mirror of
https://github.com/emmanuel-marty/lzsa.git
synced 2024-11-22 21:32:07 +00:00
668204d953
Manually merge PR #44
582 lines
22 KiB
NASM
582 lines
22 KiB
NASM
; lzsa2fta.asm time-efficient decompressor implementation for 808x CPUs.
|
|
; Turbo Assembler IDEAL mode dialect.
|
|
; (Is supposed to also assemble with NASM's IDEAL mode support, but YMMV.)
|
|
;
|
|
; This code assembles to about 3K of lookup tables and unrolled code,
|
|
; but the tradeoff for that size is the absolute fastest decompressor
|
|
; of LZSA1 block data for 808x CPUs.
|
|
; If you need moderately fast code with less size, see LZSA1FTA.ASM.
|
|
; If you need the smallest decompression code, see decompress_small_v1.S.
|
|
;
|
|
; Usual DOS assembler SMALL model assumptions apply. This code:
|
|
; - Assumes it was invoked via NEAR call (change RET to RETF for FAR calls)
|
|
; - Is interrupt-safe
|
|
; - Is not re-entrant (do not decompress while already running decompression)
|
|
; - Trashes all data and segment registers
|
|
;
|
|
; Copyright (C) 2019 Jim Leonard, Emmanuel Marty
|
|
; Additional speed optimizations by Pavel Zagrebin
|
|
;
|
|
; This software is provided 'as-is', without any express or implied
|
|
; warranty. In no event will the authors be held liable for any damages
|
|
; arising from the use of this software.
|
|
;
|
|
; Permission is granted to anyone to use this software for any purpose,
|
|
; including commercial applications, and to alter it and redistribute it
|
|
; freely, subject to the following restrictions:
|
|
;
|
|
; 1. The origin of this software must not be misrepresented; you must not
|
|
; claim that you wrote the original software. If you use this software
|
|
; in a product, an acknowledgment in the product documentation would be
|
|
; appreciated but is not required.
|
|
; 2. Altered source versions must be plainly marked as such, and must not be
|
|
; misrepresented as being the original software.
|
|
; 3. This notice may not be removed or altered from any source distribution.
|
|
;
|
|
; ===========================================================================
|
|
;
|
|
; The key area to concentrate on when optimizing LZSA1 decompression speed is
|
|
; reducing time spent handling the shortest matches. This is for two reasons:
|
|
; 1. shorter matches are more common
|
|
; 2. short matches are least efficient in terms of decomp speed per byte
|
|
; You can confirm #1 using the --stats mode of the compressor.
|
|
;
|
|
; Branches are costly on 8086. To ensure we branch as little as possible, a
|
|
; jumptable will be used to branch directly to as many direct decode paths as
|
|
; possible. This will burn up 512 bytes of RAM for a jumptable, and a few
|
|
; hundred bytes of duplicated program code (rather than JMP/CALL common code
|
|
; blocks, we inline them to avoid the branch overhead).
|
|
;
|
|
; ===========================================================================
|
|
;
|
|
; === LZSA1 block reference:
|
|
;
|
|
; Blocks encoded as LZSA1 are composed from consecutive commands.
|
|
; Each command follows this format:
|
|
;
|
|
; token: <O|LLL|MMMM>
|
|
; optional extra literal length
|
|
; literal values
|
|
; match offset low
|
|
; optional match offset high
|
|
; optional extra encoded match length
|
|
;
|
|
;
|
|
; === LZSA1 Token Reference:
|
|
;
|
|
; 7 6 5 4 3 2 1 0
|
|
; O L L L M M M M
|
|
;
|
|
; L: 3-bit literals length (0-6, or 7 if extended). If the number of literals for
|
|
; this command is 0 to 6, the length is encoded in the token and no extra bytes
|
|
; are required. Otherwise, a value of 7 is encoded and extra bytes follow as
|
|
; 'optional extra literal length'
|
|
;
|
|
; M: 4-bit encoded match length (0-14, or 15 if extended). Likewise, if the
|
|
; encoded match length for this command is 0 to 14, it is directly stored,
|
|
; otherwise 15 is stored and extra bytes follow as 'optional extra encoded match
|
|
; length'. Except for the last command in a block, a command always contains a
|
|
; match, so the encoded match length is the actual match length, offset by the
|
|
; minimum which is 3 bytes. For instance, an actual match length of 10 bytes to
|
|
; be copied, is encoded as 7.
