1
0
mirror of https://github.com/mre/mos6502.git synced 2024-11-30 20:51:21 +00:00

generic argument for CPU represents memory

This commit is contained in:
Sam M W 2023-04-03 06:59:12 +01:00
parent a8dac6e805
commit 12c901e8aa
2 changed files with 137 additions and 162 deletions

View File

@ -25,33 +25,40 @@
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE. // POSSIBILITY OF SUCH DAMAGE.
use crate::instruction::{self, DecodedInstr, Instruction, OpInput}; use crate::instruction::{self, AddressingMode, DecodedInstr, Instruction, OpInput};
use crate::memory::Bus; use crate::memory::Bus;
use crate::memory::Memory;
use crate::registers::{Registers, StackPointer, Status, StatusArgs}; use crate::registers::{Registers, StackPointer, Status, StatusArgs};
fn xextend(x: u8) -> u16 {
u16::from(x)
}
fn arr_to_addr(arr: &[u8]) -> u16 {
debug_assert!(arr.len() == 2);
u16::from(arr[0]) + (u16::from(arr[1]) << 8usize)
}
#[derive(Clone)] #[derive(Clone)]
pub struct CPU { pub struct CPU<M>
where
M: Bus,
{
pub registers: Registers, pub registers: Registers,
pub memory: Memory, pub memory: M,
} }
impl Default for CPU { impl<M: Bus> CPU<M> {
fn default() -> Self { pub fn new(memory: M) -> CPU<M> {
Self::new()
}
}
impl CPU {
pub fn new() -> CPU {
CPU { CPU {
registers: Registers::new(), registers: Registers::new(),
memory: Memory::new(), memory,
} }
} }
pub fn reset(&mut self) { pub fn reset(&mut self) {
*self = CPU::new(); //TODO: // should read some bytes from the stack and also get the PC from the reset vector
} }
pub fn fetch_next_and_decode(&mut self) -> Option<DecodedInstr> { pub fn fetch_next_and_decode(&mut self) -> Option<DecodedInstr> {
@ -77,7 +84,96 @@ impl CPU {
panic!() panic!()
}; };
let am_out = am.process(self, &slice[..extra_bytes as usize]); let x = self.registers.index_x;
let y = self.registers.index_y;
let memory = &self.memory;
fn read_address<M: Bus>(mem: &M, addr: u16) -> [u8; 2] {
let lo = mem.get_byte(addr);
let hi = mem.get_byte(addr.wrapping_add(1));
[lo, hi]
}
let am_out = match am {
AddressingMode::Accumulator | AddressingMode::Implied => {
// Always the same -- no input
OpInput::UseImplied
}
AddressingMode::Immediate => {
// Use [u8, ..1] specified in instruction as input
OpInput::UseImmediate(slice[0])
}
AddressingMode::ZeroPage => {
// Use [u8, ..1] from instruction
// Interpret as zero page address
// (Output: an 8-bit zero-page address)
OpInput::UseAddress(u16::from(slice[0]))
}
AddressingMode::ZeroPageX => {
// Use [u8, ..1] from instruction
// Add to X register (as u8 -- the final address is in 0-page)
// (Output: an 8-bit zero-page address)
OpInput::UseAddress(u16::from(slice[0].wrapping_add(x)))
}
AddressingMode::ZeroPageY => {
// Use [u8, ..1] from instruction
// Add to Y register (as u8 -- the final address is in 0-page)
// (Output: an 8-bit zero-page address)
OpInput::UseAddress(u16::from(slice[0].wrapping_add(y)))
}
AddressingMode::Relative => {
// Use [u8, ..1] from instruction
// (interpret as relative...)
// (This is sign extended to a 16-but data type, but an unsigned one: u16. It's a
// little weird, but it's so we can add the PC and the offset easily)
let offset = slice[0];
let sign_extend = if offset & 0x80 == 0x80 { 0xffu8 } else { 0x0 };
let rel = u16::from_le_bytes([offset, sign_extend]);
OpInput::UseRelative(rel)
}
AddressingMode::Absolute => {
// Use [u8, ..2] from instruction as address
// (Output: a 16-bit address)
OpInput::UseAddress(arr_to_addr(&slice))
}
AddressingMode::AbsoluteX => {
// Use [u8, ..2] from instruction as address, add X
// (Output: a 16-bit address)
OpInput::UseAddress(arr_to_addr(&slice).wrapping_add(xextend(x)))
}
AddressingMode::AbsoluteY => {
// Use [u8, ..2] from instruction as address, add Y
// (Output: a 16-bit address)
OpInput::UseAddress(arr_to_addr(&slice).wrapping_add(xextend(y)))
}
AddressingMode::Indirect => {
// Use [u8, ..2] from instruction as an address. Interpret the
// two bytes starting at that address as an address.
