
Macross 6502

an assembler for people who hate assembly language
by

Chip Morningstar

Lucasfilm Ltd. Games Division
July 7, 1986

ABSTRACT

This document describes the 6502 version of Macross, a super-duper cross-
assembler that has actually been used!

Introduction

Macross is a generic cross assembler for a variety of different microprocessors. This document
describes the 6502 version of Macross. Macross differs from many macro assemblers in that it provides
a number of ‘‘higher level’’ constructs not traditionally found in assembly language. These include
block-structured flow-of-control statements (if, while, etc.) and the ability to define record-oriented
data structures (struct). In addition, it contains a powerful macro capability that is based on syntactic
structural manipulations rather than simple text substitution. Macross is, in fact, a complete block-
structured programming language in its own right which is interpreted at assembly time.

General Form of Macross Statements

Stylistically, much of Macross is patterned after C. In particular, the form of many keywords and
of block structured entities is derived from C. Unlike C however, Macross follows the convention of
more traditional assemblers that statements are delimited by line boundaries (i.e., one statement per line,
with the end of a line ending a statement).

In general, spaces and tabs are treated as whitespace characters and are ignored. Therefore, such
characters may be used as the assembly language programmer desires to format his or her program
according to personal taste. For the convenience of the programmer, Macross relaxes the syntax rule
that newlines always end a statement: newlines may also be treated as whitespace characters (again, for
purposes of formatting) in places where it would be syntactically unambiguous to do so (i.e., where a
statement obviously cannot terminate, such as after a comma). For example:

byte 1, 2, 3, 4,
5, 6, 7, 8

is allowed and is equivalent to

byte 1, 2, 3, 4, 5, 6, 7, 8

Comments begin with a semicolon (‘‘;’’) and continue to the end of the line, as is common in
many assemblers. In addition, Macross supports C style comments bracketed by ‘‘/*’’ and ‘‘*/’’.

Lucasfilm Ltd. Proprietary Information - 1 - CONFIDENTIAL

Macross July 7, 1986 6502 Version

As with most assemblers, Macross statements are allowed to begin with a label (or several labels,
if you like). A label is denoted by an identifier followed by a colon (‘‘:’’). There is no requirement
that the label start in column 1, or anything like that. Labels, if present, merely must precede anything
else in a statement.

An identifier is just what you’d expect from all your years of programming experience: a string of
letters and digits that must begin with a letter. As is traditional in Unix* land, the underscore character
(‘‘_’’) is considered to be a letter (smacks of hubris that, but tradition is tradition). Departing from
Unix tradition, upper- and lower-case characters are not distinct from each other for purposes of distin-
guishing identifiers. If you use mixed case for stylistic reasons, Macross will remember the case of the
letters in an identifier when it was first defined, so that symbol table dumps and cross-reference listings
will retain whatever case usage style you’ve adopted. There is, in principle, no restriction imposed upon
the length of identifiers.

The Language
In what follows, things in this typewriter like typeface are keywords and characters

that are used literally. Things in italics are other kinds of syntactic entities. Double brackets (‘‘[[’’ and
‘‘]] ’’) enclose things that are optional, while brackets followed by an asterisk (‘‘*’’) enclose things that
may be optionally repeated zero or more times.

1. The Instruction Statement
The most elementary Macross statement is the instruction statement, wherein the programmer

specifies a machine instruction to be assembled. The instruction statement is

[[label]]* opcode [[operand [[, operand]]*]]

just like every assembler ever made (except a65, of course). Opcode is an identifier which is either a
machine instruction mnemonic (a list of which mnemonics are accepted by Macross is given in Appen-
dix F at the end of this document) or a macro name. For example:

and foobar
someMacro foo, bar, baz, bletch

The operands of an instruction may be any of the various types of operands allowed by the vari-
ous addressing modes of the target processor. In the case of the 6502, these are:

1.1. Direct addressing
Direct addresses take the form

expression

and are used both for instructions that use direct addressing and ones that use relative addressing (the
offset is computed automatically by Macross).

1.2. Indirect addressing
Indirect addresses take the form

@ expression

Of course, the only 6502 instruction which accepts an indirectly addressed operand is jmp.

* Unix is a footnote of Bell Laboratories.

Lucasfilm Ltd. Proprietary Information - 2 - CONFIDENTIAL

Macross July 7, 1986 6502 Version

1.3. Immediate operands
Immediate operands take the form

expression

In the 6502, immediate mode operands are restricted to eight bit quantities. Macross will give an error
message if the operand value is larger than this.

1.4. Indexed addressing
Indexed addressing operands take the forms

x [expression]
y [expression]

An alternate form of indexed addressing which is supported by Macross allows the symbolic selection of
a field of a struct pointed to by an index register

x . identifier [[. identifier]]*
y . identifier [[. identifier]]*

This is explained in greater detail in the sections on structs and expressions below.

1.5. Pre-indexed indirect addressing
Pre-indexed indirect addressing is specified by operands of the form

@ x [expression]

As with ordinary indexed addressing, there is a form of pre-indexed indirect addressing which uses
struct fields

@ x . identifier [[. identifier]]*

1.6. Post-indexed indirect addressing
Post-indexed indirect addressing is specified by operands of the form

y [@ expression]

There is no struct-oriented form of post-indexed indirect addressing since there doesn’t seem to be
any consistent interpretation of such a thing that makes sense.

1.7. Register addressing
The only register in the 6502 which is used as an operand in its own right is the accumulator

a

For the sake of completeness, so that macros may have them as operands, Macross also allows either of
the index registers to be used as operands

x
y

These are equivalent to

Lucasfilm Ltd. Proprietary Information - 3 - CONFIDENTIAL

Macross July 7, 1986 6502 Version

x[0]
y[0]

Note that a, x and y are reserved words in the Macross language and so cannot be used as labels, vari-
able names, etc. It might seem natural to call a variable x but you can’t. Sorry.

1.8. Text operands
For the sake of macros, text strings may also be used as operands

"any string you like"

The same conventions regarding escaped characters (using ‘‘\’’) that are followed by C are followed by
Macross. These are documented in Appendix E. Note that on many target machines the codes that
these escape sequences stand for are meaningless. They are provided primarily as a convenience for
writing calls to printf().

2. The Flow of Control Statements
Macross provides a number of statements which allow program flow of control to be specified in a

C-like block structured fashion. This include a conditional execution statement (if) and three condi-
tional loop statements (while, do-while and do-until). These statements assemble into the
appropriate conditional branches and jumps to realize the desired construct.

