1
0
mirror of https://github.com/mre/mos6502.git synced 2024-11-25 02:33:26 +00:00

Merge pull request #9 from typelist/big-old-table

Orthogonal AddressingMode handling; implement all addressing modes for ADC, LDA, LDX, LDY
This commit is contained in:
amw-zero 2014-10-06 17:48:23 -04:00
commit 48b0c90c43
6 changed files with 699 additions and 81 deletions

View File

@ -25,30 +25,13 @@
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE. // POSSIBILITY OF SUCH DAMAGE.
pub enum AddressingMode {
Accumulator, // LSR A work directly on accumulator
Immediate, // LDA #10 8-bit constant in instruction
ZeroPage, // LDA $00 zero-page address
ZeroPageX, // LDA $80,X address is X register + 8-bit constant
ZeroPageY, // LDX $10,Y address is Y register + 8-bit constant
Relative, // BNE LABEL branch target as signed relative offset
Absolute, // JMP $1000 full 16-bit address
AbsoluteX, // STA $1000,X full 16-bit address plus X register
AbsoluteY, // STA $1000,Y full 16-bit address plus Y register
Indirect, // JMP ($1000) jump to address stored at address
IndexedIndirectX, // LDA ($10,X) load from address stored at (constant
// zero page address plus X register)
IndirectIndexedY, // LDA ($10),Y load from (address stored at constant
// zero page address) plus Y register
}
// The idea here is that it doesn't make sense to add two addresses, but it // The idea here is that it doesn't make sense to add two addresses, but it
// does make sense to add an address and an "address-difference". (If this // does make sense to add an address and an "address-difference". (If this
// is too annoying to work with we should let it go.) // is too annoying to work with we should let it go.)
#[deriving(PartialEq, Eq, PartialOrd, Ord)] #[deriving(PartialEq, Eq, PartialOrd, Ord, Show)]
pub struct AddressDiff(pub u16); pub struct AddressDiff(pub u16);
#[deriving(PartialEq, Eq, PartialOrd, Ord)] #[deriving(PartialEq, Eq, PartialOrd, Ord, Show)]
pub struct Address(pub u16); pub struct Address(pub u16);
impl Add<AddressDiff, Address> for Address { impl Add<AddressDiff, Address> for Address {
@ -58,6 +41,13 @@ impl Add<AddressDiff, Address> for Address {
} }
} }
impl Add<AddressDiff, AddressDiff> for AddressDiff {
fn add(&self, &AddressDiff(rhs): &AddressDiff) -> AddressDiff {
let &AddressDiff(lhs) = self;
AddressDiff(lhs + rhs)
}
}
// rustc doesn't seem to like having multiple implementations of Add for // rustc doesn't seem to like having multiple implementations of Add for
// Address. I believe this is a Rust bug (possibly resolved by "associated // Address. I believe this is a Rust bug (possibly resolved by "associated
// types" RFC?). Or I wrote it wrong. Anyway, here's some living dead code: // types" RFC?). Or I wrote it wrong. Anyway, here's some living dead code:

View File

@ -34,21 +34,119 @@ fn main() {
let mut machine = machine::Machine::new(); let mut machine = machine::Machine::new();
// "Load" a program // "Load" a program
machine.memory.set_byte(&Address(0), 0x69); // ADC immediate opcode
machine.memory.set_byte(&Address(1), 0x07); // Immediate operand
machine.memory.set_byte(&Address(2), 0x69); // ADC immediate opcode
machine.memory.set_byte(&Address(3), 0x08); // ADC immediate opcode
// Obviously this will run the full program, just // JAM: FIXME: What's the syntax for specifying the array element type,
// executing a finite num of instructions for simplicity // but not the length? (For a fixed-size array)
// right now.