// (Output: a 16-bit address)
let slice = read_address(memory, arr_to_addr(&slice));
OpInput::UseAddress(arr_to_addr(&slice))
}
AddressingMode::IndexedIndirectX => {
// Use [u8, ..1] from instruction
// Add to X register with 0-page wraparound, like ZeroPageX.
// This is where the absolute (16-bit) target address is stored.
// (Output: a 16-bit address)
let start = slice[0].wrapping_add(x);
let slice = read_address(memory, u16::from(start));
OpInput::UseAddress(arr_to_addr(&slice))
}
AddressingMode::IndirectIndexedY => {
// Use [u8, ..1] from instruction
// This is where the absolute (16-bit) target address is stored.
// Add Y register to this address to get the final address
// (Output: a 16-bit address)
let start = slice[0];
let slice = read_address(memory, u16::from(start));
OpInput::UseAddress(arr_to_addr(&slice).wrapping_add(xextend(y)))
}
};
// Increment program counter // Increment program counter
self.registers.program_counter = self.registers.program_counter =
@ -112,12 +208,12 @@ impl CPU {
(Instruction::ASL, OpInput::UseImplied) => { (Instruction::ASL, OpInput::UseImplied) => {
// Accumulator mode // Accumulator mode
let mut val = self.registers.accumulator as u8; let mut val = self.registers.accumulator as u8;
CPU::shift_left_with_flags(&mut val, &mut self.registers.status); CPU::<M>::shift_left_with_flags(&mut val, &mut self.registers.status);
self.registers.accumulator = val as i8; self.registers.accumulator = val as i8;
} }
(Instruction::ASL, OpInput::UseAddress(addr)) => { (Instruction::ASL, OpInput::UseAddress(addr)) => {
let mut operand: u8 = self.memory.get_byte(addr); let mut operand: u8 = self.memory.get_byte(addr);
CPU::shift_left_with_flags(&mut operand, &mut self.registers.status); CPU::<M>::shift_left_with_flags(&mut operand, &mut self.registers.status);
self.memory.set_byte(addr, operand); self.memory.set_byte(addr, operand);
} }
@ -221,16 +317,16 @@ impl CPU {
(Instruction::DEC, OpInput::UseAddress(addr)) => { (Instruction::DEC, OpInput::UseAddress(addr)) => {
let mut operand: u8 = self.memory.get_byte(addr); let mut operand: u8 = self.memory.get_byte(addr);
CPU::decrement(&mut operand, &mut self.registers.status); CPU::<M>::decrement(&mut operand, &mut self.registers.status);
self.memory.set_byte(addr, operand); self.memory.set_byte(addr, operand);
} }
(Instruction::DEY, OpInput::UseImplied) => { (Instruction::DEY, OpInput::UseImplied) => {
CPU::decrement(&mut self.registers.index_y, &mut self.registers.status); CPU::<M>::decrement(&mut self.registers.index_y, &mut self.registers.status);
} }
(Instruction::DEX, OpInput::UseImplied) => { (Instruction::DEX, OpInput::UseImplied) => {
CPU::decrement(&mut self.registers.index_x, &mut self.registers.status); CPU::<M>::decrement(&mut self.registers.index_x, &mut self.registers.status);
} }
(Instruction::EOR, OpInput::UseImmediate(val)) => { (Instruction::EOR, OpInput::UseImmediate(val)) => {
@ -243,14 +339,14 @@ impl CPU {
(Instruction::INC, OpInput::UseAddress(addr)) => { (Instruction::INC, OpInput::UseAddress(addr)) => {
let mut operand: u8 = self.memory.get_byte(addr); let mut operand: u8 = self.memory.get_byte(addr);
CPU::increment(&mut operand, &mut self.registers.status); CPU::<M>::increment(&mut operand, &mut self.registers.status);
