
|
// may lead to additional simplifications.
|
|
if (ICI->isEquality() && CI.getType() == ICI->getOperand(0)->getType()) {
|
|
if (IntegerType *ITy = dyn_cast<IntegerType>(CI.getType())) {
|
|
uint32_t BitWidth = ITy->getBitWidth();
|
|
Value *LHS = ICI->getOperand(0);
|
|
Value *RHS = ICI->getOperand(1);
|
|
|
|
APInt KnownZeroLHS(BitWidth, 0), KnownOneLHS(BitWidth, 0);
|
|
APInt KnownZeroRHS(BitWidth, 0), KnownOneRHS(BitWidth, 0);
|
|
ComputeMaskedBits(LHS, KnownZeroLHS, KnownOneLHS);
|
|
ComputeMaskedBits(RHS, KnownZeroRHS, KnownOneRHS);
|
|
|
|
if (KnownZeroLHS == KnownZeroRHS && KnownOneLHS == KnownOneRHS) {
|
|
APInt KnownBits = KnownZeroLHS | KnownOneLHS;
|
|
APInt UnknownBit = ~KnownBits;
|
|
if (UnknownBit.countPopulation() == 1) {
|
|
if (!DoXform) return ICI;
|
|
|
|
Value *Result = Builder->CreateXor(LHS, RHS);
|
|
|
|
// Mask off any bits that are set and won't be shifted away.
|
|
if (KnownOneLHS.uge(UnknownBit))
|
|
Result = Builder->CreateAnd(Result,
|
|
ConstantInt::get(ITy, UnknownBit));
|
|
|
|
// Shift the bit we're testing down to the lsb.
|
|
Result = Builder->CreateLShr(
|
|
Result, ConstantInt::get(ITy, UnknownBit.countTrailingZeros()));
|
|
|
|
if (ICI->getPredicate() == ICmpInst::ICMP_EQ)
|
|
Result = Builder->CreateXor(Result, ConstantInt::get(ITy, 1));
|
|
Result->takeName(ICI);
|
|
return ReplaceInstUsesWith(CI, Result);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// CanEvaluateZExtd - Determine if the specified value can be computed in the
|
|
/// specified wider type and produce the same low bits. If not, return false.
|
|
///
|
|
/// If this function returns true, it can also return a non-zero number of bits
|
|
/// (in BitsToClear) which indicates that the value it computes is correct for
|
|
/// the zero extend, but that the additional BitsToClear bits need to be zero'd
|
|
/// out. For example, to promote something like:
|
|
///
|
|
/// %B = trunc i64 %A to i32
|
|
/// %C = lshr i32 %B, 8
|
|
/// %E = zext i32 %C to i64
|
|
///
|
|
/// CanEvaluateZExtd for the 'lshr' will return true, and BitsToClear will be
|
|
/// set to 8 to indicate that the promoted value needs to have bits 24-31
|
|
/// cleared in addition to bits 32-63. Since an 'and' will be generated to
|
|
/// clear the top bits anyway, doing this has no extra cost.
|
|
///
|
|
/// This function works on both vectors and scalars.
|
|
static bool CanEvaluateZExtd(Value *V, Type *Ty, unsigned &BitsToClear) {
|
|
BitsToClear = 0;
|
|
if (isa<Constant>(V))
|
|
return true;
|
|
|
|
Instruction *I = dyn_cast<Instruction>(V);
|
|
if (!I) return false;
|
|
|
|
// If the input is a truncate from the destination type, we can trivially
|
|
// eliminate it.
|
|
if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
|
|
return true;
|
|
|
|
// We can't extend or shrink something that has multiple uses: doing so would
|
|
// require duplicating the instruction in general, which isn't profitable.
|
|
if (!I->hasOneUse()) return false;
|
|
|
|
unsigned Opc = I->getOpcode(), Tmp;
|
|
switch (Opc) {
|
|
case Instruction::ZExt: // zext(zext(x)) -> zext(x).
|
|
case Instruction::SExt: // zext(sext(x)) -> sext(x).
|
|
case Instruction::Trunc: // zext(trunc(x)) -> trunc(x) or zext(x)
|
|
return true;
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
case Instruction::Mul:
|
|
case Instruction::Shl:
|
|
if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear) ||
|
|
!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp))
|
|
return false;
|
|
// These can all be promoted if neither operand has 'bits to clear'.
|
|
if (BitsToClear == 0 && Tmp == 0)
|
|
return true;
|
|
|
|
// If the operation is an AND/OR/XOR and the bits to clear are zero in the
|
|
// other side, BitsToClear is ok.
|
|
if (Tmp == 0 &&
|
|
(Opc == Instruction::And || Opc == Instruction::Or ||
|
|
Opc == Instruction::Xor)) {
|
|
// We use MaskedValueIsZero here for generality, but the case we care
|
|
// about the most is constant RHS.
|
|
unsigned VSize = V->getType()->getScalarSizeInBits();
|
|
if (MaskedValueIsZero(I->getOperand(1),
|
|
APInt::getHighBitsSet(VSize, BitsToClear)))
|
|
return true;
|
|
}
|
|
|
|
// Otherwise, we don't know how to analyze this BitsToClear case yet.
|
|
return false;
|
|
|
|
case Instruction::LShr:
|
|
// We can promote lshr(x, cst) if we can promote x. This requires the
|
|
// ultimate 'and' to clear out the high zero bits we're clearing out though.
|
|
if (ConstantInt *Amt = dyn_cast<ConstantInt>(I->getOperand(1))) {
|
|
if (!CanEvaluateZExtd(I->getOperand(0), Ty, BitsToClear))
|
|
return false;
|
|
BitsToClear += Amt->getZExtValue();
|
|
if (BitsToClear > V->getType()->getScalarSizeInBits())
|
|
BitsToClear = V->getType()->getScalarSizeInBits();
|
|
return true;
|
|
}
|
|
// Cannot promote variable LSHR.
|
|
return false;
|
|
case Instruction::Select:
|
|
if (!CanEvaluateZExtd(I->getOperand(1), Ty, Tmp) ||
|
|
!CanEvaluateZExtd(I->getOperand(2), Ty, BitsToClear) ||
|
|
// TODO: If important, we could handle the case when the BitsToClear are
|
|
// known zero in the disagreeing side.
|
|
Tmp != BitsToClear)
|
|
return false;
|
|
return true;
|
|
|
|
case Instruction::PHI: {
|
|
// We can change a phi if we can change all operands. Note that we never
|
|
// get into trouble with cyclic PHIs here because we only consider
|
|
// instructions with a single use.
|
|
PHINode *PN = cast<PHINode>(I);
|
|
if (!CanEvaluateZExtd(PN->getIncomingValue(0), Ty, BitsToClear))
|
|
return false;
|
|
for (unsigned i = 1, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
if (!CanEvaluateZExtd(PN->getIncomingValue(i), Ty, Tmp) ||
|
|
// TODO: If important, we could handle the case when the BitsToClear
|
|
// are known zero in the disagreeing input.
|
|
Tmp != BitsToClear)
|
|
return false;
|
|
return true;
|
|
}
|
|
default:
|
|
// TODO: Can handle more cases here.
|
|
return false;
|
|
}
|
|
}
|
|
|
|
Instruction *InstCombiner::visitZExt(ZExtInst &CI) {
|
|
// If this zero extend is only used by a truncate, let the truncate by
|
|
// eliminated before we try to optimize this zext.
|
|
if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
|
|
return 0;
|
|
|
|
// If one of the common conversion will work, do it.
