lzsa/asm/8088/LZSA1JMP.ASM

582 lines
22 KiB
NASM
Raw Normal View History

; lzsa2fta.asm time-efficient decompressor implementation for 808x CPUs.
; Turbo Assembler IDEAL mode dialect.
; (Is supposed to also assemble with NASM's IDEAL mode support, but YMMV.)
;
; This code assembles to about 3K of lookup tables and unrolled code,
; but the tradeoff for that size is the absolute fastest decompressor
; of LZSA1 block data for 808x CPUs.
; If you need moderately fast code with less size, see LZSA1FTA.ASM.
; If you need the smallest decompression code, see decompress_small_v1.S.
;
; Usual DOS assembler SMALL model assumptions apply. This code:
; - Assumes it was invoked via NEAR call (change RET to RETF for FAR calls)
; - Is interrupt-safe
; - Is not re-entrant (do not decompress while already running decompression)
; - Trashes all data and segment registers
;
; Copyright (C) 2019 Jim Leonard, Emmanuel Marty
; Additional speed optimizations by Pavel Zagrebin
;
; This software is provided 'as-is', without any express or implied
; warranty. In no event will the authors be held liable for any damages
; arising from the use of this software.
;
; Permission is granted to anyone to use this software for any purpose,
; including commercial applications, and to alter it and redistribute it
; freely, subject to the following restrictions:
;
; 1. The origin of this software must not be misrepresented; you must not
; claim that you wrote the original software. If you use this software
; in a product, an acknowledgment in the product documentation would be
; appreciated but is not required.
; 2. Altered source versions must be plainly marked as such, and must not be
; misrepresented as being the original software.
; 3. This notice may not be removed or altered from any source distribution.
;
; ===========================================================================
;
; The key area to concentrate on when optimizing LZSA1 decompression speed is
; reducing time spent handling the shortest matches. This is for two reasons:
; 1. shorter matches are more common
; 2. short matches are least efficient in terms of decomp speed per byte
; You can confirm #1 using the --stats mode of the compressor.
;
; Branches are costly on 8086. To ensure we branch as little as possible, a
; jumptable will be used to branch directly to as many direct decode paths as
; possible. This will burn up 512 bytes of RAM for a jumptable, and a few
; hundred bytes of duplicated program code (rather than JMP/CALL common code
; blocks, we inline them to avoid the branch overhead).
;
; ===========================================================================
;
; === LZSA1 block reference:
;
; Blocks encoded as LZSA1 are composed from consecutive commands.
; Each command follows this format:
;
; token: <O|LLL|MMMM>
; optional extra literal length
; literal values
; match offset low
; optional match offset high
; optional extra encoded match length
;
;
; === LZSA1 Token Reference:
;
; 7 6 5 4 3 2 1 0
; O L L L M M M M
;
; L: 3-bit literals length (0-6, or 7 if extended). If the number of literals for
; this command is 0 to 6, the length is encoded in the token and no extra bytes
; are required. Otherwise, a value of 7 is encoded and extra bytes follow as
; 'optional extra literal length'
;
; M: 4-bit encoded match length (0-14, or 15 if extended). Likewise, if the
; encoded match length for this command is 0 to 14, it is directly stored,
; otherwise 15 is stored and extra bytes follow as 'optional extra encoded match
; length'. Except for the last command in a block, a command always contains a
; match, so the encoded match length is the actual match length, offset by the
; minimum which is 3 bytes. For instance, an actual match length of 10 bytes to
; be copied, is encoded as 7.
;
; O: set for a 2-bytes match offset, clear for a 1-byte match offset
;
;
; === Decoding extended literal length:
;
; If the literals length is 7 or more, then an extra byte follows here, with
; three possible values:
;
; 0-248: the value is added to the 7 stored in the token.
; 250: a second byte follows. The final literals value is 256 + the second byte.
; 249: a little-endian 16-bit value follows, forming the final literals value.
;
;
; === Decoding match offsets:
;
; match offset low: The low 8 bits of the match offset follows.
;
; optional match offset high: If the 'O' bit (bit 7) is set in the token, the
; high 8 bits of the match offset follow, otherwise they are understood to be all
; set to 1. For instance, a short offset of 0x70 is interpreted as 0xff70
;
;
; === Decoding extra encoded match length:
;
; optional extra encoded match length: If the encoded match length is 15 or more,
; the 'M' bits in the token form the value 15, and an extra byte follows here,
; with three possible types of value.