self.memory.set_byte(addr, operand); self.memory.set_byte(addr, operand);
} }
(Instruction::INX, OpInput::UseImplied) => { (Instruction::INX, OpInput::UseImplied) => {
CPU::increment(&mut self.registers.index_x, &mut self.registers.status); CPU::<M>::increment(&mut self.registers.index_x, &mut self.registers.status);
} }
(Instruction::INY, OpInput::UseImplied) => { (Instruction::INY, OpInput::UseImplied) => {
CPU::increment(&mut self.registers.index_x, &mut self.registers.status); CPU::<M>::increment(&mut self.registers.index_x, &mut self.registers.status);
} }
(Instruction::JMP, OpInput::UseAddress(addr)) => self.jump(addr), (Instruction::JMP, OpInput::UseAddress(addr)) => self.jump(addr),
@ -288,12 +384,12 @@ impl CPU {
(Instruction::LSR, OpInput::UseImplied) => { (Instruction::LSR, OpInput::UseImplied) => {
// Accumulator mode // Accumulator mode
let mut val = self.registers.accumulator as u8; let mut val = self.registers.accumulator as u8;
CPU::shift_right_with_flags(&mut val, &mut self.registers.status); CPU::<M>::shift_right_with_flags(&mut val, &mut self.registers.status);
self.registers.accumulator = val as i8; self.registers.accumulator = val as i8;
} }
(Instruction::LSR, OpInput::UseAddress(addr)) => { (Instruction::LSR, OpInput::UseAddress(addr)) => {
let mut operand: u8 = self.memory.get_byte(addr); let mut operand: u8 = self.memory.get_byte(addr);
CPU::shift_right_with_flags(&mut operand, &mut self.registers.status); CPU::<M>::shift_right_with_flags(&mut operand, &mut self.registers.status);
self.memory.set_byte(addr, operand); self.memory.set_byte(addr, operand);
} }
@ -332,23 +428,23 @@ impl CPU {
(Instruction::ROL, OpInput::UseImplied) => { (Instruction::ROL, OpInput::UseImplied) => {
// Accumulator mode // Accumulator mode
let mut val = self.registers.accumulator as u8; let mut val = self.registers.accumulator as u8;
CPU::rotate_left_with_flags(&mut val, &mut self.registers.status); CPU::<M>::rotate_left_with_flags(&mut val, &mut self.registers.status);
self.registers.accumulator = val as i8; self.registers.accumulator = val as i8;
} }
(Instruction::ROL, OpInput::UseAddress(addr)) => { (Instruction::ROL, OpInput::UseAddress(addr)) => {
let mut operand: u8 = self.memory.get_byte(addr); let mut operand: u8 = self.memory.get_byte(addr);
CPU::rotate_left_with_flags(&mut operand, &mut self.registers.status); CPU::<M>::rotate_left_with_flags(&mut operand, &mut self.registers.status);
self.memory.set_byte(addr, operand); self.memory.set_byte(addr, operand);
} }
(Instruction::ROR, OpInput::UseImplied) => { (Instruction::ROR, OpInput::UseImplied) => {
// Accumulator mode // Accumulator mode
let mut val = self.registers.accumulator as u8; let mut val = self.registers.accumulator as u8;
CPU::rotate_right_with_flags(&mut val, &mut self.registers.status); CPU::<M>::rotate_right_with_flags(&mut val, &mut self.registers.status);
self.registers.accumulator = val as i8; self.registers.accumulator = val as i8;
} }
(Instruction::ROR, OpInput::UseAddress(addr)) => { (Instruction::ROR, OpInput::UseAddress(addr)) => {
let mut operand: u8 = self.memory.get_byte(addr); let mut operand: u8 = self.memory.get_byte(addr);
CPU::rotate_right_with_flags(&mut operand, &mut self.registers.status); CPU::<M>::rotate_right_with_flags(&mut operand, &mut self.registers.status);