|
|
if (Instruction *Result = commonCastTransforms(CI))
|
|
return Result;
|
|
|
|
// See if we can simplify any instructions used by the input whose sole
|
|
// purpose is to compute bits we don't care about.
|
|
if (SimplifyDemandedInstructionBits(CI))
|
|
return &CI;
|
|
|
|
Value *Src = CI.getOperand(0);
|
|
Type *SrcTy = Src->getType(), *DestTy = CI.getType();
|
|
|
|
// Attempt to extend the entire input expression tree to the destination
|
|
// type. Only do this if the dest type is a simple type, don't convert the
|
|
// expression tree to something weird like i93 unless the source is also
|
|
// strange.
|
|
unsigned BitsToClear;
|
|
if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
|
|
CanEvaluateZExtd(Src, DestTy, BitsToClear)) {
|
|
assert(BitsToClear < SrcTy->getScalarSizeInBits() &&
|
|
"Unreasonable BitsToClear");
|
|
|
|
// Okay, we can transform this! Insert the new expression now.
|
|
DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
|
|
" to avoid zero extend: " << CI);
|
|
Value *Res = EvaluateInDifferentType(Src, DestTy, false);
|
|
assert(Res->getType() == DestTy);
|
|
|
|
uint32_t SrcBitsKept = SrcTy->getScalarSizeInBits()-BitsToClear;
|
|
uint32_t DestBitSize = DestTy->getScalarSizeInBits();
|
|
|
|
// If the high bits are already filled with zeros, just replace this
|
|
// cast with the result.
|
|
if (MaskedValueIsZero(Res, APInt::getHighBitsSet(DestBitSize,
|
|
DestBitSize-SrcBitsKept)))
|
|
return ReplaceInstUsesWith(CI, Res);
|
|
|
|
// We need to emit an AND to clear the high bits.
|
|
Constant *C = ConstantInt::get(Res->getType(),
|
|
APInt::getLowBitsSet(DestBitSize, SrcBitsKept));
|
|
return BinaryOperator::CreateAnd(Res, C);
|
|
}
|
|
|
|
// If this is a TRUNC followed by a ZEXT then we are dealing with integral
|
|
// types and if the sizes are just right we can convert this into a logical
|
|
// 'and' which will be much cheaper than the pair of casts.
|
|
if (TruncInst *CSrc = dyn_cast<TruncInst>(Src)) { // A->B->C cast
|
|
// TODO: Subsume this into EvaluateInDifferentType.
|
|
|
|
// Get the sizes of the types involved. We know that the intermediate type
|
|
// will be smaller than A or C, but don't know the relation between A and C.
|
|
Value *A = CSrc->getOperand(0);
|
|
unsigned SrcSize = A->getType()->getScalarSizeInBits();
|
|
unsigned MidSize = CSrc->getType()->getScalarSizeInBits();
|
|
unsigned DstSize = CI.getType()->getScalarSizeInBits();
|
|
// If we're actually extending zero bits, then if
|
|
// SrcSize < DstSize: zext(a & mask)
|
|
// SrcSize == DstSize: a & mask
|
|
// SrcSize > DstSize: trunc(a) & mask
|
|
if (SrcSize < DstSize) {
|
|
APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
|
|
Constant *AndConst = ConstantInt::get(A->getType(), AndValue);
|
|
Value *And = Builder->CreateAnd(A, AndConst, CSrc->getName()+".mask");
|
|
return new ZExtInst(And, CI.getType());
|
|
}
|
|
|
|
if (SrcSize == DstSize) {
|
|
APInt AndValue(APInt::getLowBitsSet(SrcSize, MidSize));
|
|
return BinaryOperator::CreateAnd(A, ConstantInt::get(A->getType(),
|
|
AndValue));
|
|
}
|
|
if (SrcSize > DstSize) {
|
|
Value *Trunc = Builder->CreateTrunc(A, CI.getType());
|
|
APInt AndValue(APInt::getLowBitsSet(DstSize, MidSize));
|
|
return BinaryOperator::CreateAnd(Trunc,
|
|
ConstantInt::get(Trunc->getType(),
|
|
AndValue));
|
|
}
|
|
}
|
|
|
|
if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
|
|
return transformZExtICmp(ICI, CI);
|
|
|
|
BinaryOperator *SrcI = dyn_cast<BinaryOperator>(Src);
|
|
if (SrcI && SrcI->getOpcode() == Instruction::Or) {
|
|
// zext (or icmp, icmp) --> or (zext icmp), (zext icmp) if at least one
|
|
// of the (zext icmp) will be transformed.
|
|
ICmpInst *LHS = dyn_cast<ICmpInst>(SrcI->getOperand(0));
|
|
ICmpInst *RHS = dyn_cast<ICmpInst>(SrcI->getOperand(1));
|
|
if (LHS && RHS && LHS->hasOneUse() && RHS->hasOneUse() &&
|
|
(transformZExtICmp(LHS, CI, false) ||
|
|
transformZExtICmp(RHS, CI, false))) {
|
|
Value *LCast = Builder->CreateZExt(LHS, CI.getType(), LHS->getName());
|
|
Value *RCast = Builder->CreateZExt(RHS, CI.getType(), RHS->getName());
|
|
return BinaryOperator::Create(Instruction::Or, LCast, RCast);
|
|
}
|
|
}
|
|
|
|
// zext(trunc(t) & C) -> (t & zext(C)).
|
|
if (SrcI && SrcI->getOpcode() == Instruction::And && SrcI->hasOneUse())
|
|
if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
|
|
if (TruncInst *TI = dyn_cast<TruncInst>(SrcI->getOperand(0))) {
|
|
Value *TI0 = TI->getOperand(0);
|
|
if (TI0->getType() == CI.getType())
|
|
return
|
|
BinaryOperator::CreateAnd(TI0,
|
|
ConstantExpr::getZExt(C, CI.getType()));
|
|
}
|
|
|
|
// zext((trunc(t) & C) ^ C) -> ((t & zext(C)) ^ zext(C)).
|
|
if (SrcI && SrcI->getOpcode() == Instruction::Xor && SrcI->hasOneUse())
|
|
if (ConstantInt *C = dyn_cast<ConstantInt>(SrcI->getOperand(1)))
|
|
if (BinaryOperator *And = dyn_cast<BinaryOperator>(SrcI->getOperand(0)))
|
|
if (And->getOpcode() == Instruction::And && And->hasOneUse() &&
|
|
And->getOperand(1) == C)
|
|
if (TruncInst *TI = dyn_cast<TruncInst>(And->getOperand(0))) {
|
|
Value *TI0 = TI->getOperand(0);
|
|
if (TI0->getType() == CI.getType()) {
|
|
Constant *ZC = ConstantExpr::getZExt(C, CI.getType());
|
|
Value *NewAnd = Builder->CreateAnd(TI0, ZC);
|
|
return BinaryOperator::CreateXor(NewAnd, ZC);
|
|
}
|
|
}
|
|
|
|
// zext (xor i1 X, true) to i32 --> xor (zext i1 X to i32), 1
|
|
Value *X;
|
|
if (SrcI && SrcI->hasOneUse() && SrcI->getType()->isIntegerTy(1) &&
|
|
match(SrcI, m_Not(m_Value(X))) &&
|
|
(!X->hasOneUse() || !isa<CmpInst>(X))) {
|
|
Value *New = Builder->CreateZExt(X, CI.getType());
|
|
return BinaryOperator::CreateXor(New, ConstantInt::get(CI.getType(), 1));
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// transformSExtICmp - Transform (sext icmp) to bitwise / integer operations
|
|
/// in order to eliminate the icmp.