2.1. If statement
The if statement has the following form

[[label]]* if (condition) {
[[statement]]*

} [[elseif (condition) {
[[statement]]*

}]]* [[else {
[[statement]]*

}]]

condition is either the name of one of the target processor’s hardware condition codes such as can be
tested for in a conditional branch instruction (e.g., carry, overflow, etc.— the complete list is in
Appendix B) or one either of these negated using the ‘‘logical not’’ operator (‘‘!’’) or the name of one
of the more complex conditions which Macross understands (geq, lt, etc., discussed shortly). The
condition is used to determine the appropriate type of branch instruction(s) to use. For example,

if (plus) {
statements-1

} elseif (carry) {
statements-2

} else {
statements-3

}

expands into this (the labels are made up for illustrative purposes only):

bmi temp1
statements-1
jmp temp3

temp1: bcc temp2
statements-3

Lucasfilm Ltd. Proprietary Information - 4 - CONFIDENTIAL

Macross July 7, 1986 6502 Version

jmp temp3
temp2: statements-3
temp3: whatever follows

The keyword elseif may be used as shown, or specified as two separate keywords, else if,
depending on the programmer’s whim.

Macross knows about certain conditions which are more complex than those than can be realized
with single conditional branch instructions. These conditions correspond to the results of comparison
operations (such as geq — ‘‘greater than or equal to’’) that may require rather complicated sequences
of conditional branches to implement. These may be used in any location where an ordinary condition
may be used. One simply should keep in mind that they can result in a non-trivial amount of code
being generated, if one is concerned about speed of execution. The complete list of these complex con-
ditions along with the object code that they produce is given in Appendix B.

2.2. While statement
The while statement has the following form

[[label]]* while (condition) {
[[statement]]*

}

condition is as described above for the if statement. An example of the while statement would be

while (!carry) {
statements

}

which would turn into

bcs temp1
temp2: statements

bcc temp2
temp1: whatever follows

2.3. Do-while statement
The do-while statement is similar to the while statement except that the condition is tested at

the bottom of the loop. It has the form

[[label]]* do {
[[statement]]*

} while (condition)

For example

do {
statements

} while (equal)

which is equivalent to

temp: statements
beq temp

Lucasfilm Ltd. Proprietary Information - 5 - CONFIDENTIAL

Macross July 7, 1986 6502 Version

2.4. Do-until statement
The do-until statement is the same as the do-while statement except that the sense of the

condition is negated. It has the form

[[label]]* do {
[[statement]]*

} until (condition)

For example

do {
statements

} until (equal)

which is equivalent to

temp: statements
bne temp

3. The Data Statements
The data statements allow the allocation of memory space and the storage of constant data. These

statements are like the ones found in most assemblers. There are several different forms, each for a dif-
ferent type of data.

3.1. Block statement
The block statement allocates blocks of memory without initializing the bytes to any particular

value (actually, the loader will in all likelihood initialize these to 0, but it is probably not really wise to
rely on this). It has the form

[[label]]* block expression [[, expression]]*

The expressions are the sizes of the blocks to reserve, expressed in bytes.

3.2. Align statement
The align statement aligns the current location counter to an integer multiple of some value

(e.g., to align with a word boundary). It has the form

[[label]]* align expression

The expression is the multiple to which the current location counter is to be aligned. For example,

align 2

would align the current location to a word boundary, while

align 0x100

would align to a page boundary.

Lucasfilm Ltd. Proprietary Information - 6 - CONFIDENTIAL

Macross July 7, 1986 6502 Version

3.3. Constrain statement
The constrain statement provides a means of constraining a portion of code or data to be

located within a region of memory bounded by addresses of integer multiples of some value (e.g., within
a page). Its form is

constrain (boundary) {
[[statement]]*

}

Boundary may be any expression which evaluates to a number. The statements are assembled normally.
If assembling in absolute mode, an error message is issued if the current location counter crosses an
integer multiple of boundary. If assembling in relocatable mode, information about the constraint will
be output in the object file and the contents of the constrained block will be relocated as needed to
satisfy the constraint (note that this means that it is unsafe to assume that the things in the assembly
source immediately before the constrain statement, the contents of the constrain block itself, and the
things in the assembly source immediately after the constrain statement will be located in contigu-
ous locations in the eventual target machine address space). For example,

constrain (0x100) {
statements

}

constrains the given statements to all fit within a page.

3.4. Word statement
The word statement allocates words, i.e., two byte chunks, of memory. It takes the form

[[label]]* word expression [[, expression]]*

The expressions must evaluate to quantities that can be contained in 16 bits, of course. For example,

word 0x1234, foobar

would allocate two words, the first of which would be initialized to the hexadecimal value 0x1234 and
the second to whatever the value of foobar is.

3.5. Dbyte statement
The dbyte statement is just like the word statement, except that the word is byte-swapped in

memory. Its form is

[[label]]* dbyte expression [[, expression]]*

3.6. Long statement
The long statement allocates longwords, i.e., four byte chunks, of memory. It takes the form

[[label]]* long expression [[, expression]]*

The expressions must evaluate to quantities that can be contained in 32 bits, of course. For example,

long 0x12345678, foobar

would allocate two longwords, the first of which would be initialized to the hexadecimal value
0x12345678 and the second to whatever the value of foobar is.

Lucasfilm Ltd. Proprietary Information - 7 - CONFIDENTIAL

Macross July 7, 1986 6502 Version

3.7. Byte statement
The byte statement is similar to the word and dbyte statements, except that it allocates single

byte chunks. Its form is

[[label]]* byte expression [[, expression]]*

An expression, in this case, is either an ordinary expression (see Expressions, below) which must evalu-
ate to an 8-bit quantity, indicating the value for a single byte to be reserved, or a string (see above,
under the discussion of text operands), indicating that the characters in the string should be placed in
memory at the current location.

3.8. String statement
The string statement is much like the byte statement, except that the values indicated are fol-

lowed in memory by a zero byte. This enables the convenient declaration and allocation of NULL ter-
minated character strings. This feature is of little use in the 6502 version of Macross but is provided for
compatability with future versions targeted at more sophisticated processors. The form of the string
statement is

[[label]]* string expression [[, expression]]*

3.9. Struct statement
The struct statement enables the declaration and allocation of record-oriented data structures.

There are two forms of the struct statement, the first of which declares a struct record type, and
the second of which causes space to be set aside in memory for a struct that has already been
declared. The form of the first type of struct statement is

[[label]]* struct {
[[dataStatement]]*

} name

dataStatements are any of the data statements described in this section (section 3). Name becomes the
name of the struct. Any labels inside the struct become fields of the data structure which may be
referred to later in expressions using the ‘‘.’’ operator, as in C. A more complete description of the
semantics of structs is given in the section below on expressions.