|
|
;
|
|
; O: set for a 2-bytes match offset, clear for a 1-byte match offset
|
|
;
|
|
;
|
|
; === Decoding extended literal length:
|
|
;
|
|
; If the literals length is 7 or more, then an extra byte follows here, with
|
|
; three possible values:
|
|
;
|
|
; 0-248: the value is added to the 7 stored in the token.
|
|
; 250: a second byte follows. The final literals value is 256 + the second byte.
|
|
; 249: a little-endian 16-bit value follows, forming the final literals value.
|
|
;
|
|
;
|
|
; === Decoding match offsets:
|
|
;
|
|
; match offset low: The low 8 bits of the match offset follows.
|
|
;
|
|
; optional match offset high: If the 'O' bit (bit 7) is set in the token, the
|
|
; high 8 bits of the match offset follow, otherwise they are understood to be all
|
|
; set to 1. For instance, a short offset of 0x70 is interpreted as 0xff70
|
|
;
|
|
;
|
|
; === Decoding extra encoded match length:
|
|
;
|
|
; optional extra encoded match length: If the encoded match length is 15 or more,
|
|
; the 'M' bits in the token form the value 15, and an extra byte follows here,
|
|
; with three possible types of value.
|
|
;
|
|
; 0-237: the value is added to the 15 stored in the token.
|
|
; The final value is 3 + 15 + this byte.
|
|
; 239: a second byte follows. The final match length is 256 + the second byte.
|
|
; 238: a second and third byte follow, forming a little-endian 16-bit value.
|
|
; The final encoded match length is that 16-bit value.
|
|
;
|
|
; ===========================================================================
|
|
|
|
IDEAL ; Use Turbo Assembler IDEAL syntax checking
|
|
P8086 ; Restrict code generation to the 808x and later
|
|
JUMPS ; Perform fixups for out-of-bound conditional jumps
|
|
; This is required for the (L=07 & M=0Fh) decode paths as they
|
|
; have the most code, but these are uncommon paths so the
|
|
; tiny speed loss in just these paths is not a concern.
|
|
|
|
;Setting OPTIMIZE_LONG_RLE to 1 speeds up decompressing long runs of the
|
|
;same 16-bit word value, but hurts decompression speed of other data
|
|
;types slightly. Turn this on if you know your data has very long 16-bit
|
|
;word-based runs (reported as RLE2 sequences in the LZSA compressor output
|
|
;with an average length of at least 32 bytes), otherwise leave it off.