self.memory.set_byte(addr, operand); self.memory.set_byte(addr, operand);
} }
@ -474,7 +570,7 @@ impl CPU {
..StatusArgs::none() ..StatusArgs::none()
}), }),
); );
CPU::set_flags_from_i8(status, *p_val as i8); CPU::<M>::set_flags_from_i8(status, *p_val as i8);
} }
fn shift_right_with_flags(p_val: &mut u8, status: &mut Status) { fn shift_right_with_flags(p_val: &mut u8, status: &mut Status) {
@ -488,7 +584,7 @@ impl CPU {
..StatusArgs::none() ..StatusArgs::none()
}), }),
); );
CPU::set_flags_from_i8(status, *p_val as i8); CPU::<M>::set_flags_from_i8(status, *p_val as i8);
} }
fn rotate_left_with_flags(p_val: &mut u8, status: &mut Status) { fn rotate_left_with_flags(p_val: &mut u8, status: &mut Status) {
@ -504,7 +600,7 @@ impl CPU {
..StatusArgs::none() ..StatusArgs::none()
}), }),
); );
CPU::set_flags_from_i8(status, *p_val as i8); CPU::<M>::set_flags_from_i8(status, *p_val as i8);
} }
fn rotate_right_with_flags(p_val: &mut u8, status: &mut Status) { fn rotate_right_with_flags(p_val: &mut u8, status: &mut Status) {
@ -520,21 +616,21 @@ impl CPU {
..StatusArgs::none() ..StatusArgs::none()
}), }),
); );
CPU::set_flags_from_i8(status, *p_val as i8); CPU::<M>::set_flags_from_i8(status, *p_val as i8);
} }
fn set_u8_with_flags(mem: &mut u8, status: &mut Status, value: u8) { fn set_u8_with_flags(mem: &mut u8, status: &mut Status, value: u8) {
*mem = value; *mem = value;
CPU::set_flags_from_u8(status, value); CPU::<M>::set_flags_from_u8(status, value);
} }
fn set_i8_with_flags(mem: &mut i8, status: &mut Status, value: i8) { fn set_i8_with_flags(mem: &mut i8, status: &mut Status, value: i8) {
*mem = value; *mem = value;
CPU::set_flags_from_i8(status, value); CPU::<M>::set_flags_from_i8(status, value);
} }
fn load_x_register(&mut self, value: u8) { fn load_x_register(&mut self, value: u8) {
CPU::set_u8_with_flags( CPU::<M>::set_u8_with_flags(
&mut self.registers.index_x, &mut self.registers.index_x,
&mut self.registers.status, &mut self.registers.status,
value, value,
@ -542,7 +638,7 @@ impl CPU {
} }
fn load_y_register(&mut self, value: u8) { fn load_y_register(&mut self, value: u8) {
CPU::set_u8_with_flags( CPU::<M>::set_u8_with_flags(
&mut self.registers.index_y, &mut self.registers.index_y,
&mut self.registers.status, &mut self.registers.status,
value, value,
@ -550,7 +646,7 @@ impl CPU {
} }
fn load_accumulator(&mut self, value: i8) { fn load_accumulator(&mut self, value: i8) {
CPU::set_i8_with_flags( CPU::<M>::set_i8_with_flags(
&mut self.registers.accumulator, &mut self.registers.accumulator,
&mut self.registers.status, &mut self.registers.status,
value, value,
@ -835,7 +931,7 @@ impl CPU {
} }
} }
impl core::fmt::Debug for CPU { impl<M: Bus> core::fmt::Debug for CPU<M> {
fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result { fn fmt(&self, f: &mut core::fmt::Formatter) -> core::fmt::Result {
write!( write!(
f, f,
@ -1341,9 +1437,9 @@ mod tests {
} }
#[cfg(test)] #[cfg(test)]
fn compare_test_helper<F>(compare: &mut F, load_instruction: Instruction) fn compare_test_helper<F, M>(compare: &mut F, load_instruction: Instruction)
where where
F: FnMut(&mut CPU, u8), F: FnMut(&mut CPU<M>, u8),
{ {
let mut cpu = CPU::new(); let mut cpu = CPU::new();

View File

@ -25,10 +25,6 @@
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE. // POSSIBILITY OF SUCH DAMAGE.