;
; 0-237: the value is added to the 15 stored in the token.
; The final value is 3 + 15 + this byte.
; 239: a second byte follows. The final match length is 256 + the second byte.
; 238: a second and third byte follow, forming a little-endian 16-bit value.
; The final encoded match length is that 16-bit value.
;
; ===========================================================================
IDEAL ; Use Turbo Assembler IDEAL syntax checking
P8086 ; Restrict code generation to the 808x and later
JUMPS ; Perform fixups for out-of-bound conditional jumps
; This is required for the (L=07 & M=0Fh) decode paths as they
; have the most code, but these are uncommon paths so the
; tiny speed loss in just these paths is not a concern.
;Setting OPTIMIZE_LONG_RLE to 1 speeds up decompressing long runs of the
;same 16-bit word value, but hurts decompression speed of other data
;types slightly. Turn this on if you know your data has very long 16-bit
;word-based runs (reported as RLE2 sequences in the LZSA compressor output
;with an average length of at least 32 bytes), otherwise leave it off.
OPTIMIZE_LONG_RLE EQU 0
SEGMENT CODE para public
ASSUME cs:CODE, ds:CODE
PUBLIC lzsa1_decompress_speed_jumptable
; EQU helper statements (so we can construct a jump table without going crazy)
minmatch EQU 3
litrunlen EQU 7
leml1 EQU OFFSET lit_ext_mat_len_1b
leme1 EQU OFFSET lit_ext_mat_ext_1b
leml2 EQU OFFSET lit_ext_mat_len_2b
leme2 EQU OFFSET lit_ext_mat_ext_2b
;short-circuit special cases for 0 through 6 literal copies:
l6ml1 EQU OFFSET lit_len_mat_len_1b_6
l6me1 EQU OFFSET lit_len_mat_ext_1b
l6ml2 EQU OFFSET lit_len_mat_len_2b_6
l6me2 EQU OFFSET lit_len_mat_ext_2b
l5ml1 EQU OFFSET lit_len_mat_len_1b_45
l5me1 EQU OFFSET lit_len_mat_ext_1b + 1
l5ml2 EQU OFFSET lit_len_mat_len_2b_45
l5me2 EQU OFFSET lit_len_mat_ext_2b + 1
l4ml1 EQU OFFSET lit_len_mat_len_1b_45 + 1
l4me1 EQU OFFSET lit_len_mat_ext_1b + 2
l4ml2 EQU OFFSET lit_len_mat_len_2b_45 + 1
l4me2 EQU OFFSET lit_len_mat_ext_2b + 2
l3ml1 EQU OFFSET lit_len_mat_len_1b_23
l3me1 EQU OFFSET lit_len_mat_ext_1b + 3
l3ml2 EQU OFFSET lit_len_mat_len_2b_23
l3me2 EQU OFFSET lit_len_mat_ext_2b + 3
l2ml1 EQU OFFSET lit_len_mat_len_1b_23 + 1
l2me1 EQU OFFSET lit_len_mat_ext_1b + 4
l2ml2 EQU OFFSET lit_len_mat_len_2b_23 + 1
l2me2 EQU OFFSET lit_len_mat_ext_2b + 4
l1ml1 EQU OFFSET lit_len_mat_len_1b_01
l1me1 EQU OFFSET lit_len_mat_ext_1b + 5
l1ml2 EQU OFFSET lit_len_mat_len_2b_01
l1me2 EQU OFFSET lit_len_mat_ext_2b + 5
l0ml1 EQU OFFSET lit_len_mat_len_1b_01 + 1 ; MMMM handling comes after LLL code