|
|
|
|
OPTIMIZE_LONG_RLE EQU 0
|
|
|
|
SEGMENT CODE para public
|
|
|
|
ASSUME cs:CODE, ds:CODE
|
|
|
|
PUBLIC lzsa1_decompress_speed_jumptable
|
|
|
|
; EQU helper statements (so we can construct a jump table without going crazy)
|
|
|
|
minmatch EQU 3
|
|
litrunlen EQU 7
|
|
|
|
leml1 EQU OFFSET lit_ext_mat_len_1b
|
|
leme1 EQU OFFSET lit_ext_mat_ext_1b
|
|
leml2 EQU OFFSET lit_ext_mat_len_2b
|
|
leme2 EQU OFFSET lit_ext_mat_ext_2b
|
|
|
|
;short-circuit special cases for 0 through 6 literal copies:
|
|
l6ml1 EQU OFFSET lit_len_mat_len_1b_6
|
|
l6me1 EQU OFFSET lit_len_mat_ext_1b
|
|
l6ml2 EQU OFFSET lit_len_mat_len_2b_6
|
|
l6me2 EQU OFFSET lit_len_mat_ext_2b
|
|
l5ml1 EQU OFFSET lit_len_mat_len_1b_45
|
|
l5me1 EQU OFFSET lit_len_mat_ext_1b + 1
|
|
l5ml2 EQU OFFSET lit_len_mat_len_2b_45
|
|
l5me2 EQU OFFSET lit_len_mat_ext_2b + 1
|
|
l4ml1 EQU OFFSET lit_len_mat_len_1b_45 + 1
|
|
l4me1 EQU OFFSET lit_len_mat_ext_1b + 2
|
|
l4ml2 EQU OFFSET lit_len_mat_len_2b_45 + 1
|
|
l4me2 EQU OFFSET lit_len_mat_ext_2b + 2
|
|
l3ml1 EQU OFFSET lit_len_mat_len_1b_23
|
|
l3me1 EQU OFFSET lit_len_mat_ext_1b + 3
|
|
l3ml2 EQU OFFSET lit_len_mat_len_2b_23
|
|
l3me2 EQU OFFSET lit_len_mat_ext_2b + 3
|
|
l2ml1 EQU OFFSET lit_len_mat_len_1b_23 + 1
|
|
l2me1 EQU OFFSET lit_len_mat_ext_1b + 4
|
|
l2ml2 EQU OFFSET lit_len_mat_len_2b_23 + 1
|
|
l2me2 EQU OFFSET lit_len_mat_ext_2b + 4
|
|
l1ml1 EQU OFFSET lit_len_mat_len_1b_01
|
|
l1me1 EQU OFFSET lit_len_mat_ext_1b + 5
|
|
l1ml2 EQU OFFSET lit_len_mat_len_2b_01
|
|
l1me2 EQU OFFSET lit_len_mat_ext_2b + 5
|
|
l0ml1 EQU OFFSET lit_len_mat_len_1b_01 + 1 ; MMMM handling comes after LLL code
|
|
l0me1 EQU OFFSET lit_len_mat_ext_1b + 6 ; MMMM handling comes after LLL code
|
|
l0ml2 EQU OFFSET lit_len_mat_len_2b_01 + 1 ; MMMM handling comes after LLL code
|
|
l0me2 EQU OFFSET lit_len_mat_ext_2b + 6 ; MMMM handling comes after LLL code
|
|
|
|
; 0 1 2 3 4 5 6 7 8 9 a b c d e f
|
|
jtbl DW l0ml1,l0ml1,l0ml1,l0ml1,l0ml1,l0ml1,l0ml1,l0ml1,l0ml1,l0ml1,l0ml1,l0ml1,l0ml1,l0ml1,l0ml1,l0me1 ;0
|
|
DW l1ml1,l1ml1,l1ml1,l1ml1,l1ml1,l1ml1,l1ml1,l1ml1,l1ml1,l1ml1,l1ml1,l1ml1,l1ml1,l1ml1,l1ml1,l1me1 ;1
|
|
DW l2ml1,l2ml1,l2ml1,l2ml1,l2ml1,l2ml1,l2ml1,l2ml1,l2ml1,l2ml1,l2ml1,l2ml1,l2ml1,l2ml1,l2ml1,l2me1 ;2