|
|
Instruction *InstCombiner::transformSExtICmp(ICmpInst *ICI, Instruction &CI) {
|
|
Value *Op0 = ICI->getOperand(0), *Op1 = ICI->getOperand(1);
|
|
ICmpInst::Predicate Pred = ICI->getPredicate();
|
|
|
|
if (ConstantInt *Op1C = dyn_cast<ConstantInt>(Op1)) {
|
|
// (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if negative
|
|
// (x >s -1) ? -1 : 0 -> not (ashr x, 31) -> all ones if positive
|
|
if ((Pred == ICmpInst::ICMP_SLT && Op1C->isZero()) ||
|
|
(Pred == ICmpInst::ICMP_SGT && Op1C->isAllOnesValue())) {
|
|
|
|
Value *Sh = ConstantInt::get(Op0->getType(),
|
|
Op0->getType()->getScalarSizeInBits()-1);
|
|
Value *In = Builder->CreateAShr(Op0, Sh, Op0->getName()+".lobit");
|
|
if (In->getType() != CI.getType())
|
|
In = Builder->CreateIntCast(In, CI.getType(), true/*SExt*/);
|
|
|
|
if (Pred == ICmpInst::ICMP_SGT)
|
|
In = Builder->CreateNot(In, In->getName()+".not");
|
|
return ReplaceInstUsesWith(CI, In);
|
|
}
|
|
|
|
// If we know that only one bit of the LHS of the icmp can be set and we
|
|
// have an equality comparison with zero or a power of 2, we can transform
|
|
// the icmp and sext into bitwise/integer operations.
|
|
if (ICI->hasOneUse() &&
|
|
ICI->isEquality() && (Op1C->isZero() || Op1C->getValue().isPowerOf2())){
|
|
unsigned BitWidth = Op1C->getType()->getBitWidth();
|
|
APInt KnownZero(BitWidth, 0), KnownOne(BitWidth, 0);
|
|
ComputeMaskedBits(Op0, KnownZero, KnownOne);
|
|
|
|
APInt KnownZeroMask(~KnownZero);
|
|
if (KnownZeroMask.isPowerOf2()) {
|
|
Value *In = ICI->getOperand(0);
|
|
|
|
// If the icmp tests for a known zero bit we can constant fold it.
|
|
if (!Op1C->isZero() && Op1C->getValue() != KnownZeroMask) {
|
|
Value *V = Pred == ICmpInst::ICMP_NE ?
|
|
ConstantInt::getAllOnesValue(CI.getType()) :
|
|
ConstantInt::getNullValue(CI.getType());
|
|
return ReplaceInstUsesWith(CI, V);
|
|
}
|
|
|
|
if (!Op1C->isZero() == (Pred == ICmpInst::ICMP_NE)) {
|
|
// sext ((x & 2^n) == 0) -> (x >> n) - 1
|
|
// sext ((x & 2^n) != 2^n) -> (x >> n) - 1
|
|
unsigned ShiftAmt = KnownZeroMask.countTrailingZeros();
|
|
// Perform a right shift to place the desired bit in the LSB.
|
|
if (ShiftAmt)
|
|
In = Builder->CreateLShr(In,
|
|
ConstantInt::get(In->getType(), ShiftAmt));
|
|
|
|
// At this point "In" is either 1 or 0. Subtract 1 to turn
|
|
// {1, 0} -> {0, -1}.
|
|
In = Builder->CreateAdd(In,
|
|
ConstantInt::getAllOnesValue(In->getType()),
|
|
"sext");
|
|
} else {
|
|
// sext ((x & 2^n) != 0) -> (x << bitwidth-n) a>> bitwidth-1
|
|
// sext ((x & 2^n) == 2^n) -> (x << bitwidth-n) a>> bitwidth-1
|
|
unsigned ShiftAmt = KnownZeroMask.countLeadingZeros();
|
|
// Perform a left shift to place the desired bit in the MSB.
|
|
if (ShiftAmt)
|
|
In = Builder->CreateShl(In,
|
|
ConstantInt::get(In->getType(), ShiftAmt));
|
|
|
|
// Distribute the bit over the whole bit width.
|
|
In = Builder->CreateAShr(In, ConstantInt::get(In->getType(),
|
|
BitWidth - 1), "sext");
|
|
}
|
|
|
|
if (CI.getType() == In->getType())
|
|
return ReplaceInstUsesWith(CI, In);
|
|
return CastInst::CreateIntegerCast(In, CI.getType(), true/*SExt*/);
|
|
}
|
|
}
|
|
}
|
|
|
|
// vector (x <s 0) ? -1 : 0 -> ashr x, 31 -> all ones if signed.
|
|
if (VectorType *VTy = dyn_cast<VectorType>(CI.getType())) {
|
|
if (Pred == ICmpInst::ICMP_SLT && match(Op1, m_Zero()) &&
|
|
Op0->getType() == CI.getType()) {
|
|
Type *EltTy = VTy->getElementType();
|
|
|
|
// splat the shift constant to a constant vector.
|
|
Constant *VSh = ConstantInt::get(VTy, EltTy->getScalarSizeInBits()-1);
|
|
Value *In = Builder->CreateAShr(Op0, VSh, Op0->getName()+".lobit");
|
|
return ReplaceInstUsesWith(CI, In);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// CanEvaluateSExtd - Return true if we can take the specified value
|
|
/// and return it as type Ty without inserting any new casts and without
|
|
/// changing the value of the common low bits. This is used by code that tries
|
|
/// to promote integer operations to a wider types will allow us to eliminate
|
|
/// the extension.
|
|
///
|
|
/// This function works on both vectors and scalars.
|
|
///
|
|
static bool CanEvaluateSExtd(Value *V, Type *Ty) {
|
|
assert(V->getType()->getScalarSizeInBits() < Ty->getScalarSizeInBits() &&
|
|
"Can't sign extend type to a smaller type");
|
|
// If this is a constant, it can be trivially promoted.
|
|
if (isa<Constant>(V))
|
|
return true;
|
|
|
|
Instruction *I = dyn_cast<Instruction>(V);
|
|
if (!I) return false;
|
|
|
|
// If this is a truncate from the dest type, we can trivially eliminate it.
|
|
if (isa<TruncInst>(I) && I->getOperand(0)->getType() == Ty)
|
|
return true;
|
|
|
|
// We can't extend or shrink something that has multiple uses: doing so would
|
|
// require duplicating the instruction in general, which isn't profitable.
|
|
if (!I->hasOneUse()) return false;
|
|
|
|
switch (I->getOpcode()) {
|
|
case Instruction::SExt: // sext(sext(x)) -> sext(x)
|
|
case Instruction::ZExt: // sext(zext(x)) -> zext(x)
|
|
case Instruction::Trunc: // sext(trunc(x)) -> trunc(x) or sext(x)
|
|
return true;
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
case Instruction::Mul:
|
|
// These operators can all arbitrarily be extended if their inputs can.
|
|
return CanEvaluateSExtd(I->getOperand(0), Ty) &&
|
|
CanEvaluateSExtd(I->getOperand(1), Ty);
|
|
|
|
//case Instruction::Shl: TODO
|
|
//case Instruction::LShr: TODO
|
|
|
|
case Instruction::Select:
|
|
return CanEvaluateSExtd(I->getOperand(1), Ty) &&
|
|
CanEvaluateSExtd(I->getOperand(2), Ty);
|
|
|
|
case Instruction::PHI: {
|
|
// We can change a phi if we can change all operands. Note that we never
|
|
// get into trouble with cyclic PHIs here because we only consider
|
|
// instructions with a single use.