l0me1 EQU OFFSET lit_len_mat_ext_1b + 6 ; MMMM handling comes after LLL code
l0ml2 EQU OFFSET lit_len_mat_len_2b_01 + 1 ; MMMM handling comes after LLL code
l0me2 EQU OFFSET lit_len_mat_ext_2b + 6 ; MMMM handling comes after LLL code
; 0 1 2 3 4 5 6 7 8 9 a b c d e f
jtbl DW l0ml1,l0ml1,l0ml1,l0ml1,l0ml1,l0ml1,l0ml1,l0ml1,l0ml1,l0ml1,l0ml1,l0ml1,l0ml1,l0ml1,l0ml1,l0me1 ;0
DW l1ml1,l1ml1,l1ml1,l1ml1,l1ml1,l1ml1,l1ml1,l1ml1,l1ml1,l1ml1,l1ml1,l1ml1,l1ml1,l1ml1,l1ml1,l1me1 ;1
DW l2ml1,l2ml1,l2ml1,l2ml1,l2ml1,l2ml1,l2ml1,l2ml1,l2ml1,l2ml1,l2ml1,l2ml1,l2ml1,l2ml1,l2ml1,l2me1 ;2
DW l3ml1,l3ml1,l3ml1,l3ml1,l3ml1,l3ml1,l3ml1,l3ml1,l3ml1,l3ml1,l3ml1,l3ml1,l3ml1,l3ml1,l3ml1,l3me1 ;3
DW l4ml1,l4ml1,l4ml1,l4ml1,l4ml1,l4ml1,l4ml1,l4ml1,l4ml1,l4ml1,l4ml1,l4ml1,l4ml1,l4ml1,l4ml1,l4me1 ;4
DW l5ml1,l5ml1,l5ml1,l5ml1,l5ml1,l5ml1,l5ml1,l5ml1,l5ml1,l5ml1,l5ml1,l5ml1,l5ml1,l5ml1,l5ml1,l5me1 ;5
DW l6ml1,l6ml1,l6ml1,l6ml1,l6ml1,l6ml1,l6ml1,l6ml1,l6ml1,l6ml1,l6ml1,l6ml1,l6ml1,l6ml1,l6ml1,l6me1 ;6
DW leml1,leml1,leml1,leml1,leml1,leml1,leml1,leml1,leml1,leml1,leml1,leml1,leml1,leml1,leml1,leme1 ;7
DW l0ml2,l0ml2,l0ml2,l0ml2,l0ml2,l0ml2,l0ml2,l0ml2,l0ml2,l0ml2,l0ml2,l0ml2,l0ml2,l0ml2,l0ml2,l0me2 ;8
DW l1ml2,l1ml2,l1ml2,l1ml2,l1ml2,l1ml2,l1ml2,l1ml2,l1ml2,l1ml2,l1ml2,l1ml2,l1ml2,l1ml2,l1ml2,l1me2 ;9
DW l2ml2,l2ml2,l2ml2,l2ml2,l2ml2,l2ml2,l2ml2,l2ml2,l2ml2,l2ml2,l2ml2,l2ml2,l2ml2,l2ml2,l2ml2,l2me2 ;a
DW l3ml2,l3ml2,l3ml2,l3ml2,l3ml2,l3ml2,l3ml2,l3ml2,l3ml2,l3ml2,l3ml2,l3ml2,l3ml2,l3ml2,l3ml2,l3me2 ;b
DW l4ml2,l4ml2,l4ml2,l4ml2,l4ml2,l4ml2,l4ml2,l4ml2,l4ml2,l4ml2,l4ml2,l4ml2,l4ml2,l4ml2,l4ml2,l4me2 ;c
DW l5ml2,l5ml2,l5ml2,l5ml2,l5ml2,l5ml2,l5ml2,l5ml2,l5ml2,l5ml2,l5ml2,l5ml2,l5ml2,l5ml2,l5ml2,l5me2 ;d
DW l6ml2,l6ml2,l6ml2,l6ml2,l6ml2,l6ml2,l6ml2,l6ml2,l6ml2,l6ml2,l6ml2,l6ml2,l6ml2,l6ml2,l6ml2,l6me2 ;e
DW leml2,leml2,leml2,leml2,leml2,leml2,leml2,leml2,leml2,leml2,leml2,leml2,leml2,leml2,leml2,leme2 ;f
PROC lzsa1_decompress_speed_jumptable NEAR
; ---------------------------------------------------------------------------
; Decompress raw LZSA1 block
; inputs:
; * ds:si: raw LZSA1 block
; * es:di: output buffer
; output:
; * ax: decompressed size
; ---------------------------------------------------------------------------
MACRO get_byte_match_offset
mov ah,0ffh ;O=0, so set up offset's high byte
lodsb ;load low byte; ax=match offset
xchg bp,ax ;bp=match offset ax=00 + original token
ENDM
MACRO get_word_match_offset
lodsw ;ax=match offset
xchg bp,ax ;bp=match offset ax=00 + original token
ENDM
MACRO do_match_copy_long
LOCAL even0,even1,even2,do_run,do_run_w
; Copies a long match as optimally as possible.