The first form of the struct statement, called a ‘‘struct definition’’, lays out the constituent
parts of a data structure and gives those names to those parts. The second form of the struct state-
ment, called a ‘‘struct instantiation’’,

[[label]]* struct name

causes storage for the struct named by name to be allocated. A struct definition may not contain
another struct definition, but it may contain a struct instantiation. For example,

struct {
pointer: block 2
class: block 1

} fooThing

would create a struct called fooThing. Then,

fooLabel: struct fooThing

would allocate one at the current location at the address labeled fooLabel. This could then be used

Lucasfilm Ltd. Proprietary Information - 8 - CONFIDENTIAL

Macross July 7, 1986 6502 Version

as follows:

and fooLabel.class
jmp @fooLabel.pointer

which would AND the accumulator with the class field of the struct and then jump to wherever
the pointer field pointed to. If the x index register already contained the address of this struct,
then one could say

and x.class

4. The Symbol Definition Statements
The various symbol definition statements allow the declaration of symbolic variables and values

and the definition of macros and functions.

4.1. Define statement
The define statement enables the programmer to create symbolic names for values. It has two

forms. The first

define symbolname

creates a new symbol, symbolname (an identifier), and gives it the special value unassigned. Any
attempt to take the value of an unassigned symbol will cause an error message from the assembler. The
symbol will, however, cause the isDefined() built-in function (see Expressions, below) to return
TRUE if passed as an argument. It is also an error to define a symbol that has already been
defined.

The second form of the define statement

define symbolname = expression

creates the symbol and gives it the value obtained by evaluating expression (see Expressions, below).
Actually, what define does is create a symbolic name for expression and the save this expression
away in a secret place. This means that symbols in expression may be forward references, e.g., labels
that haven’t been encountered yet. It is also possible to forward reference to symbols that are defined
by future define statements, for example:

define foo = bar + 2
define bar = 47

effectively defines foo to be 49. Beware, however, as there is no way for the assembler to detect
mutually recursive references of this sort, so that

define foo = bar + 2
define bar = foo + 2

will be happily swallowed without complaint, until you actually try to use foo or bar in an instruction,
whereupon Macross’s expression evaluator will go into infinite recursion until it runs out of stack space
and crashes the assembler (it looks to see what foo is and sees that it’s bar + 2, so it looks to see
what bar and see that it’s foo + 2, so it looks to see what foo is... To have the assembler detect
and signal this error would, in the general case, add much complication and inefficiency (read: make
your programs assemble a lot more slowly) for little return).

Lucasfilm Ltd. Proprietary Information - 9 - CONFIDENTIAL

Macross July 7, 1986 6502 Version

The scope of symbols defined in either of these two ways extends in time from the definition itself
to the end of the assembly.

4.2. Variable statement
The variable statement enables the programmer to declare symbolic variables for future use.

Similar to the define statement, it has two forms. The first

variable symbolname

creates a variable named symbolname and gives it the special value unassigned, just like the analo-
gous define statement.

The second form of the variable statement

variable symbolname = expression

creates the variable and gives it the value obtained by evaluating expression. The scope of variables
defined in either of these two ways extends from the variable statement itself to the end of the
assembly (i.e., the variable is global).

The difference between the define statement and the variable statement is that the define
statement creates what is in essence a constant whereas the variable statement creates a true variable.
The value of a variable may change (e.g., it may be assigned to) during the course of assembly. In
addition, the expression which establishes a symbol’s value in a define statement may contain forward
references (i.e., labels whose values are unknown because they haven’t been encountered yet) whereas
the expression assigning an initial value to a variable must be made up of terms all of whose values are
known at the time the variable statement is encountered in the assembly.

A variable may also be declared as an array, using the form

variable symbolname [length]

where length is an expression that indicates the number of elements the array is to have. Macross arrays
are zero-based, so the elements are indexed from 0 to length-1. As with ordinary variables, the elements
of the array may be initialized in the variable statement using a statement of the form

variable symbolname [length] = expression
[[, expression]]*

The expressions are assigned sequentially into the elements of the array. If the array length is greater
than the number of expressions given, the remaining elements are filled with zeroes. Of course, you
should not specify more than length expressions or the assembler will complain at you.

4.3. Macro statement
The macro statement is used to define macros (surprise!). Its syntax is

macro macroname [[argumentname [[, argumentname]]*]] {
[[statement]]*

}

where macroname is just that and the argumentnames are identifiers corresponding to the formal param-
eters of the macro (in the classical fashion). When the macro is called, the call arguments are bound to
these symbols and then Macross assembles the statements which form the macro body. The scope of
these symbols is limited to the inside of the macro body and their values go away when the macro
expansion is completed. The statements may be any valid Macross statements except for macro state-
ments and function statements (i.e., macro and function definitions may not be nested).

Lucasfilm Ltd. Proprietary Information - 10 - CONFIDENTIAL

Macross July 7, 1986 6502 Version

Statement labels used inside macros can be made local to the macro by preceding the label
identifier with a dollar sign (‘‘$’’). For example,

macro fooMac arg {
jmp $foo
wordarg

$foo: nop
}

defines a macro named fooMac that emits a word of data that gets jumped over. The label $foo is
local to the macro: both the reference to it in the first line of the macro and its definition on the third
will only be seen inside the macro. Each time the macro is called, the jmp will refer to the location
two instructions ahead, and any other macros that might contain $foo will not affect this nor will they
be affected by this.

It is possible to define macros which take a variable number of arguments. This is accomplished
by following the last argument in the macro statement by []. This declares the argument to be an
array, which gets assigned a list of all of the parameters not accounted for by the other declared argu-
ments. This array may be interrogated with the arrayLength() built-in function (to find out how
many extra parameters there were) and accessed just like a regular array. For example,

macro enfoon precision, args[] {
mvariable len = arrayLength(args)
mvariable i
wordprecision
mfor (i=0, i<len, ++i) {

byteargs[i]
}

}

declares the macro enfoon that takes one or more parameters. The first parameter is bound to preci-
sion, while the remainder are collected in an array that is bound to args. It emits the first parameter
as a word value and the remaining parameters as bytes.