|
|
PHINode *PN = cast<PHINode>(I);
|
|
for (unsigned i = 0, e = PN->getNumIncomingValues(); i != e; ++i)
|
|
if (!CanEvaluateSExtd(PN->getIncomingValue(i), Ty)) return false;
|
|
return true;
|
|
}
|
|
default:
|
|
// TODO: Can handle more cases here.
|
|
break;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
Instruction *InstCombiner::visitSExt(SExtInst &CI) {
|
|
// If this sign extend is only used by a truncate, let the truncate by
|
|
// eliminated before we try to optimize this zext.
|
|
if (CI.hasOneUse() && isa<TruncInst>(CI.use_back()))
|
|
return 0;
|
|
|
|
if (Instruction *I = commonCastTransforms(CI))
|
|
return I;
|
|
|
|
// See if we can simplify any instructions used by the input whose sole
|
|
// purpose is to compute bits we don't care about.
|
|
if (SimplifyDemandedInstructionBits(CI))
|
|
return &CI;
|
|
|
|
Value *Src = CI.getOperand(0);
|
|
Type *SrcTy = Src->getType(), *DestTy = CI.getType();
|
|
|
|
// Attempt to extend the entire input expression tree to the destination
|
|
// type. Only do this if the dest type is a simple type, don't convert the
|
|
// expression tree to something weird like i93 unless the source is also
|
|
// strange.
|
|
if ((DestTy->isVectorTy() || ShouldChangeType(SrcTy, DestTy)) &&
|
|
CanEvaluateSExtd(Src, DestTy)) {
|
|
// Okay, we can transform this! Insert the new expression now.
|
|
DEBUG(dbgs() << "ICE: EvaluateInDifferentType converting expression type"
|
|
" to avoid sign extend: " << CI);
|
|
Value *Res = EvaluateInDifferentType(Src, DestTy, true);
|
|
assert(Res->getType() == DestTy);
|
|
|
|
uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
|
|
uint32_t DestBitSize = DestTy->getScalarSizeInBits();
|
|
|
|
// If the high bits are already filled with sign bit, just replace this
|
|
// cast with the result.
|
|
if (ComputeNumSignBits(Res) > DestBitSize - SrcBitSize)
|
|
return ReplaceInstUsesWith(CI, Res);
|
|
|
|
// We need to emit a shl + ashr to do the sign extend.
|
|
Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
|
|
return BinaryOperator::CreateAShr(Builder->CreateShl(Res, ShAmt, "sext"),
|
|
ShAmt);
|
|
}
|
|
|
|
// If this input is a trunc from our destination, then turn sext(trunc(x))
|
|
// into shifts.
|
|
if (TruncInst *TI = dyn_cast<TruncInst>(Src))
|
|
if (TI->hasOneUse() && TI->getOperand(0)->getType() == DestTy) {
|
|
uint32_t SrcBitSize = SrcTy->getScalarSizeInBits();
|
|
uint32_t DestBitSize = DestTy->getScalarSizeInBits();
|
|
|
|
// We need to emit a shl + ashr to do the sign extend.
|
|
Value *ShAmt = ConstantInt::get(DestTy, DestBitSize-SrcBitSize);
|
|
Value *Res = Builder->CreateShl(TI->getOperand(0), ShAmt, "sext");
|
|
return BinaryOperator::CreateAShr(Res, ShAmt);
|
|
}
|
|
|
|
if (ICmpInst *ICI = dyn_cast<ICmpInst>(Src))
|
|
return transformSExtICmp(ICI, CI);
|
|
|
|
// If the input is a shl/ashr pair of a same constant, then this is a sign
|
|
// extension from a smaller value. If we could trust arbitrary bitwidth
|
|
// integers, we could turn this into a truncate to the smaller bit and then
|
|
// use a sext for the whole extension. Since we don't, look deeper and check
|
|
// for a truncate. If the source and dest are the same type, eliminate the
|
|
// trunc and extend and just do shifts. For example, turn:
|
|
// %a = trunc i32 %i to i8
|
|
// %b = shl i8 %a, 6
|
|
// %c = ashr i8 %b, 6
|
|
// %d = sext i8 %c to i32
|
|
// into:
|
|
// %a = shl i32 %i, 30
|
|
// %d = ashr i32 %a, 30
|
|
Value *A = 0;
|
|
// TODO: Eventually this could be subsumed by EvaluateInDifferentType.
|
|
ConstantInt *BA = 0, *CA = 0;
|
|
if (match(Src, m_AShr(m_Shl(m_Trunc(m_Value(A)), m_ConstantInt(BA)),
|
|
m_ConstantInt(CA))) &&
|
|
BA == CA && A->getType() == CI.getType()) {
|
|
unsigned MidSize = Src->getType()->getScalarSizeInBits();
|
|
unsigned SrcDstSize = CI.getType()->getScalarSizeInBits();
|
|
unsigned ShAmt = CA->getZExtValue()+SrcDstSize-MidSize;
|
|
Constant *ShAmtV = ConstantInt::get(CI.getType(), ShAmt);
|
|
A = Builder->CreateShl(A, ShAmtV, CI.getName());
|
|
return BinaryOperator::CreateAShr(A, ShAmtV);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
|
|
/// FitsInFPType - Return a Constant* for the specified FP constant if it fits
|
|
/// in the specified FP type without changing its value.
|
|
static Constant *FitsInFPType(ConstantFP *CFP, const fltSemantics &Sem) {
|
|
bool losesInfo;
|
|
APFloat F = CFP->getValueAPF();
|
|
(void)F.convert(Sem, APFloat::rmNearestTiesToEven, &losesInfo);
|
|
if (!losesInfo)
|
|
return ConstantFP::get(CFP->getContext(), F);
|
|
return 0;
|
|
}
|
|
|
|
/// LookThroughFPExtensions - If this is an fp extension instruction, look
|
|
/// through it until we get the source value.
|
|
static Value *LookThroughFPExtensions(Value *V) {
|
|
if (Instruction *I = dyn_cast<Instruction>(V))
|
|
if (I->getOpcode() == Instruction::FPExt)
|
|
return LookThroughFPExtensions(I->getOperand(0));
|
|
|
|
// If this value is a constant, return the constant in the smallest FP type
|
|
// that can accurately represent it. This allows us to turn
|
|
// (float)((double)X+2.0) into x+2.0f.
|
|
if (ConstantFP *CFP = dyn_cast<ConstantFP>(V)) {
|
|
if (CFP->getType() == Type::getPPC_FP128Ty(V->getContext()))
|
|
return V; // No constant folding of this.
|
|
// See if the value can be truncated to half and then reextended.
|
|
if (Value *V = FitsInFPType(CFP, APFloat::IEEEhalf))
|
|
return V;
|
|
// See if the value can be truncated to float and then reextended.
|
|
if (Value *V = FitsInFPType(CFP, APFloat::IEEEsingle))
|
|
return V;
|
|
if (CFP->getType()->isDoubleTy())
|
|
return V; // Won't shrink.
|
|
if (Value *V = FitsInFPType(CFP, APFloat::IEEEdouble))
|
|
return V;
|
|
// Don't try to shrink to various long double types.
|
|
}
|
|
|
|
return V;
|
|
}
|
|
|
|
Instruction *InstCombiner::visitFPTrunc(FPTruncInst &CI) {
|
|
if (Instruction *I = commonCastTransforms(CI))
|
|
return I;
|
|
|
|
// If we have fptrunc(fadd (fpextend x), (fpextend y)), where x and y are
|
|
// smaller than the destination type, we can eliminate the truncate by doing
|
|
// the add as the smaller type. This applies to fadd/fsub/fmul/fdiv as well
|
|
// as many builtins (sqrt, etc).