for _ in range(0u, 2u) { let zero_page_data: [u8, ..17] = [
let raw_instruction = machine.fetch_instruction(); // ZeroPage data start
let instruction = machine.decode_instruction(raw_instruction); 0x00,
machine.execute_instruction(instruction); 0x02, // ADC ZeroPage target
} 0x00,
0x04, // ADC ZeroPageX target
0x00,
0x00,
0x00,
0x00,
0x10, // ADC IndexedIndirectX address
0x80, // ADC IndexedIndirectX address
0x00,
0x00,
0x00,
0x00,
0x00,
0x08, // ADC IndirectIndexedY address
0x80, // ADC IndirectIndexedY address
];
let program: [u8, ..33] = [
// Code start
0xA9, // LDA Immediate
0x01, // Immediate operand
0x69, // ADC Immediate
0x07, // Immediate operand
0x65, // ADC ZeroPage
0x01, // ZeroPage operand
0xA2, // LDX Immediate
0x01, // Immediate operand
0x75, // ADC ZeroPageX
0x02, // ZeroPageX operand
0x6D, // ADC Absolute
0x01, // Absolute operand
0x80, // Absolute operand
0xA2, // LDX immediate
0x08, // Immediate operand
0x7D, // ADC AbsoluteX
0x00, // AbsoluteX operand
0x80, // AbsoluteX operand
0xA0, // LDY immediate
0x04, // Immediate operand
0x79, // ADC AbsoluteY
0x00, // AbsoluteY operand
0x80, // AbsoluteY operand
0xA2, // LDX immediate
0x05, // Immediate operand
0x61, // ADC IndexedIndirectX
0x03, // IndexedIndirectX operand
0xA0, // LDY immediate
0x10, // Immediate operand
0x71, // ADC IndirectIndexedY
0x0F, // IndirectIndexedY operand
0xEA, // NOP :)
0xFF, // Something invalid -- the end!
];
let data: [u8, ..25] = [
0x00,
0x09, // ADC Absolute target
0x00,
0x00,
0x40, // ADC AbsoluteY target
0x00,
0x00,
0x00,
0x11, // ADC AbsoluteX target
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x12, // ADC IndexedIndirectX target
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x00,
0x06, // ADC IndirectIndexedY target
];
machine.memory.set_bytes(Address(0x0000), &zero_page_data);
machine.memory.set_bytes(Address(0x4000), &program);
machine.memory.set_bytes(Address(0x8000), &data);
machine.registers.program_counter = Address(0x4000);
machine.run();
println!("{}", machine); println!("{}", machine);
} }

View File

@ -25,6 +25,10 @@
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE. // POSSIBILITY OF SUCH DAMAGE.
use address::Address;
use address::AddressDiff;
use machine::Machine;
// Abbreviations // Abbreviations
// //
// General // General
@ -48,9 +52,7 @@ pub enum Instruction
// NV BDIZC A X Y S PC M // NV BDIZC A X Y S PC M
// //
// | outputs | inputs // | outputs | inputs
{ { ADC // ADd with Carry................ | NV ...ZC A = A + M + C
ADC(i8) // ADd with Carry............ | NV ...ZC A = A + M + C
, AND // logical AND (bitwise)......... | N. ...Z. A = A && M , AND // logical AND (bitwise)......... | N. ...Z. A = A && M
, ASL // Arithmetic Shift Left......... | N. ...ZC A = M << 1 , ASL // Arithmetic Shift Left......... | N. ...ZC A = M << 1
, BCC // Branch if Carry Clear......... | .. ..... PC = !C , BCC // Branch if Carry Clear......... | .. ..... PC = !C
@ -111,3 +113,405 @@ pub enum Instruction
, TYA // Transfer Y to Accumulator..... | N. ...Z. A = Y , TYA // Transfer Y to Accumulator..... | N. ...Z. A = Y
} }
pub enum AMOut {
UseImplied,
UseImmediate(u8),
UseRelative(i8),
UseAddress(Address),
}
pub enum AddressingMode
// length
{ Accumulator // 1 LSR A work directly on accumulator
, Implied // 1 BRK
, Immediate // 2 LDA #10 8-bit constant in instruction
, ZeroPage // 2 LDA $00 zero-page address