|
|
DW l3ml1,l3ml1,l3ml1,l3ml1,l3ml1,l3ml1,l3ml1,l3ml1,l3ml1,l3ml1,l3ml1,l3ml1,l3ml1,l3ml1,l3ml1,l3me1 ;3
|
|
DW l4ml1,l4ml1,l4ml1,l4ml1,l4ml1,l4ml1,l4ml1,l4ml1,l4ml1,l4ml1,l4ml1,l4ml1,l4ml1,l4ml1,l4ml1,l4me1 ;4
|
|
DW l5ml1,l5ml1,l5ml1,l5ml1,l5ml1,l5ml1,l5ml1,l5ml1,l5ml1,l5ml1,l5ml1,l5ml1,l5ml1,l5ml1,l5ml1,l5me1 ;5
|
|
DW l6ml1,l6ml1,l6ml1,l6ml1,l6ml1,l6ml1,l6ml1,l6ml1,l6ml1,l6ml1,l6ml1,l6ml1,l6ml1,l6ml1,l6ml1,l6me1 ;6
|
|
DW leml1,leml1,leml1,leml1,leml1,leml1,leml1,leml1,leml1,leml1,leml1,leml1,leml1,leml1,leml1,leme1 ;7
|
|
DW l0ml2,l0ml2,l0ml2,l0ml2,l0ml2,l0ml2,l0ml2,l0ml2,l0ml2,l0ml2,l0ml2,l0ml2,l0ml2,l0ml2,l0ml2,l0me2 ;8
|
|
DW l1ml2,l1ml2,l1ml2,l1ml2,l1ml2,l1ml2,l1ml2,l1ml2,l1ml2,l1ml2,l1ml2,l1ml2,l1ml2,l1ml2,l1ml2,l1me2 ;9
|
|
DW l2ml2,l2ml2,l2ml2,l2ml2,l2ml2,l2ml2,l2ml2,l2ml2,l2ml2,l2ml2,l2ml2,l2ml2,l2ml2,l2ml2,l2ml2,l2me2 ;a
|
|
DW l3ml2,l3ml2,l3ml2,l3ml2,l3ml2,l3ml2,l3ml2,l3ml2,l3ml2,l3ml2,l3ml2,l3ml2,l3ml2,l3ml2,l3ml2,l3me2 ;b
|
|
DW l4ml2,l4ml2,l4ml2,l4ml2,l4ml2,l4ml2,l4ml2,l4ml2,l4ml2,l4ml2,l4ml2,l4ml2,l4ml2,l4ml2,l4ml2,l4me2 ;c
|
|
DW l5ml2,l5ml2,l5ml2,l5ml2,l5ml2,l5ml2,l5ml2,l5ml2,l5ml2,l5ml2,l5ml2,l5ml2,l5ml2,l5ml2,l5ml2,l5me2 ;d
|
|
DW l6ml2,l6ml2,l6ml2,l6ml2,l6ml2,l6ml2,l6ml2,l6ml2,l6ml2,l6ml2,l6ml2,l6ml2,l6ml2,l6ml2,l6ml2,l6me2 ;e
|
|
DW leml2,leml2,leml2,leml2,leml2,leml2,leml2,leml2,leml2,leml2,leml2,leml2,leml2,leml2,leml2,leme2 ;f
|
|
|
|
PROC lzsa1_decompress_speed_jumptable NEAR
|
|
; ---------------------------------------------------------------------------
|
|
; Decompress raw LZSA1 block
|
|
; inputs:
|
|
; * ds:si: raw LZSA1 block
|
|
; * es:di: output buffer
|
|
; output:
|
|
; * ax: decompressed size
|
|
; ---------------------------------------------------------------------------
|
|
|
|
MACRO get_byte_match_offset
|
|
mov ah,0ffh ;O=0, so set up offset's high byte
|
|
lodsb ;load low byte; ax=match offset
|
|
xchg bp,ax ;bp=match offset ax=00 + original token
|
|
ENDM
|
|
|
|
MACRO get_word_match_offset
|
|
lodsw ;ax=match offset
|
|
xchg bp,ax ;bp=match offset ax=00 + original token
|
|
ENDM
|
|
|
|
MACRO do_match_copy_long
|
|
LOCAL even0,even1,even2,do_run,do_run_w
|
|
; Copies a long match as optimally as possible.