|
|
BinaryOperator *OpI = dyn_cast<BinaryOperator>(CI.getOperand(0));
|
|
if (OpI && OpI->hasOneUse()) {
|
|
switch (OpI->getOpcode()) {
|
|
default: break;
|
|
case Instruction::FAdd:
|
|
case Instruction::FSub:
|
|
case Instruction::FMul:
|
|
case Instruction::FDiv:
|
|
case Instruction::FRem:
|
|
Type *SrcTy = OpI->getType();
|
|
Value *LHSTrunc = LookThroughFPExtensions(OpI->getOperand(0));
|
|
Value *RHSTrunc = LookThroughFPExtensions(OpI->getOperand(1));
|
|
if (LHSTrunc->getType() != SrcTy &&
|
|
RHSTrunc->getType() != SrcTy) {
|
|
unsigned DstSize = CI.getType()->getScalarSizeInBits();
|
|
// If the source types were both smaller than the destination type of
|
|
// the cast, do this xform.
|
|
if (LHSTrunc->getType()->getScalarSizeInBits() <= DstSize &&
|
|
RHSTrunc->getType()->getScalarSizeInBits() <= DstSize) {
|
|
LHSTrunc = Builder->CreateFPExt(LHSTrunc, CI.getType());
|
|
RHSTrunc = Builder->CreateFPExt(RHSTrunc, CI.getType());
|
|
return BinaryOperator::Create(OpI->getOpcode(), LHSTrunc, RHSTrunc);
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Fold (fptrunc (sqrt (fpext x))) -> (sqrtf x)
|
|
CallInst *Call = dyn_cast<CallInst>(CI.getOperand(0));
|
|
if (Call && Call->getCalledFunction() && TLI->has(LibFunc::sqrtf) &&
|
|
Call->getCalledFunction()->getName() == TLI->getName(LibFunc::sqrt) &&
|
|
Call->getNumArgOperands() == 1 &&
|
|
Call->hasOneUse()) {
|
|
CastInst *Arg = dyn_cast<CastInst>(Call->getArgOperand(0));
|
|
if (Arg && Arg->getOpcode() == Instruction::FPExt &&
|
|
CI.getType()->isFloatTy() &&
|
|
Call->getType()->isDoubleTy() &&
|
|
Arg->getType()->isDoubleTy() &&
|
|
Arg->getOperand(0)->getType()->isFloatTy()) {
|
|
Function *Callee = Call->getCalledFunction();
|
|
Module *M = CI.getParent()->getParent()->getParent();
|
|
Constant *SqrtfFunc = M->getOrInsertFunction("sqrtf",
|
|
Callee->getAttributes(),
|
|
Builder->getFloatTy(),
|
|
Builder->getFloatTy(),
|
|
NULL);
|
|
CallInst *ret = CallInst::Create(SqrtfFunc, Arg->getOperand(0),
|
|
"sqrtfcall");
|
|
ret->setAttributes(Callee->getAttributes());
|
|
|
|
|
|
// Remove the old Call. With -fmath-errno, it won't get marked readnone.
|
|
ReplaceInstUsesWith(*Call, UndefValue::get(Call->getType()));
|
|
EraseInstFromFunction(*Call);
|
|
return ret;
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
Instruction *InstCombiner::visitFPExt(CastInst &CI) {
|
|
return commonCastTransforms(CI);
|
|
}
|
|
|
|
Instruction *InstCombiner::visitFPToUI(FPToUIInst &FI) {
|
|
Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
|
|
if (OpI == 0)
|
|
return commonCastTransforms(FI);
|
|
|
|
// fptoui(uitofp(X)) --> X
|
|
// fptoui(sitofp(X)) --> X
|
|
// This is safe if the intermediate type has enough bits in its mantissa to
|
|
// accurately represent all values of X. For example, do not do this with
|
|
// i64->float->i64. This is also safe for sitofp case, because any negative
|
|
// 'X' value would cause an undefined result for the fptoui.
|
|
if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
|
|
OpI->getOperand(0)->getType() == FI.getType() &&
|
|
(int)FI.getType()->getScalarSizeInBits() < /*extra bit for sign */
|
|
OpI->getType()->getFPMantissaWidth())
|
|
return ReplaceInstUsesWith(FI, OpI->getOperand(0));
|
|
|
|
return commonCastTransforms(FI);
|
|
}
|
|
|
|
Instruction *InstCombiner::visitFPToSI(FPToSIInst &FI) {
|
|
Instruction *OpI = dyn_cast<Instruction>(FI.getOperand(0));
|
|
if (OpI == 0)
|
|
return commonCastTransforms(FI);
|
|
|
|
// fptosi(sitofp(X)) --> X
|
|
// fptosi(uitofp(X)) --> X
|
|
// This is safe if the intermediate type has enough bits in its mantissa to
|
|
// accurately represent all values of X. For example, do not do this with
|
|
// i64->float->i64. This is also safe for sitofp case, because any negative
|
|
// 'X' value would cause an undefined result for the fptoui.
|
|
if ((isa<UIToFPInst>(OpI) || isa<SIToFPInst>(OpI)) &&
|
|
OpI->getOperand(0)->getType() == FI.getType() &&
|
|
(int)FI.getType()->getScalarSizeInBits() <=
|
|
OpI->getType()->getFPMantissaWidth())
|
|
return ReplaceInstUsesWith(FI, OpI->getOperand(0));
|
|
|
|
return commonCastTransforms(FI);
|
|
}
|
|
|
|
Instruction *InstCombiner::visitUIToFP(CastInst &CI) {
|
|
return commonCastTransforms(CI);
|
|
}
|
|
|
|
Instruction *InstCombiner::visitSIToFP(CastInst &CI) {
|
|
return commonCastTransforms(CI);
|
|
}
|
|
|
|
Instruction *InstCombiner::visitIntToPtr(IntToPtrInst &CI) {
|
|
// If the source integer type is not the intptr_t type for this target, do a
|
|
// trunc or zext to the intptr_t type, then inttoptr of it. This allows the
|
|
// cast to be exposed to other transforms.
|
|
if (TD) {
|
|
if (CI.getOperand(0)->getType()->getScalarSizeInBits() >
|
|
TD->getPointerSizeInBits()) {
|
|
Value *P = Builder->CreateTrunc(CI.getOperand(0),
|
|
TD->getIntPtrType(CI.getContext()));
|
|
return new IntToPtrInst(P, CI.getType());
|
|
}
|
|
if (CI.getOperand(0)->getType()->getScalarSizeInBits() <
|
|
TD->getPointerSizeInBits()) {
|
|
Value *P = Builder->CreateZExt(CI.getOperand(0),
|
|
TD->getIntPtrType(CI.getContext()));
|
|
return new IntToPtrInst(P, CI.getType());
|
|
}
|
|
}
|
|
|
|
if (Instruction *I = commonCastTransforms(CI))
|
|
return I;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/// @brief Implement the transforms for cast of pointer (bitcast/ptrtoint)
|
|
Instruction *InstCombiner::commonPointerCastTransforms(CastInst &CI) {
|
|
Value *Src = CI.getOperand(0);
|
|
|
|
if (GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(Src)) {
|
|
// If casting the result of a getelementptr instruction with no offset, turn
|
|
// this into a cast of the original pointer!