4.4. Function statement
The function statement is used to define functions. Its syntax is

function funcname ([[argumentname [[, argumentname]]*]]) {
[[statement]]*

}

where funcname is the name of the function and the argumentnames are identifiers corresponding to the
formal parameters of the function. When the function is called, the call arguments are evaluated and
then bound to these symbols and then Macross assembles the statements which form the function body.
The scope of these symbols is limited to the inside of the function body and their values go away when
the function evaluation is completed. As with macro definitions, the statements may be any valid
Macross statements except for the macro and function statements. A function may return a value
using the freturn statement, which is described below.

Just as you can define macros that take variable numbers of arguments, so too can you define
functions. The mechanism is the same. For example

function sum(args[]) {
mvariable len = arrayLength(args)
mvariable i
mvariable result = 0

Lucasfilm Ltd. Proprietary Information - 11 - CONFIDENTIAL

Macross July 7, 1986 6502 Version

mfor (i=0, i<len, ++i) {
result += args[i]

}
freturn(result);

}

which simply returns the sum of its arguments.

4.5. Undefine statement
The undefine statement allows symbol and macro definitions to be removed from Macross’

symbol table. It takes the form

undefine symbolname [[, symbolname]]*

The named symbols go away as if they never were — they are free to be defined again and the isDe-
fined() built-in function will return FALSE if passed one of them as an argument.

5. Macro Body Statements
Macross provides several statements which are primarily intended to manage the flow of control

(or, rather, the ‘‘flow of assembly’’) within a macro or function definition. Some of these statements are
analogs to the flow of control statements described above in section 2. However, one should keep in
mind that these statements are executed interpretively at assembly time, whereas the previously
described statements result in machine code in the target-processor-executable output of the assembly
process.

Although these statements are intended primarily for use within macros and functions, their use is
not restricted and they may be used at any point in a program. In particular, the mif statement (to be
described shortly) is the means by which conditional assembly may be realized.

5.1. Blocks
The construct

{
[[statement]]*

}

is called a block and is in fact a valid Macross statement type in its own right. Blocks are used exten-
sively in Macross to form the bodies of flow-of-control statements, flow-of-assembly statements and
macros.

5.2. Mdefine statement
The mdefine statement

mdefine symbolname
or

mdefine symbolname = expression

operates like (and is syntactically congruent with) the define statement, except that the scope of the
symbol definition is restricted to the body block of the macro or function in which the mdefine
appears. The symbol definition is invisible outside that block, though it is visible inside any blocks that
may themselves be contained within the macro or function.

Lucasfilm Ltd. Proprietary Information - 12 - CONFIDENTIAL

Macross July 7, 1986 6502 Version

5.3. Mvariable statement
The mvariable statement

mvariable symbolname
or

mvariable symbolname = expression

bears exactly the same relationship to the variable statement that the mdefine statement does to the
define statement. It declares a variable whose scope is limited to the function or macro in whose
definition it appears.

5.4. Mif statement
The mif statement conditionally assembles the statements contained in the block following it:

mif (condition) {
[[statement]]*

} [[melseif (condition) {
[[statement]]*

}]]* [[melse {
[[statement]]*

}]]

unlike the if statement, the condition may be any expression whatsoever. Macross follows the C con-
vention that the value 0 represents FALSE and any other value represents TRUE (in fact, the symbols
TRUE and FALSE are ‘‘predefined’’ by the assembler to have the values 1 and 0 respectively). The
meaning of the mif construct is the obvious one, but keep in mind that it is interpreted at assembly
time and has no direct bearing on the execution of the resulting assembled program.

5.5. Mwhile statement
The mwhile statement repetitively assembles a block of statements so long as a given condition

remains true. Its form is

mwhile (condition) {
[[statement]]*

}

As with mif, the condition may be any valid Macross expression and the interpretation is what it
seems.

5.6. Mdo-while statement
The mdo-while statement provides an alternative to the mwhile statement by testing at the bot-

tom of the loop instead of at the top. Its form is

mdo {
[[statement]]*

} while (condition)

5.7. Mdo-until statement
The mdo-until statement is the same as the mdo-while statement except that the sense of the

condition is negated. It has the form

mdo {
[[statement]]*

Lucasfilm Ltd. Proprietary Information - 13 - CONFIDENTIAL

Macross July 7, 1986 6502 Version

} until (condition)

5.8. Mfor statement
The mfor statement provides a more general looping construct analogous to the C for loop. Its

form is

mfor (expression-1 , expression-2 , expression-3) {
[[statement]]*

}

where expression-1 is an initialization expression, expression-2 is a test to see if looping should con-
tinue, and expression-3 is executed at the bottom of the loop to set up for the next time around, just as
in C. Note that, unlike C, the expressions are separated by commas, not semicolons. This is because
semicolons are used to delimit line comments.

The mfor statement is equivalent to

expression-1
mwhile (expression-2) {

statements
expression-3

}

5.9. Mswitch statement
The mswitch statement provides a means of selecting one of a number of blocks of code for

assembly depending upon the value of some expression. Its form is:

mswitch (selectionExpression) {
[[mcase (expression [[, expression]]*) {

[[statement]]*
}]]*
[[mdefault {

[[statement]]*
}]]

}

The way this works is as follows (it’s actually easier to use than to explain): selectionExpression is
evaluated. Each of the expressions associated with the various mcase clauses (if any) is then evaluated
in turn and the resulting value compared to that of selectionExpression. When and if one of these
values ‘‘matches’’ the value of selectionExpression the block of statements associated with the
corresponding mcase clause is immediately assembled and execution of the mswitch statement is
complete. If no such value matches and there is an mdefault clause, the block of statements associ-
ated with the mdefault clause is assembled. If no value matches and there is no mdefault clause
then nothing is assembled as a result of the mswitch. When we say the values ‘‘match’’, we mean
that either the expressions evaluate to the same number or to strings which are identical except for the
case of alphabetic characters. For example:

mswitch (foo) {
mcase ("hello", "fnord") {

statements-1
}
mcase ("ZAP!") {

statements-2
}
mdefault {

Lucasfilm Ltd. Proprietary Information - 14 - CONFIDENTIAL

Macross July 7, 1986 6502 Version

statements-3
}

}

would switch on the value of the symbol foo. If the value of foo was "hello", statements-1 would
be assembled. If the value of foo was "zap!", statements-2 would be assembled (since the string
comparison is done independent of case). If the value of foo was "cromfelter" or 47, then
statements-3 would be assembled by default.