|
|
; requirements: cx=length, bp=negative offset, ds:si=compdata, es:di=output
|
|
; trashes: ax, bx
|
|
; must leave cx=0 at exit
|
|
mov bx,ds ;save ds
|
|
mov ax,es
|
|
mov ds,ax ;ds=es
|
|
xchg ax,si ;save si
|
|
lea si,[bp+di] ;si = output buffer + negative match offset
|
|
cmp bp,-2 ;do we have a byte/word run to optimize?
|
|
IF OPTIMIZE_LONG_RLE
|
|
jae do_run ;catch offset = -2 or -1
|
|
ELSE
|
|
ja do_run ;catch offset = -1
|
|
ENDIF
|
|
|
|
;If we're here, we have a long copy and it isn't byte-overlapping (if it
|
|
;overlapped, we'd be in @@do_run) So, let's copy faster with REP MOVSW.
|
|
;This affects 8088 only slightly, but is a bigger win on 8086 and higher.
|
|
shr cx,1
|
|
jnc even0
|
|
movsb
|
|
even0:
|
|
rep movsw
|
|
xchg si,ax ;restore si
|
|
mov ds,bx ;restore ds
|
|
jmp decode_token
|
|
do_run:
|
|
IF OPTIMIZE_LONG_RLE
|
|
je do_run_w ;if applicable, handle word-sized value faster
|
|
ENDIF
|
|
xchg dx,ax ;save si into dx, as ax is getting trashed
|
|
lodsb ;load first byte of run into al
|
|
mov ah,al
|
|
shr cx,1
|
|
jnc even1
|
|
stosb
|
|
even1:
|
|
rep stosw ;perform word run
|
|
mov si,dx ;restore si
|
|
mov ds,bx ;restore ds
|
|
jmp decode_token
|
|
|
|
IF OPTIMIZE_LONG_RLE
|
|
do_run_w:
|
|
xchg dx,ax ;save si into dx, as ax is getting trashed
|
|
lodsw ;load first word of run
|
|
shr cx,1
|
|
rep stosw ;perform word run
|
|
jnc even2
|
|
stosb ;should be after rep stosw!
|
|
even2:
|
|
mov si,dx ;restore si
|
|
mov ds,bx ;restore ds
|
|
jmp decode_token
|
|
ENDIF
|
|
ENDM
|
|
|
|
MACRO do_match_copy
|
|
; Copies a shorter match with as little overhead as possible.
|
|
; requirements: cx=length, bp=negative offset, ds:si=compdata, es:di=output
|
|
; trashes: ax, bx
|
|
; must leave cx=0 at exit
|
|
mov bx,ds ;save ds
|
|
mov ax,es
|
|
mov ds,ax ;ds=es
|
|
xchg ax,si ;save si
|
|
lea si,[bp+di] ;si = output buffer + negative match offset
|
|
movsb
|
|
movsb
|
|
movsb ;Handle MINMATCH (instead of add cx,MINMATCH)
|
|
rep movsb
|
|
xchg si,ax ;restore si
|
|
mov ds,bx ;restore ds
|
|
jmp decode_token
|
|
ENDM
|
|
|
|
MACRO do_literal_copy
|
|
LOCAL even
|
|
; Copies a literal sequence using words.
|
|
; Meant for longer lengths; for 128 bytes or less, use REP MOVSB.