|
|
if (GEP->hasAllZeroIndices()) {
|
|
// Changing the cast operand is usually not a good idea but it is safe
|
|
// here because the pointer operand is being replaced with another
|
|
// pointer operand so the opcode doesn't need to change.
|
|
Worklist.Add(GEP);
|
|
CI.setOperand(0, GEP->getOperand(0));
|
|
return &CI;
|
|
}
|
|
|
|
// If the GEP has a single use, and the base pointer is a bitcast, and the
|
|
// GEP computes a constant offset, see if we can convert these three
|
|
// instructions into fewer. This typically happens with unions and other
|
|
// non-type-safe code.
|
|
if (TD && GEP->hasOneUse() && isa<BitCastInst>(GEP->getOperand(0)) &&
|
|
GEP->hasAllConstantIndices()) {
|
|
SmallVector<Value*, 8> Ops(GEP->idx_begin(), GEP->idx_end());
|
|
int64_t Offset = TD->getIndexedOffset(GEP->getPointerOperandType(), Ops);
|
|
|
|
// Get the base pointer input of the bitcast, and the type it points to.
|
|
Value *OrigBase = cast<BitCastInst>(GEP->getOperand(0))->getOperand(0);
|
|
Type *GEPIdxTy =
|
|
cast<PointerType>(OrigBase->getType())->getElementType();
|
|
SmallVector<Value*, 8> NewIndices;
|
|
if (FindElementAtOffset(GEPIdxTy, Offset, NewIndices)) {
|
|
// If we were able to index down into an element, create the GEP
|
|
// and bitcast the result. This eliminates one bitcast, potentially
|
|
// two.
|
|
Value *NGEP = cast<GEPOperator>(GEP)->isInBounds() ?
|
|
Builder->CreateInBoundsGEP(OrigBase, NewIndices) :
|
|
Builder->CreateGEP(OrigBase, NewIndices);
|
|
NGEP->takeName(GEP);
|
|
|
|
if (isa<BitCastInst>(CI))
|
|
return new BitCastInst(NGEP, CI.getType());
|
|
assert(isa<PtrToIntInst>(CI));
|
|
return new PtrToIntInst(NGEP, CI.getType());
|
|
}
|
|
}
|
|
}
|
|
|
|
return commonCastTransforms(CI);
|
|
}
|
|
|
|
Instruction *InstCombiner::visitPtrToInt(PtrToIntInst &CI) {
|
|
// If the destination integer type is not the intptr_t type for this target,
|
|
// do a ptrtoint to intptr_t then do a trunc or zext. This allows the cast
|
|
// to be exposed to other transforms.
|
|
if (TD) {
|
|
if (CI.getType()->getScalarSizeInBits() < TD->getPointerSizeInBits()) {
|
|
Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
|
|
TD->getIntPtrType(CI.getContext()));
|
|
return new TruncInst(P, CI.getType());
|
|
}
|
|
if (CI.getType()->getScalarSizeInBits() > TD->getPointerSizeInBits()) {
|
|
Value *P = Builder->CreatePtrToInt(CI.getOperand(0),
|
|
TD->getIntPtrType(CI.getContext()));
|
|
return new ZExtInst(P, CI.getType());
|
|
}
|
|
}
|
|
|
|
return commonPointerCastTransforms(CI);
|
|
}
|
|
|
|
/// OptimizeVectorResize - This input value (which is known to have vector type)
|
|
/// is being zero extended or truncated to the specified vector type. Try to
|
|
/// replace it with a shuffle (and vector/vector bitcast) if possible.
|
|
///
|
|
/// The source and destination vector types may have different element types.
|
|
static Instruction *OptimizeVectorResize(Value *InVal, VectorType *DestTy,
|
|
InstCombiner &IC) {
|
|
// We can only do this optimization if the output is a multiple of the input
|
|
// element size, or the input is a multiple of the output element size.
|
|
// Convert the input type to have the same element type as the output.
|
|
VectorType *SrcTy = cast<VectorType>(InVal->getType());
|
|
|
|
if (SrcTy->getElementType() != DestTy->getElementType()) {
|
|
// The input types don't need to be identical, but for now they must be the
|
|
// same size. There is no specific reason we couldn't handle things like
|
|
// <4 x i16> -> <4 x i32> by bitcasting to <2 x i32> but haven't gotten
|
|
// there yet.
|
|
if (SrcTy->getElementType()->getPrimitiveSizeInBits() !=
|
|
DestTy->getElementType()->getPrimitiveSizeInBits())
|
|
return 0;
|
|
|
|
SrcTy = VectorType::get(DestTy->getElementType(), SrcTy->getNumElements());
|
|
InVal = IC.Builder->CreateBitCast(InVal, SrcTy);
|
|
}
|
|
|
|
// Now that the element types match, get the shuffle mask and RHS of the
|
|
// shuffle to use, which depends on whether we're increasing or decreasing the
|
|
// size of the input.
|
|
SmallVector<uint32_t, 16> ShuffleMask;
|
|
Value *V2;
|
|
|
|
if (SrcTy->getNumElements() > DestTy->getNumElements()) {
|
|
// If we're shrinking the number of elements, just shuffle in the low
|
|
// elements from the input and use undef as the second shuffle input.
|
|
V2 = UndefValue::get(SrcTy);
|
|
for (unsigned i = 0, e = DestTy->getNumElements(); i != e; ++i)
|
|
ShuffleMask.push_back(i);
|
|
|
|
} else {
|
|
// If we're increasing the number of elements, shuffle in all of the
|
|
// elements from InVal and fill the rest of the result elements with zeros
|
|
// from a constant zero.
|
|
V2 = Constant::getNullValue(SrcTy);
|
|
unsigned SrcElts = SrcTy->getNumElements();
|
|
for (unsigned i = 0, e = SrcElts; i != e; ++i)
|
|
ShuffleMask.push_back(i);
|
|
|
|
// The excess elements reference the first element of the zero input.
|
|
for (unsigned i = 0, e = DestTy->getNumElements()-SrcElts; i != e; ++i)
|
|
ShuffleMask.push_back(SrcElts);
|
|
}
|
|
|
|
return new ShuffleVectorInst(InVal, V2,
|
|
ConstantDataVector::get(V2->getContext(),
|
|
ShuffleMask));
|
|
}
|
|
|
|
static bool isMultipleOfTypeSize(unsigned Value, Type *Ty) {
|
|
return Value % Ty->getPrimitiveSizeInBits() == 0;
|
|
}
|
|
|
|
static unsigned getTypeSizeIndex(unsigned Value, Type *Ty) {
|
|
return Value / Ty->getPrimitiveSizeInBits();
|
|
}
|
|
|
|
/// CollectInsertionElements - V is a value which is inserted into a vector of
|
|
/// VecEltTy. Look through the value to see if we can decompose it into
|
|
/// insertions into the vector. See the example in the comment for
|
|
/// OptimizeIntegerToVectorInsertions for the pattern this handles.
|
|
/// The type of V is always a non-zero multiple of VecEltTy's size.
|
|
///
|
|
/// This returns false if the pattern can't be matched or true if it can,
|
|
/// filling in Elements with the elements found here.
|
|
static bool CollectInsertionElements(Value *V, unsigned ElementIndex,
|
|
SmallVectorImpl<Value*> &Elements,
|
|
Type *VecEltTy) {
|
|
// Undef values never contribute useful bits to the result.
|
|
if (isa<UndefValue>(V)) return true;
|
|
|
|
// If we got down to a value of the right type, we win, try inserting into the
|
|
// right element.
|
|
if (V->getType() == VecEltTy) {
|
|
// Inserting null doesn't actually insert any elements.