use crate::cpu::CPU;
use crate::memory::Bus;
use crate::memory::Memory;
// Abbreviations // Abbreviations
// //
// General // General
@ -164,100 +160,6 @@ impl AddressingMode {
AddressingMode::IndirectIndexedY => 1, AddressingMode::IndirectIndexedY => 1,
} }
} }
pub fn process(self, cpu: &CPU, arr: &[u8]) -> OpInput {
debug_assert!(arr.len() == self.extra_bytes() as usize);
let x = cpu.registers.index_x;
let y = cpu.registers.index_y;
let memory = &cpu.memory;
fn read_address(mem: &Memory, addr: u16) -> [u8; 2] {
let lo = mem.get_byte(addr);
let hi = mem.get_byte(addr.wrapping_add(1));
[lo, hi]
}
match self {
AddressingMode::Accumulator | AddressingMode::Implied => {
// Always the same -- no input
OpInput::UseImplied
}
AddressingMode::Immediate => {
// Use [u8, ..1] specified in instruction as input
OpInput::UseImmediate(arr[0])
}
AddressingMode::ZeroPage => {
// Use [u8, ..1] from instruction
// Interpret as zero page address
// (Output: an 8-bit zero-page address)
OpInput::UseAddress(u16::from(arr[0]))
}
AddressingMode::ZeroPageX => {
// Use [u8, ..1] from instruction
// Add to X register (as u8 -- the final address is in 0-page)
// (Output: an 8-bit zero-page address)
OpInput::UseAddress(u16::from(arr[0].wrapping_add(x)))
}
AddressingMode::ZeroPageY => {
// Use [u8, ..1] from instruction
// Add to Y register (as u8 -- the final address is in 0-page)
// (Output: an 8-bit zero-page address)
OpInput::UseAddress(u16::from(arr[0].wrapping_add(y)))
}
AddressingMode::Relative => {
// Use [u8, ..1] from instruction
// (interpret as relative...)
// (This is sign extended to a 16-but data type, but an unsigned one: u16. It's a
// little weird, but it's so we can add the PC and the offset easily)
let offset = arr[0];
let sign_extend = if offset & 0x80 == 0x80 { 0xffu8 } else { 0x0 };
let rel = u16::from_le_bytes([offset, sign_extend]);
OpInput::UseRelative(rel)
}
AddressingMode::Absolute => {
// Use [u8, ..2] from instruction as address
// (Output: a 16-bit address)
OpInput::UseAddress(arr_to_addr(arr))
}
AddressingMode::AbsoluteX => {
// Use [u8, ..2] from instruction as address, add X
// (Output: a 16-bit address)
OpInput::UseAddress(arr_to_addr(arr).wrapping_add(xextend(x)))
}
AddressingMode::AbsoluteY => {
// Use [u8, ..2] from instruction as address, add Y
// (Output: a 16-bit address)
OpInput::UseAddress(arr_to_addr(arr).wrapping_add(xextend(y)))
}
AddressingMode::Indirect => {
// Use [u8, ..2] from instruction as an address. Interpret the
// two bytes starting at that address as an address.
// (Output: a 16-bit address)
let slice = read_address(memory, arr_to_addr(arr));
OpInput::UseAddress(arr_to_addr(&slice))
}
AddressingMode::IndexedIndirectX => {
// Use [u8, ..1] from instruction
// Add to X register with 0-page wraparound, like ZeroPageX.
// This is where the absolute (16-bit) target address is stored.
// (Output: a 16-bit address)
let start = arr[0].wrapping_add(x);
let slice = read_address(memory, u16::from(start));
OpInput::UseAddress(arr_to_addr(&slice))
}
AddressingMode::IndirectIndexedY => {
// Use [u8, ..1] from instruction
// This is where the absolute (16-bit) target address is stored.
// Add Y register to this address to get the final address
// (Output: a 16-bit address)
let start = arr[0];
let slice = read_address(memory, u16::from(start));
OpInput::UseAddress(arr_to_addr(&slice).wrapping_add(xextend(y)))
}
}
}
} }
pub type DecodedInstr = (Instruction, OpInput); pub type DecodedInstr = (Instruction, OpInput);
@ -776,26 +678,3 @@ pub static OPCODES: [Option<(Instruction, AddressingMode)>; 256] = [
/*0xFF*/ /*0xFF*/
None, None,
]; ];
#[cfg(test)]
mod tests {
#[test]
fn zeropage_wrap_around() {
use crate::instruction::AddressingMode;
use crate::instruction::OpInput;
use crate::instruction::CPU;
let mut cpu = CPU::new();
cpu.registers.index_x = 9;
assert!(matches!(
AddressingMode::ZeroPageX.process(&cpu, &[10]),
OpInput::UseAddress(19)
));
assert!(matches!(
AddressingMode::ZeroPageX.process(&cpu, &[250]),
OpInput::UseAddress(3)
));
}
}