|
|
; requirements: cx=length, ds:si=compdata, es:di=output
|
|
; must leave cx=0 at exit
|
|
shr cx,1
|
|
jnc even
|
|
movsb
|
|
even:
|
|
rep movsw
|
|
ENDM
|
|
|
|
MACRO copy_small_match_len
|
|
and al,0FH ;isolate length in token (MMMM)
|
|
xchg cx,ax ;cx=match length
|
|
do_match_copy ;copy match with cx=length, bp=offset
|
|
ENDM
|
|
|
|
MACRO copy_large_match_len
|
|
LOCAL val239,val238,EOD
|
|
; Handle MMMM=Fh
|
|
; Assumptions: ah=0 from get_????_match_offset's xchg
|
|
lodsb ;grab extra match length byte
|
|
add al,0Fh+minmatch ;add MATCH_RUN_LEN + MIN_MATCH_SIZE
|
|
; jz val238 ;if zf & cf, 238: get 16-bit match length
|
|
jc val239 ;if cf, 239: get extra match length byte
|
|
xchg cx,ax ;otherwise, we have our match length
|
|
do_match_copy_long ;copy match with cx=length, bp=offset
|
|
val239:
|
|
jz val238
|
|
lodsb ;ah=0; grab single extra length byte
|
|
inc ah ;ax=256+length byte
|
|
xchg cx,ax
|
|
do_match_copy_long ;copy match with cx=length, bp=offset
|
|
val238:
|
|
lodsw ;grab 16-bit length
|
|
xchg cx,ax
|
|
jcxz EOD ;is it the EOD marker? Exit if so
|
|
do_match_copy_long ;copy match with cx=length, bp=offset
|
|
EOD:
|
|
jmp done_decompressing
|
|
ENDM
|
|
|
|
|
|
lzsa1_start:
|
|
push di ;remember decompression offset
|
|
cld ;ensure string ops move forward
|
|
xor cx,cx
|
|
|
|
decode_token:
|
|
xchg cx,ax ;clear ah (cx = 0 from match copy's REP)
|
|
lodsb ;read token byte: O|LLL|MMMM
|
|
mov bp,ax ;preserve 0+token in bp for later MMMM handling
|
|
mov bx,ax ;prep for table lookup
|
|
shl bx,1 ;adjust for offset word size
|
|
jmp [cs:jtbl+bx] ;jump directly to relevant decode path
|
|
|
|
; There are eight basic decode paths for an LZSA1 token. Each of these
|
|
; paths perform only the necessary actions to decode the token and then
|
|
; fetch the next token. This results in a lot of code duplication, but
|
|
; it is the only way to get down to two branches per token (jump to unique
|
|
; decode path, then jump back to next token) for the most common cases.
|
|
|
|
; Path #1: LLL=0-6, MMMM=0-Eh, O=0 (1-byte match offset)
|
|
; Handle LLL=0-6 by jumping directly into # of bytes to copy (6 down to 1)
|
|
lit_len_mat_len_1b_01:
|
|
movsb
|
|
get_byte_match_offset
|
|
copy_small_match_len
|
|
lit_len_mat_len_1b_23:
|
|
movsb
|
|
movsw
|
|
get_byte_match_offset
|
|
copy_small_match_len
|
|
lit_len_mat_len_1b_45:
|
|
movsb
|
|
movsw
|
|
movsw
|
|
get_byte_match_offset
|
|
copy_small_match_len
|
|
lit_len_mat_len_1b_6:
|
|
movsw
|
|
movsw
|
|
movsw
|
|
get_byte_match_offset
|
|
copy_small_match_len
|
|
|
|
; Path #2: LLL=0-6, MMMM=Fh, O=0 (1-byte match offset)
|
|
lit_len_mat_ext_1b:
|
|
movsb
|
|
movsb
|
|
movsb
|
|
movsb
|
|
movsb
|
|
movsb
|
|
get_byte_match_offset
|
|
copy_large_match_len
|
|
|
|
|
|
; Path #3: LLL=7, MMMM=0-Eh, O=0 (1-byte match offset)
|
|
lit_ext_mat_len_1b:
|
|