5.10. Freturn statement
A Macross function may (and probably will) be called from an expression in the traditional

manner of functions throughout the annals of computer science. In such a situation, the programmer
may wish to have a function return a value. The freturn statement enables this. Its form is

freturn [[expression]]

where expression is any permissible Macross expression as described below under Expressions. If no
expression is given, the macro simply returns without having a value as its result. Any attempt to use
the (non-existent) value returned by a call to function which doesn’t return a value will result in an error
message from the assembler. Function calls will automatically return without a value upon reaching the
end of the block that forms the body of the function.

6. Miscellaneous Statements
Various useful statements don’t fall into any of the above categories.

6.1. Include statement
The include statement allows the text in other files to be included in the source program being

assembled, in the time-honored fashion. Its form is

include filename

where filename is a string value giving the name of the file to be included. Included files may them-
selves contain include statements to any number of levels of recursion (within reason).

6.2. Extern statement
The extern statement allows you to declare symbols to be visible to the linker outside of the file

in which they are found. Its use:

extern symbol [[, symbol]]*

6.3. Start statement
The start statement declares the starting address of a program.

start expression

where the expression indicates the start address. There should be no more than one start statement in
a program. If no start address is specified, the object file will be produced without a start address entry.

6.4. Assert statement
The assert statement provides a means of testing assembly time conditions and generating pro-

grammer specified error messages if those conditions are not satisfied. Its syntax is:

assert (condition) [[textString]]

Lucasfilm Ltd. Proprietary Information - 15 - CONFIDENTIAL

Macross July 7, 1986 6502 Version

where condition is an expression such as those used in the mif statement. This condition is evaluated
and if FALSE then the message textString, if given, is written to the standard output. The message is
written in the form of a conventional Macross error message, giving the file and line number on which
the failed assertion occured. If textString is omitted then a simple error message to the effect that the
assert failed will be output. For example,

assert (foo == 1) "Hey! You blew it."

would check to see that the value of the symbol foo is 1, and if it isn’t would issue an error message
containing the string "Hey! You blew it.".

6.5. Org statement
The org statement adjusts the current location counter and tells the assembler to start locating

instructions and data in absolute memory locations.

org expression

The expression indicates the new current location. If this is an absolute address, Macross starts assem-
bling at the specified absolute memory location. If, on the other hand, it is relative to a relocatable
address or to the current location counter, the current location counter is simply adjusting accordingly.

6.6. Rel statement
The rel statement restores Macross to assembling code in a relocatable fashion, if it was not

already doing so. The relocatable location resumes from wherever it was left the last time an absolute
org stopped relocatable code assembly. ((explain this better))

6.7. Target statement
The target statement

target expression

tells the assembler to assemble as if it had been orged to a particular address without actually perform-
ing the org. The expression indicates the location to start assembling from. This must be an absolute
address (and the target statement may only be used when assembling in absolute mode).

The result of the target statement is that assembly proceeds from the current location but labels
will be defined as if it was proceeding from the location specified by expression and references to the
current location counter will be offset by the difference between the actual current location counter value
and the value of expression. This effect will persist until the next org or target statement. For
example

org 0x1000
target 0x0800

foo: rts
bar: word 0x1234

word here
org someplaceElse

would first set the current location counter to 0x1000. At location 0x1000 it would assemble an rts
instruction while giving the label foo the value 0x800. Then, at location 0x1001 it would deposit
the word value 0x1234 while giving the label bar the value 0x801. At location 0x1003 it would
deposit the word value 0x803. Finally, the second org would set the current location counter to
someplaceElse and the effects of the target statement would cease.

Lucasfilm Ltd. Proprietary Information - 16 - CONFIDENTIAL

Macross July 7, 1986 6502 Version

Expressions
The expression syntax of Macross was chosen to be as close to that of C as possible. Macross

recognizes the same set of operators as C with few exceptions, and the operators have the same pre-
cedence with respect to each other that everyone is used to.

Another important feature of expressions in Macross is that expressions by themselves on a line
are valid statements. Assignment expressions, uses of the post- and pre-increment and decrement opera-
tors (‘‘++’’ and ‘‘--’’), and calls to functions used like procedures are the most useful applications of
this. For example

foo = 5
bar++
printf("Hello world\n")

are all valid statements.

1. Primitive expressions
The most primitive expressions are identifiers, numbers, characters, character strings, array refer-

ences, and function calls.
Identifiers have already been described, in the section General Form of Macross Statements

above. The only thing to add here is that the special identifier here denotes the value of the current
location counter.

Numbers may be decimal, octal, hexadecimal, binary or quarters. The form of the first three of
these is as in C: decimal numbers are denoted by a sequence of decimal digits that does not begin with
a ‘‘0’’; octal numbers by a sequence of octal digits that does begin with a ‘‘0’’; and hexadecimal
numbers by a sequence of hexadecimal digits (the decimal digits plus the letters ‘‘a’’ through ‘‘f’’, in
either upper or lower case), preceded by ‘‘0x’’ or ‘‘0X’’. Binary numbers and quarters are represented
analogously. Binary numbers are represented by a sequence of ‘‘0’’s and ‘‘1’’s preceded by ‘‘0b’’ or
‘‘0B’’. Quarters are base-four numbers (for two-bit entities like Atari pixels) and are represented by the
sequences of the digits 0 through 3 preceded by ‘‘0q’’ or ‘‘0Q’’ (the credit for this idea goes to Charlie
Kellner).

Character constants are denoted the same as in C: by a single character enclosed in apostrophes
(‘‘’’’). The same conventions about characters escaped with a backslash (‘‘\’’) also apply. Strings may
be of varying lengths and are enclosed in quotation marks (‘‘"’’), as discussed above in the explanation
of instruction operands.

An array reference in Macross have the same syntactic form that they have in C:
array [index]

where array is an array (which is usually an identifier but can be any expression that results in an array
value or a character string — note that for convenience a string can be treated as simply an array of
characters) and index is an integer with a value between 0 and the length of the array minus one,
inclusive (all Macross arrays are zero-based).

A function call, in Macross, is syntactically the same as in C: the name of the function being
called followed by a comma-separated argument list in parenthesis. The argument list, as in C, may be
empty. The arguments themselves may be arbitrary instruction operands (described above in section 1).
A number of built-in functions are provided by Macross to perform a variety of useful operations.
These are discussed in Appendix C.

2. Operators
Expressions may be constructed from the primitive elements described above and from other

expressions using a variety of unary and binary operators. The operator set is patterned after C’s. The
only C operators not supported are:

Lucasfilm Ltd. Proprietary Information - 17 - CONFIDENTIAL

Macross July 7, 1986 6502 Version

[1] ‘‘?:’’ (arithmetic if) — not supported for reasons of syntactic confusion on both the part of
the parser attempting to parse it and the programmer attempting to use it.
[2] ‘‘,’’ (comma) — used in Macross as an important separator and thus not available.
[3] unary ‘‘*’’ and ‘‘&’’, sizeof, casts and ‘‘->’’ — not relevant here.