, ZeroPageX // 2 LDA $80,X address is X register + 8-bit constant
, ZeroPageY // 2 LDX $10,Y address is Y register + 8-bit constant
, Relative // 2 BNE LABEL branch target as signed relative offset
, Absolute // 3 JMP $1000 full 16-bit address
, AbsoluteX // 3 STA $1000,X full 16-bit address plus X register
, AbsoluteY // 3 STA $1000,Y full 16-bit address plus Y register
, Indirect // 3 JMP ($1000) jump to address stored at address
, IndexedIndirectX // 2 LDA ($10,X) load from address stored at (constant
// zero page address plus X register)
, IndirectIndexedY // 2 LDA ($10),Y load from (address stored at constant
// zero page address) plus Y register
}
fn arr_to_addr(arr: &[u8]) -> Address {
debug_assert!(arr.len() == 2);
let x = (arr[0] as u16) + (arr[1] as u16 << 8u);
Address(x)
}
impl AddressingMode {
pub fn extra_bytes(self) -> AddressDiff {
let x = match self {
Accumulator => 0,
Implied => 0,
Immediate => 1,
ZeroPage => 1,
ZeroPageX => 1,
ZeroPageY => 1,
Relative => 1,
Absolute => 2,
AbsoluteX => 2,
AbsoluteY => 2,
Indirect => 2,
IndexedIndirectX => 1,
IndirectIndexedY => 1,
};
AddressDiff(x)
}
pub fn process(self, machine: &Machine, arr: &[u8]) -> AMOut {
debug_assert!({let AddressDiff(x) = self.extra_bytes();
arr.len() == x as uint});
let x = machine.registers.index_x as u8;
let y = machine.registers.index_y as u8;
let memory = &machine.memory;
match self {
Accumulator | Implied => {
// Always the same -- no input
UseImplied
},
Immediate => {
// Use [u8, ..1] specified in instruction as input
UseImmediate(arr[0])
},
ZeroPage => {
// Use [u8, ..1] from instruction
// Interpret as zero page address
// (Output: an 8-bit zero-page address)
UseAddress(Address(arr[0] as u16))
},
ZeroPageX => {
// Use [u8, ..1] from instruction
// Add to X register (as u8 -- the final address is in 0-page)
// (Output: an 8-bit zero-page address)
UseAddress(Address((arr[0] + x) as u16))
},
ZeroPageY => {
// Use [u8, ..1] from instruction
// Add to Y register (as u8 -- the final address is in 0-page)
// (Output: an 8-bit zero-page address)
UseAddress(Address((arr[0] + y) as u16))
},
Relative => {
// Use [u8, ..1] from instruction
// (interpret as relative...)
UseRelative(arr[0] as i8)
},
Absolute => {
// Use [u8, ..2] from instruction as address
// (Output: a 16-bit address)
UseAddress(arr_to_addr(arr))
},
AbsoluteX => {
// Use [u8, ..2] from instruction as address, add X
// (Output: a 16-bit address)
UseAddress(arr_to_addr(arr) + AddressDiff(x as u16))
},
AbsoluteY => {
// Use [u8, ..2] from instruction as address, add Y
// (Output: a 16-bit address)
UseAddress(arr_to_addr(arr) + AddressDiff(y as u16))
},
Indirect => {
// Use [u8, ..2] from instruction as an address. Interpret the
// two bytes starting at that address as an address.
// (Output: a 16-bit address)
let slice = memory.get_slice(arr_to_addr(arr), AddressDiff(2));
UseAddress(arr_to_addr(slice))
},
IndexedIndirectX => {
// Use [u8, ..1] from instruction
// Add to X register with 0-page wraparound, like ZeroPageX.
// This is where the absolute (16-bit) target address is stored.
// (Output: a 16-bit address)
let start = arr[0] + x;
let slice = memory.get_slice(Address(start as u16),
AddressDiff(2));
UseAddress(arr_to_addr(slice))
},
IndirectIndexedY => {
// Use [u8, ..1] from instruction
// This is where the absolute (16-bit) target address is stored.