; on entry: ax=0 + token, bp=ax
|
|
lodsb ;grab extra literal length byte
|
|
add al,litrunlen ;add 7h literal run length
|
|
; jz @@val249_3 ;if zf & cf, 249: get 16-bit literal length
|
|
jc @@val250_3 ;if cf, 250: get extra literal length byte
|
|
xchg cx,ax ;otherwise, we have our literal length
|
|
do_literal_copy ;this might be better as rep movsw !!! benchmark
|
|
get_byte_match_offset
|
|
copy_small_match_len
|
|
@@val250_3:
|
|
jz @@val249_3
|
|
lodsb ;ah=0; grab single extra length byte
|
|
inc ah ;ax=256+length byte
|
|
xchg cx,ax
|
|
do_literal_copy
|
|
get_byte_match_offset
|
|
copy_small_match_len
|
|
@@val249_3:
|
|
lodsw ;grab 16-bit length
|
|
xchg cx,ax
|
|
do_literal_copy
|
|
get_byte_match_offset
|
|
copy_small_match_len
|
|
|
|
|
|
; Path #4: LLL=7, MMMM=Fh, O=0 (1-byte match offset)
|
|
lit_ext_mat_ext_1b:
|
|
; on entry: ax=0 + token, bp=ax
|
|
lodsb ;grab extra literal length byte
|
|
add al,litrunlen ;add 7h literal run length
|
|
; jz @@val249_4 ;if zf & cf, 249: get 16-bit literal length
|
|
jc @@val250_4 ;if cf, 250: get extra literal length byte
|
|
xchg cx,ax ;otherwise, we have our literal length
|
|
do_literal_copy ;this might be better as rep movsw !!! benchmark
|
|
get_byte_match_offset
|
|
copy_large_match_len
|
|
@@val250_4:
|
|
jz @@val249_4
|
|
lodsb ;ah=0; grab single extra length byte
|
|
inc ah ;ax=256+length byte
|
|
xchg cx,ax
|
|
do_literal_copy
|
|
get_byte_match_offset
|
|
copy_large_match_len
|
|
@@val249_4:
|
|
lodsw ;grab 16-bit length
|
|
xchg cx,ax
|
|
do_literal_copy
|
|
get_byte_match_offset
|
|
copy_large_match_len
|
|
|
|
|
|
; Path #5: LLL=0-6, MMMM=0-Eh, O=1 (2-byte match offset)
|
|
; Handle LLL=0-6 by jumping directly into # of bytes to copy (6 down to 1)
|
|
lit_len_mat_len_2b_01:
|
|
movsb
|
|
get_word_match_offset
|
|
copy_small_match_len
|
|
lit_len_mat_len_2b_23:
|
|
movsb
|
|
movsw
|
|
get_word_match_offset
|
|
copy_small_match_len
|
|
lit_len_mat_len_2b_45:
|
|
movsb
|
|
movsw
|
|
movsw
|
|
get_word_match_offset
|
|
copy_small_match_len
|
|
lit_len_mat_len_2b_6:
|
|
movsw
|
|
movsw
|
|
movsw
|
|
get_word_match_offset
|
|
copy_small_match_len
|
|
|
|
|
|
; Path #6: LLL=0-6, MMMM=Fh, O=1 (2-byte match offset)
|
|
; Path #6: LLL=0-6, MMMM=Fh, O=1 (2-byte match offset)
|
|
lit_len_mat_ext_2b:
|
|
movsb
|
|
movsb
|
|
movsb
|
|
movsb
|
|
movsb
|
|
movsb
|
|
get_word_match_offset
|
|
copy_large_match_len
|
|
|
|
; Path #7: LLL=7, MMMM=0-Eh, O=1 (2-byte match offset)
|
|
lit_ext_mat_len_2b:
|
|
; on entry: ax=0 + token, bp=ax
|
|
lodsb ;grab extra literal length byte
|
|
add al,litrunlen ;add 7h literal run length
|
|
; jz @@val249_7 ;if zf & cf, 249: get 16-bit literal length
|
|
jc @@val250_7 ;if cf, 250: get extra literal length byte
|
|
xchg cx,ax ;otherwise, we have our literal length
|
|
do_literal_copy ;this might be better as rep movsw !!! benchmark
|
|
get_word_match_offset