All of the assignment operators (‘‘+=’’, ‘‘-=’’, etc.) are supported by Macross.
Macross reinterprets the . operator in that ‘‘expression . structfieldname’’ is interpreted as adding the
offset value implied by structfieldname (i.e., the distance in bytes into a struct to reach the named
field) to the address that is the value of expression.
Macross adds to the operator set the following:

[1] ‘‘?’’ — as a unary operator, takes the high order byte of the word value that is its argument.
[2] ‘‘/’’ — as a unary operator, takes the low order byte of the word value that is its argument.
[3] ‘‘ˆˆ’’ — a binary operator, denotes logical exclusive-OR. This is simply an orthogonal exten-
sion for the sake of completeness.

Of course, parenthesis can be used at any point to override the normal precedence of the various opera-
tors. A full list of all the operators that Macross understands is given in Appendix D.

3. Expression evaluation
In order to make the most effective use of expressions in the Macross environment, it is helpful

(and at times necessary) to understand how and when Macross evaluates them.
When Macross evaluates an expression, it may have one of three sorts of results. These are suc-

cess, undefined, and failure. A success result means that Macross encountered no problems evaluating
the expression, and whatever value it evaluated to is just used as needed. A failure result indicates that
there was a problem of some sort. Usually this is a result of some user error. In any case, an appropri-
ate diagnostic message will be issued by the assembler and the statement in which the expression was
found will not be assembled.

An undefined result is where the complications, if any, arise. An expression will evaluate to an
undefined result if one or more of the terms of the expression are undefined symbols. Usually these are
labels which simply haven’t been encountered yet (i.e., they are forward references). In certain contexts,
such as the operand of a machine instruction, this is a legitimate thing to do, and in certain others, such
as the condition of a mif statement, this is not allowed at all. In the latter case, an undefined result is
just like a failure result. In the former case, the assembler is forced to get fancy in order to make it all
work right.

What Macross does is squirrel away a copy of the expression along with a pointer as to where in
the object code the value of the expression is supposed to go. At the end of assembly, the undefined
label will presumably now be defined, and Macross evaluates the saved expression and pokes the result
into the appropriate location. (If, at this point, the undefined label is still undefined, an error message to
that effect is issued). Clearly, if an expression has side effects (such as changing the value of some glo-
bal variable), this can result in some confusing behavior. The Macross assembler is smart enough to not
let you do anything that has overt side effects in an expression that is being saved away for future
evaluation. The things which are disallowed in such a case are assignments and uses of the post- and
pre-increment and decrement operators (‘‘++’’ and ‘‘--’’). Functions, however, may have side effects
and Macross does not try to prevent you from using function calls in expressions that get saved for later
evaluation. It can, and will, detect some, but not all, side effects during the later evaluation and give a
suitable error message. This is because it is perfectly legitimate to use a function call to a function that
doesn’t have side effects in an expression containing forward references.

If you are now totally confused, the only thing you need remember is: Don’t ever use a call to a
function that has side effects in an expression containing a forward reference.

Lucasfilm Ltd. Proprietary Information - 18 - CONFIDENTIAL

Macross July 7, 1986 6502 Version

Appendix A — Macross 6502 Grammar

program:
[[statement Newline]]* Endfile

statement:
[[label]]* opcode [[operand [[, operand]]*]]
[[label]]* if (condition) block

[[elseif (condition) block]]*
[[else block]]

[[label]]* while (condition) block
[[label]]* do block while (condition)
[[label]]* do block until (condition)

dataStatement
define identifier [[= expression]]
variable identifier [[= expression]]
macro identifier [[identifier [[, identifier]]*]] block
function identifier ([[identifier [[, identifier]]*]]) block
undefine identifier [[, identifier]]*

[[label]]* block
mdefine identifier [[= expression]]
mif (expression) block

[[melseif (expression) block]]*
[[melse block]]

mwhile (expression) block
mdo block while (expression)
mdo block until (expression)
freturn [[expression]]
mfor (expression , expression , expression) block
mswitch (selectionExpression) {

[[mcase (expression [[, expression]]*) block]]*
[[mdefault block]]

}
constrain (expression) block
assert (expression) [[expression]]
include textString
extern identifier [[, identifier]]*
start expression
org expression
target expression
expression

dataStatement:
[[label]]* block expression [[, expression]]*
[[label]]* align expression
[[label]]* word expression [[, expression]]*
[[label]]* long expression [[, expression]]*
[[label]]* dbyte expression [[, expression]]*
[[label]]* byte expression [[, expression]]*
[[label]]* string expression [[, expression]]*
[[label]]* struct { [[dataStatement]]* } identifier
[[label]]* struct identifier

label: identifier :

Lucasfilm Ltd. Proprietary Information - 19 - CONFIDENTIAL

Macross July 7, 1986 6502 Version

operand:
expression
@ expression
expression
a
x
y
x [expression]
x . identifier [[. identifier]]*
y [expression]
y . identifier [[. identifier]]*
@ x [expression]
@ x . identifier [[. identifier]]*
y [@ expression]
textString

block: { [[statement Newline]]* }

textString:
" any string you like "

condition:
conditionCode
! conditionCode

expression:
identifier
identifier ([[operand [[, operand]]*]])
number
here
textString
(expression)
- expression
! expression
˜ expression
? expression
/ expression
expression * expression
expression / expression
expression % expression
expression - expression
expression + expression
expression << expression
expression >> expression
expression < expression
expression > expression
expression <= expression
expression >= expression
expression == expression
expression != expression
expression & expression
expression | expression
expression ˆ expression
expression && expression

Lucasfilm Ltd. Proprietary Information - 20 - CONFIDENTIAL

Macross July 7, 1986 6502 Version

expression || expression
expression ˆˆ expression
expression . identifier
identifier = expression
identifier += expression
identifier -= expression
identifier *= expression
identifier /= expression
identifier %= expression
identifier &= expression
identifier |= expression
identifier ˆ= expression
identifier <<= expression
identifier >>= expression
identifier ++
identifier --
++ identifier
-- identifier

identifier:
[[a-zA-Z_]] [[a-zA-Z_0-9]]*

number:
decimalNumber
octalNumber
binaryNumber
hexadecimalNumber
quarter

decimalNumber:
[[1-9]] [[0-9]]*

octalNumber:
0[[0-7]]*

binaryNumber:
0b[[01]] [[01]]*

hexadecimalNumber:
0x[[0-9a-f]] [[0-9a-f]]*

quarter:
0q[[0-3]] [[0-3]]*

Lucasfilm Ltd. Proprietary Information - 21 - CONFIDENTIAL

Macross July 7, 1986 6502 Version

Appendix B — Condition Codes

(6502 version)
The Macross if, while, do-while and do-until statements make use of symbols denoting

the hardware condition codes of the target processor which may be used as the conditions upon which
conditional branches are base. In the 6502 version of Macross, these are the recognized condition code
symbols:

Conditions which generate simple branches
carry tests carry bit

equal tests zero bit
zero

neq (equivalent to, e.g., !equal)

minus tests negative bit
negative

plus (equivalent to, e.g., !minus)
positive

overflow tests overflow bit

Conditions which generate complex branches

1. lt — less than (valid after cmp or sbc)
For example,

if (lt) {
...stuff...