// Add Y register to this address to get the final address
// (Output: a 16-bit address)
let start = arr[0];
let slice = memory.get_slice(Address(start as u16),
AddressDiff(2));
UseAddress(arr_to_addr(slice) + AddressDiff(y as u16))
},
}
}
}
pub type DecodedInstr = (Instruction, AMOut);
pub static g_opcodes: [Option<(Instruction, AddressingMode)>, ..256] = [
/*0x00*/ Some((BRK, Implied)),
/*0x01*/ Some((ORA, IndexedIndirectX)),
/*0x02*/ None,
/*0x03*/ None,
/*0x04*/ None,
/*0x05*/ Some((ORA, ZeroPage)),
/*0x06*/ Some((ASL, ZeroPage)),
/*0x07*/ None,
/*0x08*/ Some((PHP, Implied)),
/*0x09*/ Some((ORA, Immediate)),
/*0x0A*/ Some((ASL, Accumulator)),
/*0x0B*/ None,
/*0x0C*/ None,
/*0x0D*/ Some((ORA, Absolute)),
/*0x0E*/ Some((ASL, Absolute)),
/*0x0F*/ None,
/*0x10*/ Some((BPL, Relative)),
/*0x11*/ Some((ORA, IndirectIndexedY)),
/*0x12*/ None,
/*0x13*/ None,
/*0x14*/ None,
/*0x15*/ Some((ORA, ZeroPageX)),
/*0x16*/ Some((ASL, ZeroPageX)),
/*0x17*/ None,
/*0x18*/ Some((CLC, Implied)),
/*0x19*/ Some((ORA, AbsoluteY)),
/*0x1A*/ None,
/*0x1B*/ None,
/*0x1C*/ None,
/*0x1D*/ Some((ORA, AbsoluteX)),
/*0x1E*/ Some((ASL, AbsoluteX)),
/*0x1F*/ None,
/*0x20*/ Some((JSR, Absolute)),
/*0x21*/ Some((AND, IndexedIndirectX)),
/*0x22*/ None,
/*0x23*/ None,
/*0x24*/ Some((BIT, ZeroPage)),
/*0x25*/ Some((AND, ZeroPage)),
/*0x26*/ Some((ROL, ZeroPage)),
/*0x27*/ None,
/*0x28*/ Some((PLP, Implied)),
/*0x29*/ Some((AND, Immediate)),
/*0x2A*/ Some((ROL, Accumulator)),
/*0x2B*/ None,
/*0x2C*/ Some((BIT, Absolute)),
/*0x2D*/ Some((AND, Absolute)),
/*0x2E*/ Some((ROL, Absolute)),
/*0x2F*/ None,
/*0x30*/ Some((BMI, Relative)),
/*0x31*/ Some((AND, IndirectIndexedY)),
/*0x32*/ None,
/*0x33*/ None,
/*0x34*/ None,
/*0x35*/ Some((AND, ZeroPageX)),
/*0x36*/ Some((ROL, ZeroPageX)),
/*0x37*/ None,
/*0x38*/ Some((SEC, Implied)),
/*0x39*/ Some((AND, AbsoluteY)),
/*0x3A*/ None,
/*0x3B*/ None,
/*0x3C*/ None,
/*0x3D*/ Some((AND, AbsoluteX)),
/*0x3E*/ Some((ROL, AbsoluteX)),
/*0x3F*/ None,
/*0x40*/ Some((RTI, Implied)),
/*0x41*/ Some((EOR, IndexedIndirectX)),
/*0x42*/ None,
/*0x43*/ None,
/*0x44*/ None,
/*0x45*/ Some((EOR, ZeroPage)),
/*0x46*/ Some((LSR, ZeroPage)),
/*0x47*/ None,
/*0x48*/ Some((PHA, Implied)),
/*0x49*/ Some((EOR, Immediate)),
/*0x4A*/ Some((LSR, Accumulator)),
/*0x4B*/ None,
/*0x4C*/ Some((JMP, Absolute)),
/*0x4D*/ Some((EOR, Absolute)),
/*0x4E*/ Some((LSR, Absolute)),
/*0x4F*/ None,
/*0x50*/ Some((BVC, Relative)),
/*0x51*/ Some((EOR, IndirectIndexedY)),
/*0x52*/ None,
/*0x53*/ None,
/*0x54*/ None,