|
|
copy_small_match_len
|
|
@@val250_7:
|
|
jz @@val249_7
|
|
lodsb ;ah=0; grab single extra length byte
|
|
inc ah ;ax=256+length byte
|
|
xchg cx,ax
|
|
do_literal_copy
|
|
get_word_match_offset
|
|
copy_small_match_len
|
|
@@val249_7:
|
|
lodsw ;grab 16-bit length
|
|
xchg cx,ax
|
|
do_literal_copy
|
|
get_word_match_offset
|
|
copy_small_match_len
|
|
|
|
|
|
; Path #8: LLL=7, MMMM=Fh, O=1 (2-byte match offset)
|
|
lit_ext_mat_ext_2b:
|
|
; on entry: ax=0 + token, bp=ax
|
|
lodsb ;grab extra literal length byte
|
|
add al,litrunlen ;add 7h literal run length
|
|
; jz @@val249_8 ;if zf & cf, 249: get 16-bit literal length
|
|
jc @@val250_8 ;if cf, 250: get extra literal length byte
|
|
xchg cx,ax ;otherwise, we have our literal length
|
|
do_literal_copy ;this might be better as rep movsw !!! benchmark
|
|
get_word_match_offset
|
|
copy_large_match_len
|
|
@@val250_8:
|
|
jz @@val249_8
|
|
lodsb ;ah=0; grab single extra length byte
|
|
inc ah ;ax=256+length byte
|
|
xchg cx,ax
|
|
do_literal_copy
|
|
get_word_match_offset
|
|
copy_large_match_len
|
|
@@val249_8:
|
|
lodsw ;grab 16-bit length
|
|
xchg cx,ax
|
|
do_literal_copy
|
|
get_word_match_offset
|
|
copy_large_match_len
|
|
|
|
|
|
done_decompressing:
|
|
;return # of decompressed bytes in ax
|
|
pop ax ;retrieve the original decompression offset
|
|
sub di,ax ;adjust for original offset
|
|
xchg di,ax ;return adjusted value in ax
|
|
ret ;done decompressing, exit to caller
|
|
|
|
ENDP lzsa1_decompress_speed_jumptable
|
|
|
|
ENDS CODE
|
|
|
|
END
|
|
|
|
|
|
|
|
;Speed optimization history (decompression times in microseconds @ 4.77 MHz):
|
|
; defer add MIN_MATCH_SIZE shuttle 97207 alice 57200 robotron 362884 ++*
|
|
; jumptable rewrite, no RLE shuttle 97744 alice 46905 robotron 309032 -++
|
|
; adc cx,0 -> adc cl,0 shuttle 97744 alice 46893 robotron 309032 .+.!
|
|
; jumptable rewrite w/RLE shuttle 88776 alice 50433 robotron 319222 +--
|
|
; short match copies movsb shuttle 97298 alice 49769 robotron 326282 ---rb
|
|
; long match copy #1 16-bit shuttle 92490 alice 46905 robotron 308722 +*+
|
|
; long match copy #2 extraB shuttle 92464 alice 46905 robotron 308371 +.+
|
|
; long match copy #3 0f->ed shuttle 86765 alice 46864 robotron 303895 +++!
|
|
; baseline new test harness shuttle 83925 alice 37948 robotron 269002 ***
|
|
; Pavel optimizations shuttle 82225 alice 36798 robotron 261226 +++
|
|
; OPTIMIZE_LONG_RLE 1 shuttle 82242 alice 36787 robotron 261392 **-
|
|
;
|
|
;------
|
|
;
|
|
;Pavel's optimization history:
|
|
; shuttle alice robotron time in 1.193 MHz timer clocks
|
|
;baseline 19109 D9A6 570F6
|
|
;adc cl,0->adc cl,cl 19035 D9A6 56FAB
|
|
;rep movsb->shr cx,1;jnc 18FD4 D998 56F14
|
|
;cmp bp,-2->inc bp;inc bp 18F07 D999 56EA3
|
|
;jz;jc->jc 18D81 D973 56B2F
|
|
;add al,3->movsb x3 18B1E D777 56197
|
|
;more lit_len_mat tables 18A83 D341 54ACC
|