; requirements: cx=length, bp=negative offset, ds:si=compdata, es:di=output
; trashes: ax, bx
; must leave cx=0 at exit
mov bx,ds ;save ds
mov ax,es
mov ds,ax ;ds=es
xchg ax,si ;save si
lea si,[bp+di] ;si = output buffer + negative match offset
cmp bp,-2 ;do we have a byte/word run to optimize?
IF OPTIMIZE_LONG_RLE
jae do_run ;catch offset = -2 or -1
ELSE
ja do_run ;catch offset = -1
ENDIF
;If we're here, we have a long copy and it isn't byte-overlapping (if it
;overlapped, we'd be in @@do_run) So, let's copy faster with REP MOVSW.
;This affects 8088 only slightly, but is a bigger win on 8086 and higher.
shr cx,1
jnc even0
movsb
even0:
rep movsw
xchg si,ax ;restore si
mov ds,bx ;restore ds
jmp decode_token
do_run:
IF OPTIMIZE_LONG_RLE
je do_run_w ;if applicable, handle word-sized value faster
ENDIF
xchg dx,ax ;save si into dx, as ax is getting trashed
lodsb ;load first byte of run into al
mov ah,al
shr cx,1
jnc even1
stosb
even1:
rep stosw ;perform word run
mov si,dx ;restore si
mov ds,bx ;restore ds
jmp decode_token
IF OPTIMIZE_LONG_RLE
do_run_w:
xchg dx,ax ;save si into dx, as ax is getting trashed
lodsw ;load first word of run
shr cx,1
rep stosw ;perform word run
jnc even2
stosb ;should be after rep stosw!
even2:
mov si,dx ;restore si
mov ds,bx ;restore ds
jmp decode_token
ENDIF
ENDM
MACRO do_match_copy
; Copies a shorter match with as little overhead as possible.
; requirements: cx=length, bp=negative offset, ds:si=compdata, es:di=output
; trashes: ax, bx
; must leave cx=0 at exit
mov bx,ds ;save ds
mov ax,es
mov ds,ax ;ds=es
xchg ax,si ;save si
lea si,[bp+di] ;si = output buffer + negative match offset
movsb
movsb
movsb ;Handle MINMATCH (instead of add cx,MINMATCH)
rep movsb
xchg si,ax ;restore si
mov ds,bx ;restore ds
jmp decode_token
ENDM
MACRO do_literal_copy
LOCAL even
; Copies a literal sequence using words.
; Meant for longer lengths; for 128 bytes or less, use REP MOVSB.
; requirements: cx=length, ds:si=compdata, es:di=output
; must leave cx=0 at exit
shr cx,1
jnc even
movsb
even:
rep movsw
ENDM
MACRO copy_small_match_len
and al,0FH ;isolate length in token (MMMM)
xchg cx,ax ;cx=match length
do_match_copy ;copy match with cx=length, bp=offset
ENDM
MACRO copy_large_match_len
LOCAL val239,val238,EOD
; Handle MMMM=Fh
; Assumptions: ah=0 from get_????_match_offset's xchg
lodsb ;grab extra match length byte
add al,0Fh+minmatch ;add MATCH_RUN_LEN + MIN_MATCH_SIZE
; jz val238 ;if zf & cf, 238: get 16-bit match length
jc val239 ;if cf, 239: get extra match length byte
xchg cx,ax ;otherwise, we have our match length
do_match_copy_long ;copy match with cx=length, bp=offset
val239:
jz val238
lodsb ;ah=0; grab single extra length byte
inc ah ;ax=256+length byte
xchg cx,ax
do_match_copy_long ;copy match with cx=length, bp=offset
val238:
lodsw ;grab 16-bit length
xchg cx,ax
jcxz EOD ;is it the EOD marker? Exit if so
do_match_copy_long ;copy match with cx=length, bp=offset
EOD:
jmp done_decompressing
ENDM
lzsa1_start:
push di ;remember decompression offset
cld ;ensure string ops move forward
xor cx,cx
decode_token:
xchg cx,ax ;clear ah (cx = 0 from match copy's REP)
lodsb ;read token byte: O|LLL|MMMM
mov bp,ax ;preserve 0+token in bp for later MMMM handling
mov bx,ax ;prep for table lookup
shl bx,1 ;adjust for offset word size
jmp [cs:jtbl+bx] ;jump directly to relevant decode path
; There are eight basic decode paths for an LZSA1 token. Each of these
; paths perform only the necessary actions to decode the token and then
; fetch the next token. This results in a lot of code duplication, but
; it is the only way to get down to two branches per token (jump to unique
; decode path, then jump back to next token) for the most common cases.