/*0x55*/ Some((EOR, ZeroPageX)),
/*0x56*/ Some((LSR, ZeroPageX)),
/*0x57*/ None,
/*0x58*/ None,
/*0x59*/ Some((EOR, AbsoluteY)),
/*0x5A*/ None,
/*0x5B*/ None,
/*0x5C*/ None,
/*0x5D*/ Some((EOR, AbsoluteX)),
/*0x5E*/ Some((LSR, AbsoluteX)),
/*0x5F*/ None,
/*0x60*/ Some((RTS, Implied)),
/*0x61*/ Some((ADC, IndexedIndirectX)),
/*0x62*/ None,
/*0x63*/ None,
/*0x64*/ None,
/*0x65*/ Some((ADC, ZeroPage)),
/*0x66*/ Some((ROR, ZeroPage)),
/*0x67*/ None,
/*0x68*/ Some((PLA, Implied)),
/*0x69*/ Some((ADC, Immediate)),
/*0x6A*/ Some((ROR, Accumulator)),
/*0x6B*/ None,
/*0x6C*/ Some((JMP, Indirect)),
/*0x6D*/ Some((ADC, Absolute)),
/*0x6E*/ Some((ROR, Absolute)),
/*0x6F*/ None,
/*0x70*/ Some((BVS, Relative)),
/*0x71*/ Some((ADC, IndirectIndexedY)),
/*0x72*/ None,
/*0x73*/ None,
/*0x74*/ None,
/*0x75*/ Some((ADC, ZeroPageX)),
/*0x76*/ Some((ROR, ZeroPageX)),
/*0x77*/ None,
/*0x78*/ Some((SEI, Implied)),
/*0x79*/ Some((ADC, AbsoluteY)),
/*0x7A*/ None,
/*0x7B*/ None,
/*0x7C*/ None,
/*0x7D*/ Some((ADC, AbsoluteX)),
/*0x7E*/ Some((ROR, AbsoluteX)),
/*0x7F*/ None,
/*0x80*/ None,
/*0x81*/ Some((STA, IndexedIndirectX)),
/*0x82*/ None,
/*0x83*/ None,
/*0x84*/ Some((STY, ZeroPage)),
/*0x85*/ Some((STA, ZeroPage)),
/*0x86*/ Some((STX, ZeroPage)),
/*0x87*/ None,
/*0x88*/ Some((DEY, Implied)),
/*0x89*/ None,
/*0x8A*/ Some((TXA, Implied)),
/*0x8B*/ None,
/*0x8C*/ Some((STY, Absolute)),
/*0x8D*/ Some((STA, Absolute)),
/*0x8E*/ Some((STX, Absolute)),
/*0x8F*/ None,
/*0x90*/ Some((BCC, Relative)),
/*0x91*/ Some((STA, IndirectIndexedY)),
/*0x92*/ None,
/*0x93*/ None,
/*0x94*/ Some((STY, ZeroPageX)),
/*0x95*/ Some((STA, ZeroPageX)),
/*0x96*/ Some((STX, ZeroPageY)),
/*0x97*/ None,
/*0x98*/ Some((TYA, Implied)),
/*0x99*/ Some((STA, AbsoluteY)),
/*0x9A*/ Some((TXS, Implied)),
/*0x9B*/ None,
/*0x9C*/ None,
/*0x9D*/ Some((STA, AbsoluteX)),
/*0x9E*/ None,
/*0x9F*/ None,
/*0xA0*/ Some((LDY, Immediate)),
/*0xA1*/ Some((LDA, IndexedIndirectX)),
/*0xA2*/ Some((LDX, Immediate)),
/*0xA3*/ None,
/*0xA4*/ Some((LDY, ZeroPage)),
/*0xA5*/ Some((LDA, ZeroPage)),
/*0xA6*/ Some((LDX, ZeroPage)),
/*0xA7*/ None,
/*0xA8*/ Some((TAY, Implied)),
/*0xA9*/ Some((LDA, Immediate)),
/*0xAA*/ Some((TAX, Implied)),
/*0xAB*/ None,
/*0xAC*/ Some((LDY, Absolute)),
/*0xAD*/ Some((LDA, Absolute)),
/*0xAE*/ Some((LDX, Absolute)),
/*0xAF*/ None,
/*0xB0*/ Some((BCS, Relative)),
/*0xB1*/ Some((LDA, IndirectIndexedY)),
/*0xB2*/ None,
/*0xB3*/ None,
/*0xB4*/ Some((LDY, ZeroPageX)),
/*0xB5*/ Some((LDA, ZeroPageX)),
/*0xB6*/ Some((LDX, ZeroPageY)),