|
|
if (Constant *C = dyn_cast<Constant>(V))
|
|
if (C->isNullValue())
|
|
return true;
|
|
|
|
// Fail if multiple elements are inserted into this slot.
|
|
if (ElementIndex >= Elements.size() || Elements[ElementIndex] != 0)
|
|
return false;
|
|
|
|
Elements[ElementIndex] = V;
|
|
return true;
|
|
}
|
|
|
|
if (Constant *C = dyn_cast<Constant>(V)) {
|
|
// Figure out the # elements this provides, and bitcast it or slice it up
|
|
// as required.
|
|
unsigned NumElts = getTypeSizeIndex(C->getType()->getPrimitiveSizeInBits(),
|
|
VecEltTy);
|
|
// If the constant is the size of a vector element, we just need to bitcast
|
|
// it to the right type so it gets properly inserted.
|
|
if (NumElts == 1)
|
|
return CollectInsertionElements(ConstantExpr::getBitCast(C, VecEltTy),
|
|
ElementIndex, Elements, VecEltTy);
|
|
|
|
// Okay, this is a constant that covers multiple elements. Slice it up into
|
|
// pieces and insert each element-sized piece into the vector.
|
|
if (!isa<IntegerType>(C->getType()))
|
|
C = ConstantExpr::getBitCast(C, IntegerType::get(V->getContext(),
|
|
C->getType()->getPrimitiveSizeInBits()));
|
|
unsigned ElementSize = VecEltTy->getPrimitiveSizeInBits();
|
|
Type *ElementIntTy = IntegerType::get(C->getContext(), ElementSize);
|
|
|
|
for (unsigned i = 0; i != NumElts; ++i) {
|
|
Constant *Piece = ConstantExpr::getLShr(C, ConstantInt::get(C->getType(),
|
|
i*ElementSize));
|
|
Piece = ConstantExpr::getTrunc(Piece, ElementIntTy);
|
|
if (!CollectInsertionElements(Piece, ElementIndex+i, Elements, VecEltTy))
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
if (!V->hasOneUse()) return false;
|
|
|
|
Instruction *I = dyn_cast<Instruction>(V);
|
|
if (I == 0) return false;
|
|
switch (I->getOpcode()) {
|
|
default: return false; // Unhandled case.
|
|
case Instruction::BitCast:
|
|
return CollectInsertionElements(I->getOperand(0), ElementIndex,
|
|
Elements, VecEltTy);
|
|
case Instruction::ZExt:
|
|
if (!isMultipleOfTypeSize(
|
|
I->getOperand(0)->getType()->getPrimitiveSizeInBits(),
|
|
VecEltTy))
|
|
return false;
|
|
return CollectInsertionElements(I->getOperand(0), ElementIndex,
|
|
Elements, VecEltTy);
|
|
case Instruction::Or:
|
|
return CollectInsertionElements(I->getOperand(0), ElementIndex,
|
|
Elements, VecEltTy) &&
|
|
CollectInsertionElements(I->getOperand(1), ElementIndex,
|
|
Elements, VecEltTy);
|
|
case Instruction::Shl: {
|
|
// Must be shifting by a constant that is a multiple of the element size.
|
|
ConstantInt *CI = dyn_cast<ConstantInt>(I->getOperand(1));
|
|
if (CI == 0) return false;
|
|
if (!isMultipleOfTypeSize(CI->getZExtValue(), VecEltTy)) return false;
|
|
unsigned IndexShift = getTypeSizeIndex(CI->getZExtValue(), VecEltTy);
|
|
|
|
return CollectInsertionElements(I->getOperand(0), ElementIndex+IndexShift,
|
|
Elements, VecEltTy);
|
|
}
|
|
|
|
}
|
|
}
|
|
|
|
|
|
/// OptimizeIntegerToVectorInsertions - If the input is an 'or' instruction, we
|
|
/// may be doing shifts and ors to assemble the elements of the vector manually.
|
|
/// Try to rip the code out and replace it with insertelements. This is to
|
|
/// optimize code like this:
|
|
///
|
|
/// %tmp37 = bitcast float %inc to i32
|
|
/// %tmp38 = zext i32 %tmp37 to i64
|
|
/// %tmp31 = bitcast float %inc5 to i32
|
|
/// %tmp32 = zext i32 %tmp31 to i64
|
|
/// %tmp33 = shl i64 %tmp32, 32
|
|
/// %ins35 = or i64 %tmp33, %tmp38
|
|
/// %tmp43 = bitcast i64 %ins35 to <2 x float>
|
|
///
|
|
/// Into two insertelements that do "buildvector{%inc, %inc5}".
|
|
static Value *OptimizeIntegerToVectorInsertions(BitCastInst &CI,
|
|
InstCombiner &IC) {
|
|
VectorType *DestVecTy = cast<VectorType>(CI.getType());
|
|
Value *IntInput = CI.getOperand(0);
|
|
|
|
SmallVector<Value*, 8> Elements(DestVecTy->getNumElements());
|
|
if (!CollectInsertionElements(IntInput, 0, Elements,
|
|
DestVecTy->getElementType()))
|
|
return 0;
|
|
|
|
// If we succeeded, we know that all of the element are specified by Elements
|
|
// or are zero if Elements has a null entry. Recast this as a set of
|
|
// insertions.
|
|
Value *Result = Constant::getNullValue(CI.getType());
|
|
for (unsigned i = 0, e = Elements.size(); i != e; ++i) {
|
|
if (Elements[i] == 0) continue; // Unset element.
|
|
|
|
Result = IC.Builder->CreateInsertElement(Result, Elements[i],
|
|
IC.Builder->getInt32(i));
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
|
|
/// OptimizeIntToFloatBitCast - See if we can optimize an integer->float/double
|
|
/// bitcast. The various long double bitcasts can't get in here.
|
|
static Instruction *OptimizeIntToFloatBitCast(BitCastInst &CI,InstCombiner &IC){
|
|
Value *Src = CI.getOperand(0);
|
|
Type *DestTy = CI.getType();
|
|
|
|
// If this is a bitcast from int to float, check to see if the int is an
|
|
// extraction from a vector.
|
|
Value *VecInput = 0;
|
|
// bitcast(trunc(bitcast(somevector)))
|
|
if (match(Src, m_Trunc(m_BitCast(m_Value(VecInput)))) &&
|
|
isa<VectorType>(VecInput->getType())) {
|
|
VectorType *VecTy = cast<VectorType>(VecInput->getType());
|
|
unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
|
|
|
|
if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0) {
|
|
// If the element type of the vector doesn't match the result type,
|
|
// bitcast it to be a vector type we can extract from.
|
|
if (VecTy->getElementType() != DestTy) {
|
|
VecTy = VectorType::get(DestTy,
|
|
VecTy->getPrimitiveSizeInBits() / DestWidth);
|
|
VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
|
|
}
|
|
|
|
return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(0));
|
|
}
|
|
}
|
|
|
|
// bitcast(trunc(lshr(bitcast(somevector), cst))
|
|
ConstantInt *ShAmt = 0;
|
|
if (match(Src, m_Trunc(m_LShr(m_BitCast(m_Value(VecInput)),
|
|
m_ConstantInt(ShAmt)))) &&
|
|
isa<VectorType>(VecInput->getType())) {
|
|
VectorType *VecTy = cast<VectorType>(VecInput->getType());
|
|
unsigned DestWidth = DestTy->getPrimitiveSizeInBits();
|
|
if (VecTy->getPrimitiveSizeInBits() % DestWidth == 0 &&
|
|
ShAmt->getZExtValue() % DestWidth == 0) {
|
|
// If the element type of the vector doesn't match the result type,
|
|
// bitcast it to be a vector type we can extract from.