}

generates

bcs temp
...stuff...

temp:

2. leq — less than or equal to (valid after cmp or sbc)
For example,

if (leq) {
...stuff...

}

generates

beq temp1
bcs temp2

temp1:
...stuff...

Lucasfilm Ltd. Proprietary Information - 22 - CONFIDENTIAL

Macross July 7, 1986 6502 Version

temp2:

3. geq — greater than or equal to (valid after cmp or sbc)
For example,

if (geq) {
...stuff...

}

generates

bcc temp
...stuff...

temp:

4. gt — greater than (valid after cmp or sbc)
For example,

if (gt) {
...stuff...

}

generates

bcc temp
beq temp
...stuff...

temp:

5. slt — signed less than (valid after sbc only)
For example,

if (slt) {
...stuff...

}

generates

bvs temp1
bpl temp3
bmi temp2

temp1: bmi temp3
temp2:

...stuff...
temp3:

6. sleq — signed less than or equal to (valid after sbc only)
For example,

if (sleq) {
...stuff...

}

Lucasfilm Ltd. Proprietary Information - 23 - CONFIDENTIAL

Macross July 7, 1986 6502 Version

generates

beq temp2
bvs temp1
bpl temp3
bmi temp2

temp1: bmi temp3
temp2:

...stuff...
temp3:

7. sgt — signed greater than (valid after sbc only)
For example,

if (sgt) {
...stuff...

}

generates

beq temp3
bvs temp1
bmi temp3
bpl temp2

temp1: bpl temp3
temp2:

...stuff...
temp3:

8. sgeq — signed greater than or equal to (valid after sbc only)
For example,

if (sgeq) {
...stuff...

}

generates

bvs temp1
bmi temp3
bpl temp2

temp1: bpl temp3
temp2:

...stuff...
temp3:

Lucasfilm Ltd. Proprietary Information - 24 - CONFIDENTIAL

Macross July 7, 1986 6502 Version

Appendix C — Built-In Functions

Certain predefined built-in functions are supported by Macross for reasons of convenience or syn-
tactic or semantic irregularity. They are:
addressMode(operand)

Returns a number whose value indicates which addressing mode operand represents ((define these
values)).

apply(macname [[, arg]]*)

Assembles the macro whose name is specified by the string macname with the macro argu-
ments (if any) given by the args.

arrayLength(array)
Returns the number of elements in the array array.

atascii(string)
Returns a string which is string with each character mapped through an ASCII to ATASCII
(Atari’s ASCII deviant character code) conversion table.

atasciiColor(string, color)
Returns a string which is string with each character mapped through the ASCII to ATASCII
conversion table, and then the two-bit value specified by color OR’ed into the high order two bits
of each character.

isAbsoluteValue(operand)
Returns TRUE if and only if operand is an absolute (i.e., non-relocatable) value, otherwise
FALSE.

isARegister(operand)
Returns TRUE if and only if operand is a (i.e., the accumulator), otherwise FALSE.

isBlock(operand)
Returns TRUE if and only if operand is a block, otherwise FALSE.

isBuiltInFunction(symbol)
Returns TRUE if and only if symbol is a built-in function, otherwise FALSE.

isConditionCode(operand)
Returns TRUE if and only if operand is a condition code, otherwise FALSE.

isDefined(symbol)
Returns TRUE if and only if symbol has been defined, otherwise FALSE.

isDirectMode(operand)
Returns TRUE if and only if the address mode of operand is direct, otherwise FALSE.

isExternal(symbol)
Returns TRUE if and only if symbol is external (i.e., visible outside the file in which it is defined),
otherwise FALSE.

isField(symbol)
Returns TRUE if and only if symbol is a field of a struct, otherwise FALSE.

isFunction(symbol)
Returns TRUE if and only if symbol is a user defined function, otherwise FALSE.

isImmediateMode(operand)
Returns TRUE if and only if the address mode of operand is immediate, otherwise FALSE.

Lucasfilm Ltd. Proprietary Information - 25 - CONFIDENTIAL

Macross July 7, 1986 6502 Version

isIndexedMode(operand)
Returns TRUE if and only if the address mode of operand is an indexed mode, otherwise FALSE.

isIndirectMode(operand)
Returns TRUE if and only if the address mode of operand is indirect, otherwise FALSE.

isPostIndexedMode(operand)
Returns TRUE if and only if the address mode of operand is post-indexed, otherwise FALSE.

isPreIndexedMode(operand)
Returns TRUE if and only if the address mode of operand is pre-indexed, otherwise FALSE.

isRelocatableValue(operand)
Returns TRUE if and only if operand is a relocatable value, otherwise FALSE.

isString(operand)
Returns TRUE if and only if operand is a string, otherwise FALSE.

isStruct(symbol)
Returns TRUE if and only if symbol is the name of a struct, otherwise FALSE.

isSymbol(operand)
Returns TRUE if and only if operand is a symbol (as opposed to an expression or a number, for
example), otherwise FALSE.

isXIndexedMode(operand)
Returns TRUE if and only if the address mode of operand is x-indexed, otherwise FALSE.

isXRegister(operand)
Returns TRUE if and only if operand is x, otherwise FALSE.

isYIndexedMode(operand)
Returns TRUE if and only if the address mode of operand is y-indexed, otherwise FALSE.

isYRegister(operand)
Returns TRUE if and only if operand is y, otherwise FALSE.

listingOff()

If assembly listing has been enabled using the -l command line flag, turn listing off temporarily.
Otherwise, no effect.

listingOn()

If assembly listing was turned off using the listingOff() function, turn it back on again. If
listings have been globally disabled by not specifying the -l command line flag, this function has
no effect. The listingOff() and listingOn() functions are intended to be used to
together to control assembly listings of large programs. They can be used to suppress listing of
large and uninteresting sections such as header files full of definitions of global values. These
functions may nest: in effect listingOff() increments a counter and listingOn() decre-
ments it. Only when the counter is zero (i.e., the number of listingOn()s matches the
number of listingOff()s) does listing actually occur.

makeArray(length [[, element]]*)

Creates an array of length length and returns it. Optionally fills the array with the values specified
by the element expressions. If the number of elements given is greater than length, an error
results.

nthChar(string [[, position]])

Returns the positionth character of the string string (position zero being the first character in the
string). If position is omitted it defaults to zero. If position is greater than the length of string,
an error results.