/*0xB7*/ None,
/*0xB8*/ Some((CLV, Implied)),
/*0xB9*/ Some((LDA, AbsoluteY)),
/*0xBA*/ Some((TSX, Implied)),
/*0xBB*/ None,
/*0xBC*/ Some((LDY, AbsoluteX)),
/*0xBD*/ Some((LDA, AbsoluteX)),
/*0xBE*/ Some((LDX, AbsoluteY)),
/*0xBF*/ None,
/*0xC0*/ Some((CPY, Immediate)),
/*0xC1*/ Some((CMP, IndexedIndirectX)),
/*0xC2*/ None,
/*0xC3*/ None,
/*0xC4*/ Some((CPY, ZeroPage)),
/*0xC5*/ Some((CMP, ZeroPage)),
/*0xC6*/ Some((DEC, ZeroPage)),
/*0xC7*/ None,
/*0xC8*/ Some((INY, Implied)),
/*0xC9*/ Some((CMP, Immediate)),
/*0xCA*/ Some((DEX, Implied)),
/*0xCB*/ None,
/*0xCC*/ Some((CPY, Absolute)),
/*0xCD*/ Some((CMP, Absolute)),
/*0xCE*/ Some((DEC, Absolute)),
/*0xCF*/ None,
/*0xD0*/ Some((BNE, Relative)),
/*0xD1*/ Some((CMP, IndirectIndexedY)),
/*0xD2*/ None,
/*0xD3*/ None,
/*0xD4*/ None,
/*0xD5*/ Some((CMP, ZeroPageX)),
/*0xD6*/ Some((DEC, ZeroPageX)),
/*0xD7*/ None,
/*0xD8*/ Some((CLD, Implied)),
/*0xD9*/ Some((CMP, AbsoluteY)),
/*0xDA*/ None,
/*0xDB*/ None,
/*0xDC*/ None,
/*0xDD*/ Some((CMP, AbsoluteX)),
/*0xDE*/ Some((DEC, AbsoluteX)),
/*0xDF*/ None,
/*0xE0*/ Some((CPX, Immediate)),
/*0xE1*/ Some((SBC, IndexedIndirectX)),
/*0xE2*/ None,
/*0xE3*/ None,
/*0xE4*/ Some((CPX, ZeroPage)),
/*0xE5*/ Some((SBC, ZeroPage)),
/*0xE6*/ Some((INC, ZeroPage)),
/*0xE7*/ None,
/*0xE8*/ Some((INX, Implied)),
/*0xE9*/ Some((SBC, Immediate)),
/*0xEA*/ Some((NOP, Implied)),
/*0xEB*/ None,
/*0xEC*/ Some((CPX, Absolute)),
/*0xED*/ Some((SBC, Absolute)),
/*0xEE*/ Some((INC, Absolute)),
/*0xEF*/ None,
/*0xF0*/ Some((BEQ, Relative)),
/*0xF1*/ Some((SBC, IndirectIndexedY)),
/*0xF2*/ None,
/*0xF3*/ None,
/*0xF4*/ None,
/*0xF5*/ Some((SBC, ZeroPageX)),
/*0xF6*/ Some((INC, ZeroPageX)),
/*0xF7*/ None,
/*0xF8*/ Some((SED, Implied)),
/*0xF9*/ Some((SBC, AbsoluteY)),
/*0xFA*/ None,
/*0xFB*/ None,
/*0xFC*/ None,
/*0xFD*/ Some((SBC, AbsoluteX)),
/*0xFE*/ Some((INC, AbsoluteX)),
/*0xFF*/ None,
];

View File

@ -25,6 +25,19 @@
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE. // POSSIBILITY OF SUCH DAMAGE.
// JAM: 'if let' syntax is great for situations where want to match only a
// single pattern and ignore all others.
//
// if let Some(x) = foo() { ... }
//
#![feature(if_let)]
// Needed for log! macro
#![feature(phase)]
#[phase(plugin, link)]
extern crate log;
pub mod address; pub mod address;
pub mod instruction; pub mod instruction;
pub mod machine; pub mod machine;

View File

@ -25,10 +25,13 @@
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE. // POSSIBILITY OF SUCH DAMAGE.