; Path #1: LLL=0-6, MMMM=0-Eh, O=0 (1-byte match offset)
; Handle LLL=0-6 by jumping directly into # of bytes to copy (6 down to 1)
lit_len_mat_len_1b_01:
movsb
get_byte_match_offset
copy_small_match_len
lit_len_mat_len_1b_23:
movsb
movsw
get_byte_match_offset
copy_small_match_len
lit_len_mat_len_1b_45:
movsb
movsw
movsw
get_byte_match_offset
copy_small_match_len
lit_len_mat_len_1b_6:
movsw
movsw
movsw
get_byte_match_offset
copy_small_match_len
; Path #2: LLL=0-6, MMMM=Fh, O=0 (1-byte match offset)
lit_len_mat_ext_1b:
movsb
movsb
movsb
movsb
movsb
movsb
get_byte_match_offset
copy_large_match_len
; Path #3: LLL=7, MMMM=0-Eh, O=0 (1-byte match offset)
lit_ext_mat_len_1b:
; on entry: ax=0 + token, bp=ax
lodsb ;grab extra literal length byte
add al,litrunlen ;add 7h literal run length
; jz @@val249_3 ;if zf & cf, 249: get 16-bit literal length
jc @@val250_3 ;if cf, 250: get extra literal length byte
xchg cx,ax ;otherwise, we have our literal length
do_literal_copy ;this might be better as rep movsw !!! benchmark
get_byte_match_offset
copy_small_match_len
@@val250_3:
jz @@val249_3
lodsb ;ah=0; grab single extra length byte
inc ah ;ax=256+length byte
xchg cx,ax
do_literal_copy
get_byte_match_offset
copy_small_match_len
@@val249_3:
lodsw ;grab 16-bit length
xchg cx,ax
do_literal_copy
get_byte_match_offset
copy_small_match_len
; Path #4: LLL=7, MMMM=Fh, O=0 (1-byte match offset)
lit_ext_mat_ext_1b:
; on entry: ax=0 + token, bp=ax
lodsb ;grab extra literal length byte
add al,litrunlen ;add 7h literal run length
; jz @@val249_4 ;if zf & cf, 249: get 16-bit literal length
jc @@val250_4 ;if cf, 250: get extra literal length byte
xchg cx,ax ;otherwise, we have our literal length
do_literal_copy ;this might be better as rep movsw !!! benchmark
get_byte_match_offset
copy_large_match_len
@@val250_4:
jz @@val249_4
lodsb ;ah=0; grab single extra length byte
inc ah ;ax=256+length byte
xchg cx,ax
do_literal_copy
get_byte_match_offset
copy_large_match_len
@@val249_4:
lodsw ;grab 16-bit length
xchg cx,ax
do_literal_copy
get_byte_match_offset
copy_large_match_len
; Path #5: LLL=0-6, MMMM=0-Eh, O=1 (2-byte match offset)
; Handle LLL=0-6 by jumping directly into # of bytes to copy (6 down to 1)
lit_len_mat_len_2b_01:
movsb
get_word_match_offset
copy_small_match_len
lit_len_mat_len_2b_23:
movsb
movsw
get_word_match_offset
copy_small_match_len
lit_len_mat_len_2b_45:
movsb
movsw
movsw
get_word_match_offset
copy_small_match_len
lit_len_mat_len_2b_6:
movsw
movsw
movsw
get_word_match_offset
copy_small_match_len
; Path #6: LLL=0-6, MMMM=Fh, O=1 (2-byte match offset)
; Path #6: LLL=0-6, MMMM=Fh, O=1 (2-byte match offset)
lit_len_mat_ext_2b:
movsb
movsb
movsb
movsb
movsb
movsb
get_word_match_offset
copy_large_match_len
; Path #7: LLL=7, MMMM=0-Eh, O=1 (2-byte match offset)
lit_ext_mat_len_2b:
; on entry: ax=0 + token, bp=ax