Lucasfilm Ltd. Proprietary Information - 26 - CONFIDENTIAL

Macross July 7, 1986 6502 Version

printf(format [[, arg]]*)

A formatted print routine just like the Unix system subroutine of the same name.
strcat(string1, string2)

Returns a string which is the concatenation of the two operands, which must themselves be
strings.

strcmp(string1, string2)
Returns a number which is less than, equal to, or greater than 0 depending upon whether string1
is lexically less than, equal to, or greater than string2. The ASCII character set is used. The two
operands, of course, must be strings.

strcmplc(string1, string2)
Essentially the same as strcmp() except that alphabetic characters are converted to lower case
before being compared. The result is a case-independent string comparison. This is useful for
comparing two identifier name strings to see if they represent the same symbols.

strlen(string)
Returns a number which is the length, in characters, of string.

substr(string, startPos [[, length]])

Returns a substring of the string string starting from the character at start position startPos (count-
ing the first character from 0) and continuing for length characters. If startPos is negative, the
start position is counted from right to left (with the rightmost character position being indicated by
-1) instead of the more usual left to right. If length is negative, startPos in essence denotes the
end of the desired substring and length characters up to that position are returned. If length is
omitted, the substring from startPos to the end of the string is returned, if startPos is positive, or
to the beginning of the string, if startPos is negative. If any of the indices cause the substring
bounds to go off the end of string an error results. For example,

substr("hello there", 6, 3) yields "the"
substr("hello there", -8, 2) yields "lo"
substr("hello there", 6, -3) yields "o t"
substr("hello there", -8, -4) yields "hell"
substr("hello there", 6) yields "there"
substr("hello there", -7) yields "hello"

symbolDefine(string [[, value]])

Defines the symbol named by string (with optional value value) as if it had been defined with a
define statement. For example:

symbolDefine(strcat("foon", "farm"), 47)

is equivalent to

define foonfarm = 47

symbolLookup(string)
A call to this function with a string operand is equivalent to a reference to the symbol that the
string represents. For example,

and symbolLookup("foo")

is equivalent to

and foo

Lucasfilm Ltd. Proprietary Information - 27 - CONFIDENTIAL

Macross July 7, 1986 6502 Version

symbolName(symbol)
Returns a string which is the name of the symbol symbol. For example, symbolName(foo)
would return "foo". This can be used in conjunction with the symbolLookup function so that
the following:

and symbolLookup(strcat(symbolName(foo), "bar"))

is equivalent to

and foobar

symbolUsage(symbol)
Returns a number whose value indicates what sort of symbol symbol is (i.e., label, function, struct
field, etc.). ((define these values))

valueType(thing)
Returns a number whose value indicates the type of thing (i.e., symbol, condition code, number,
block, etc.). ((define these values))

Lucasfilm Ltd. Proprietary Information - 28 - CONFIDENTIAL

Macross July 7, 1986 6502 Version

Appendix D — Operator Set

This appendix describes the (C derived) operators supported by Macross.

- expression integer negation
! expression logical negation (0 goes to 1, all other values go to 0)
˜ expression bitwise negation (ones complement)
? expression high byte
/ expression low byte
expression * expression integer multiplication
expression / expression integer division
expression % expression integer modulus (remainder)
expression - expression integer subtraction
expression + expression integer addition
expression << expression left shift
expression >> expression right shift
expression < expression less than
expression > expression greater than
expression <= expression less than or equal to
expression >= expression greater than or equal to
expression == expression equal to
expression != expression not equal to
expression & expression bitwise AND
expression | expression bitwise OR
expression ˆ expression bitwise XOR
expression && expression logical AND
expression || expression logical OR
expression ˆˆ expression logical XOR
expression . identifier struct field selection
identifier = expression assignment
identifier += expression assignment with addition
identifier -= expression assignment with subtraction
identifier *= expression assignment with multiplication
identifier /= expression assignment with division
identifier %= expression assignment with modulus
identifier &= expression assignment with AND
identifier |= expression assignment with OR
identifier ˆ= expression assignment with XOR
identifier <<= expression assignment with left shift
identifier >>= expression assignment with right shift
identifier ++ post-increment
identifier -- post-decrement
++ identifier pre-increment
-- identifier pre-decrement

Lucasfilm Ltd. Proprietary Information - 29 - CONFIDENTIAL

Macross July 7, 1986 6502 Version

Appendix E — Character Escape Codes

Like C, Macross enables you to use the ‘‘\’’ character as an escape to embed quotation marks,
formatting characters (such as newline) and other non-printing characters in character strings and charac-
ter constants. The recognized codes are:

\n newline
\t horizontal tab
\b backspace
\r carriage return
\f form feed
\e escape
\\ backslash
\’ apostrophe
\" quote
\ˆc CONTROL-c (where c is any character).
\ddd arbitrary byte (where ddd is one, two or three octal digits).

Lucasfilm Ltd. Proprietary Information - 30 - CONFIDENTIAL

Macross July 7, 1986 6502 Version

Appendix F — Recognized Opcode Mnemonics

(6502 version)
These are the 6502 opcode mnemonics recognized by Macross:

adc
and
asl
bcc
bcs
beq
bit
bmi
bne
bpl
brk
bvc
bvs
clc
cld
cli
clv
cmp
cpx
cpy
dec
dex
dey
eor
inc
inx
iny
jmp
jsr
lda
ldx
ldy
lsr
nop
ora
pha
php
pla
plp
rol
ror
rti
rts
sbc
sec
sei
sta
stx
sty

tax
tay
tsx
txa
txs
tya

Lucasfilm Ltd. Proprietary Information - 31 - CONFIDENTIAL

Macross July 7, 1986 6502 Version

Lucasfilm Ltd. Proprietary Information - 32 - CONFIDENTIAL