use address::AddressDiff; use log;
use std::fmt;
use instruction::Instruction; use std;
use instruction::{ADC, NOP};
use address::{AddressDiff};
use instruction;
use instruction::{DecodedInstr};
use memory::Memory; use memory::Memory;
use registers::{ Registers, Status, StatusArgs }; use registers::{ Registers, Status, StatusArgs };
use registers::{ ps_negative, ps_overflow, ps_zero, ps_carry }; use registers::{ ps_negative, ps_overflow, ps_zero, ps_carry };
@ -50,35 +53,126 @@ impl Machine {
*self = Machine::new(); *self = Machine::new();
} }
pub fn fetch_instruction(&mut self) -> i8 { pub fn fetch_next_and_decode(&mut self) -> Option<DecodedInstr> {
let instr = self.memory.get_byte(&self.registers.program_counter); let x: u8 = self.memory.get_byte(self.registers.program_counter);
// Will need smarter logic to fetch the correct number of bytes match instruction::g_opcodes[x as uint] {
// for instruction Some((instr, am)) => {
self.registers.program_counter = self.registers.program_counter + AddressDiff(1); let extra_bytes = am.extra_bytes();
instr as i8 let num_bytes = AddressDiff(1) + extra_bytes;
}
pub fn decode_instruction(&mut self, raw_instruction: i8) -> Instruction { let data_start = self.registers.program_counter
match raw_instruction { + AddressDiff(1);
0x69 => ADC(self.fetch_instruction()),
_ => NOP let slice = self.memory.get_slice(data_start, extra_bytes);
} let am_out = am.process(self, slice);
}
// Increment program counter
pub fn execute_instruction(&mut self, instruction: Instruction) { self.registers.program_counter =
match instruction { self.registers.program_counter + num_bytes;
ADC(immediate) => {
println!("executing add with carry"); Some((instr, am_out))
self.add_with_carry(immediate);
},
NOP => {
println!("nop instr");
} }
_ => println!("attempting to execute unimplemented instruction") _ => None
}
}
pub fn execute_instruction(&mut self, decoded_instr: DecodedInstr) {
match decoded_instr {
(instruction::ADC, instruction::UseImmediate(val)) => {
log!(log::DEBUG, "add with carry immediate: {}", val);
self.add_with_carry(val as i8);
},
(instruction::ADC, instruction::UseAddress(addr)) => {
let val = self.memory.get_byte(addr) as i8;
log!(log::DEBUG, "add with carry. address: {}. value: {}",
addr, val);
self.add_with_carry(val);
},
(instruction::LDA, instruction::UseImmediate(val)) => {
log!(log::DEBUG, "load A immediate: {}", val);
self.load_accumulator(val as i8);
},
(instruction::LDA, instruction::UseAddress(addr)) => {
let val = self.memory.get_byte(addr);
log!(log::DEBUG, "load A. address: {}. value: {}", addr, val);
self.load_accumulator(val as i8);
},
(instruction::LDX, instruction::UseImmediate(val)) => {
log!(log::DEBUG, "load X immediate: {}", val);
self.load_x_register(val as i8);
},
(instruction::LDX, instruction::UseAddress(addr)) => {
let val = self.memory.get_byte(addr);
log!(log::DEBUG, "load X. address: {}. value: {}", addr, val);
self.load_x_register(val as i8);
},
(instruction::LDY, instruction::UseImmediate(val)) => {
log!(log::DEBUG, "load Y immediate: {}", val);
self.load_y_register(val as i8);
},
(instruction::LDY, instruction::UseAddress(addr)) => {
let val = self.memory.get_byte(addr);
log!(log::DEBUG, "load Y. address: {}. value: {}", addr, val);
self.load_y_register(val as i8);
},
(instruction::NOP, _) => {
log!(log::DEBUG, "nop instr");
},
(_, _) => {
log!(log::DEBUG, "attempting to execute unimplemented \
instruction");
},
}; };
} }
pub fn run(&mut self) {
loop {
if let Some(decoded_instr) = self.fetch_next_and_decode() {
self.execute_instruction(decoded_instr);
} else {
break
}
}
}
fn load_register_with_flags(register: &mut i8,
status: &mut Status,
value: i8) {
*register = value;
let is_zero = value == 0;
let is_negative = value < 0;
status.set_with_mask(
ps_zero | ps_negative,
Status::new(StatusArgs { zero: is_zero,
negative: is_negative,
..StatusArgs::none() } ));
}
pub fn load_x_register(&mut self, value: i8) {
Machine::load_register_with_flags(&mut self.registers.index_x,
&mut self.registers.status,
value);
}
pub fn load_y_register(&mut self, value: i8) {
Machine::load_register_with_flags(&mut self.registers.index_y,
&mut self.registers.status,
value);
}
pub fn load_accumulator(&mut self, value: i8) {
Machine::load_register_with_flags(&mut self.registers.accumulator,
&mut self.registers.status,
value);
}
// TODO akeeton: Implement binary-coded decimal. // TODO akeeton: Implement binary-coded decimal.