lodsb ;grab extra literal length byte
add al,litrunlen ;add 7h literal run length
; jz @@val249_7 ;if zf & cf, 249: get 16-bit literal length
jc @@val250_7 ;if cf, 250: get extra literal length byte
xchg cx,ax ;otherwise, we have our literal length
do_literal_copy ;this might be better as rep movsw !!! benchmark
get_word_match_offset
copy_small_match_len
@@val250_7:
jz @@val249_7
lodsb ;ah=0; grab single extra length byte
inc ah ;ax=256+length byte
xchg cx,ax
do_literal_copy
get_word_match_offset
copy_small_match_len
@@val249_7:
lodsw ;grab 16-bit length
xchg cx,ax
do_literal_copy
get_word_match_offset
copy_small_match_len
; Path #8: LLL=7, MMMM=Fh, O=1 (2-byte match offset)
lit_ext_mat_ext_2b:
; on entry: ax=0 + token, bp=ax
lodsb ;grab extra literal length byte
add al,litrunlen ;add 7h literal run length
; jz @@val249_8 ;if zf & cf, 249: get 16-bit literal length
jc @@val250_8 ;if cf, 250: get extra literal length byte
xchg cx,ax ;otherwise, we have our literal length
do_literal_copy ;this might be better as rep movsw !!! benchmark
get_word_match_offset
copy_large_match_len
@@val250_8:
jz @@val249_8
lodsb ;ah=0; grab single extra length byte
inc ah ;ax=256+length byte
xchg cx,ax
do_literal_copy
get_word_match_offset
copy_large_match_len
@@val249_8:
lodsw ;grab 16-bit length
xchg cx,ax
do_literal_copy
get_word_match_offset
copy_large_match_len
done_decompressing:
;return # of decompressed bytes in ax
pop ax ;retrieve the original decompression offset
sub di,ax ;adjust for original offset
xchg di,ax ;return adjusted value in ax
ret ;done decompressing, exit to caller
ENDP lzsa1_decompress_speed_jumptable
ENDS CODE
END
;Speed optimization history (decompression times in microseconds @ 4.77 MHz):
; defer add MIN_MATCH_SIZE shuttle 97207 alice 57200 robotron 362884 ++*
; jumptable rewrite, no RLE shuttle 97744 alice 46905 robotron 309032 -++
; adc cx,0 -> adc cl,0 shuttle 97744 alice 46893 robotron 309032 .+.!
; jumptable rewrite w/RLE shuttle 88776 alice 50433 robotron 319222 +--
; short match copies movsb shuttle 97298 alice 49769 robotron 326282 ---rb
; long match copy #1 16-bit shuttle 92490 alice 46905 robotron 308722 +*+
; long match copy #2 extraB shuttle 92464 alice 46905 robotron 308371 +.+
; long match copy #3 0f->ed shuttle 86765 alice 46864 robotron 303895 +++!
; baseline new test harness shuttle 83925 alice 37948 robotron 269002 ***
; Pavel optimizations shuttle 82225 alice 36798 robotron 261226 +++
; OPTIMIZE_LONG_RLE 1 shuttle 82242 alice 36787 robotron 261392 **-
;
;------
;
;Pavel's optimization history:
; shuttle alice robotron time in 1.193 MHz timer clocks
;baseline 19109 D9A6 570F6
;adc cl,0->adc cl,cl 19035 D9A6 56FAB
;rep movsb->shr cx,1;jnc 18FD4 D998 56F14
;cmp bp,-2->inc bp;inc bp 18F07 D999 56EA3
;jz;jc->jc 18D81 D973 56B2F
;add al,3->movsb x3 18B1E D777 56197
;more lit_len_mat tables 18A83 D341 54ACC