|
|
if (VecTy->getElementType() != DestTy) {
|
|
VecTy = VectorType::get(DestTy,
|
|
VecTy->getPrimitiveSizeInBits() / DestWidth);
|
|
VecInput = IC.Builder->CreateBitCast(VecInput, VecTy);
|
|
}
|
|
|
|
unsigned Elt = ShAmt->getZExtValue() / DestWidth;
|
|
return ExtractElementInst::Create(VecInput, IC.Builder->getInt32(Elt));
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
Instruction *InstCombiner::visitBitCast(BitCastInst &CI) {
|
|
// If the operands are integer typed then apply the integer transforms,
|
|
// otherwise just apply the common ones.
|
|
Value *Src = CI.getOperand(0);
|
|
Type *SrcTy = Src->getType();
|
|
Type *DestTy = CI.getType();
|
|
|
|
// Get rid of casts from one type to the same type. These are useless and can
|
|
// be replaced by the operand.
|
|
if (DestTy == Src->getType())
|
|
return ReplaceInstUsesWith(CI, Src);
|
|
|
|
if (PointerType *DstPTy = dyn_cast<PointerType>(DestTy)) {
|
|
PointerType *SrcPTy = cast<PointerType>(SrcTy);
|
|
Type *DstElTy = DstPTy->getElementType();
|
|
Type *SrcElTy = SrcPTy->getElementType();
|
|
|
|
// If the address spaces don't match, don't eliminate the bitcast, which is
|
|
// required for changing types.
|
|
if (SrcPTy->getAddressSpace() != DstPTy->getAddressSpace())
|
|
return 0;
|
|
|
|
// If we are casting a alloca to a pointer to a type of the same
|
|
// size, rewrite the allocation instruction to allocate the "right" type.
|
|
// There is no need to modify malloc calls because it is their bitcast that
|
|
// needs to be cleaned up.
|
|
if (AllocaInst *AI = dyn_cast<AllocaInst>(Src))
|
|
if (Instruction *V = PromoteCastOfAllocation(CI, *AI))
|
|
return V;
|
|
|
|
// If the source and destination are pointers, and this cast is equivalent
|
|
// to a getelementptr X, 0, 0, 0... turn it into the appropriate gep.
|
|
// This can enhance SROA and other transforms that want type-safe pointers.
|
|
Constant *ZeroUInt =
|
|
Constant::getNullValue(Type::getInt32Ty(CI.getContext()));
|
|
unsigned NumZeros = 0;
|
|
while (SrcElTy != DstElTy &&
|
|
isa<CompositeType>(SrcElTy) && !SrcElTy->isPointerTy() &&
|
|
SrcElTy->getNumContainedTypes() /* not "{}" */) {
|
|
SrcElTy = cast<CompositeType>(SrcElTy)->getTypeAtIndex(ZeroUInt);
|
|
++NumZeros;
|
|
}
|
|
|
|
// If we found a path from the src to dest, create the getelementptr now.
|
|
if (SrcElTy == DstElTy) {
|
|
SmallVector<Value*, 8> Idxs(NumZeros+1, ZeroUInt);
|
|
return GetElementPtrInst::CreateInBounds(Src, Idxs);
|
|
}
|
|
}
|
|
|
|
// Try to optimize int -> float bitcasts.
|
|
if ((DestTy->isFloatTy() || DestTy->isDoubleTy()) && isa<IntegerType>(SrcTy))
|
|
if (Instruction *I = OptimizeIntToFloatBitCast(CI, *this))
|
|
return I;
|
|
|
|
if (VectorType *DestVTy = dyn_cast<VectorType>(DestTy)) {
|
|
if (DestVTy->getNumElements() == 1 && !SrcTy->isVectorTy()) {
|
|
Value *Elem = Builder->CreateBitCast(Src, DestVTy->getElementType());
|
|
return InsertElementInst::Create(UndefValue::get(DestTy), Elem,
|
|
Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
|
|
// FIXME: Canonicalize bitcast(insertelement) -> insertelement(bitcast)
|
|
}
|
|
|
|
if (isa<IntegerType>(SrcTy)) {
|
|
// If this is a cast from an integer to vector, check to see if the input
|
|
// is a trunc or zext of a bitcast from vector. If so, we can replace all
|
|
// the casts with a shuffle and (potentially) a bitcast.
|
|
if (isa<TruncInst>(Src) || isa<ZExtInst>(Src)) {
|
|
CastInst *SrcCast = cast<CastInst>(Src);
|
|
if (BitCastInst *BCIn = dyn_cast<BitCastInst>(SrcCast->getOperand(0)))
|
|
if (isa<VectorType>(BCIn->getOperand(0)->getType()))
|
|
if (Instruction *I = OptimizeVectorResize(BCIn->getOperand(0),
|
|
cast<VectorType>(DestTy), *this))
|
|
return I;
|
|
}
|
|
|
|
// If the input is an 'or' instruction, we may be doing shifts and ors to
|
|
// assemble the elements of the vector manually. Try to rip the code out
|
|
// and replace it with insertelements.
|
|
if (Value *V = OptimizeIntegerToVectorInsertions(CI, *this))
|
|
return ReplaceInstUsesWith(CI, V);
|
|
}
|
|
}
|
|
|
|
if (VectorType *SrcVTy = dyn_cast<VectorType>(SrcTy)) {
|
|
if (SrcVTy->getNumElements() == 1 && !DestTy->isVectorTy()) {
|
|
Value *Elem =
|
|
Builder->CreateExtractElement(Src,
|
|
Constant::getNullValue(Type::getInt32Ty(CI.getContext())));
|
|
return CastInst::Create(Instruction::BitCast, Elem, DestTy);
|
|
}
|
|
}
|
|
|
|
if (ShuffleVectorInst *SVI = dyn_cast<ShuffleVectorInst>(Src)) {
|
|
// Okay, we have (bitcast (shuffle ..)). Check to see if this is
|
|
// a bitcast to a vector with the same # elts.
|
|
if (SVI->hasOneUse() && DestTy->isVectorTy() &&
|
|
cast<VectorType>(DestTy)->getNumElements() ==
|
|
SVI->getType()->getNumElements() &&
|
|
SVI->getType()->getNumElements() ==
|
|
cast<VectorType>(SVI->getOperand(0)->getType())->getNumElements()) {
|
|
BitCastInst *Tmp;
|
|
// If either of the operands is a cast from CI.getType(), then
|
|
// evaluating the shuffle in the casted destination's type will allow
|
|
// us to eliminate at least one cast.
|
|
if (((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(0))) &&
|
|
Tmp->getOperand(0)->getType() == DestTy) ||
|
|
((Tmp = dyn_cast<BitCastInst>(SVI->getOperand(1))) &&
|
|
Tmp->getOperand(0)->getType() == DestTy)) {
|
|
Value *LHS = Builder->CreateBitCast(SVI->getOperand(0), DestTy);
|
|
Value *RHS = Builder->CreateBitCast(SVI->getOperand(1), DestTy);
|
|
// Return a new shuffle vector. Use the same element ID's, as we
|
|
// know the vector types match #elts.
|
|
return new ShuffleVectorInst(LHS, RHS, SVI->getOperand(2));
|
|
}
|
|
}
|
|
}
|
|
|
|
if (SrcTy->isPointerTy())
|
|
return commonPointerCastTransforms(CI);
|
|
return commonCastTransforms(CI);
|
|
}
|