pub fn add_with_carry(&mut self, value: i8) { pub fn add_with_carry(&mut self, value: i8) {
let a_before: i8 = self.registers.accumulator; let a_before: i8 = self.registers.accumulator;
@ -90,28 +184,27 @@ impl Machine {
let did_carry = (a_after as u8) < (a_before as u8); let did_carry = (a_after as u8) < (a_before as u8);
let is_zero = a_after == 0;
let is_negative = a_after < 0;
let did_overflow = let did_overflow =
(a_before < 0 && value < 0 && a_after >= 0) (a_before < 0 && value < 0 && a_after >= 0)
|| (a_before > 0 && value > 0 && a_after <= 0); || (a_before > 0 && value > 0 && a_after <= 0);
let mask = ps_carry | ps_zero | ps_negative | ps_overflow; let mask = ps_carry | ps_overflow;
self.registers.status.set_with_mask(mask, self.registers.status.set_with_mask(mask,
Status::new(StatusArgs { carry: did_carry, Status::new(StatusArgs { carry: did_carry,
zero: is_zero,
negative: is_negative,
overflow: did_overflow, overflow: did_overflow,
..StatusArgs::none() } )); ..StatusArgs::none() } ));
self.registers.accumulator = a_after; self.load_accumulator(a_after);
log!(log::DEBUG, "accumulator: {}", self.registers.accumulator);
} }
} }
impl fmt::Show for Machine { impl std::fmt::Show for Machine {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result { fn fmt(&self, f: &mut std::fmt::Formatter) -> std::fmt::Result {
write!(f, "Machine Dump:\n\nAccumulator: {}", self.registers.accumulator) write!(f, "Machine Dump:\n\nAccumulator: {}",
self.registers.accumulator)
} }
} }

View File

@ -25,7 +25,7 @@
// ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
// POSSIBILITY OF SUCH DAMAGE. // POSSIBILITY OF SUCH DAMAGE.
use address::Address; use address::{Address, AddressDiff};
// JAM: We can probably come up with a better way to represent address ranges. // JAM: We can probably come up with a better way to represent address ranges.
// Address range type? // Address range type?
@ -56,21 +56,41 @@ impl Memory {
pub fn new() -> Memory { pub fn new() -> Memory {
Memory { bytes: [0, ..MEMORY_SIZE] } Memory { bytes: [0, ..MEMORY_SIZE] }
} }
pub fn get_byte(&self, address: &Address) -> u8 { pub fn get_byte(&self, address: Address) -> u8 {
self.bytes[address.to_uint()] self.bytes[address.to_uint()]
} }
pub fn get_slice(&self, Address(start): Address,
AddressDiff(diff): AddressDiff) -> &[u8] {
let start = start as uint;
let diff = diff as uint;
let end = start + diff;
self.bytes.slice(start, end)
}
// Sets the byte at the given address to the given value and returns the // Sets the byte at the given address to the given value and returns the
// previous value at the address. // previous value at the address.
pub fn set_byte(&mut self, address: &Address, value: u8) -> u8 { pub fn set_byte(&mut self, address: Address, value: u8) -> u8 {
let old_value = self.get_byte(address); let old_value = self.get_byte(address);
self.bytes[address.to_uint()] = value; self.bytes[address.to_uint()] = value;
old_value
return old_value;
} }
pub fn set_bytes(&mut self, Address(start): Address, values: &[u8]) {
let start = start as uint;
// This panics if the range is invalid
let slice = self.bytes.slice_mut(start, start + values.len());
// JAM: Is this the best way to do this copy?
for (dest, src) in slice.iter_mut().zip(values.iter()) {
*dest = *src;
}
}
pub fn is_stack_address(address: &Address) -> bool { pub fn is_stack_address(address: &Address) -> bool {
STACK_ADDRESS_LO <= *address && *address <= STACK_ADDRESS_HI STACK_ADDRESS_LO <= *address && *address <= STACK_ADDRESS_HI
} }
} }