1
0
mirror of https://github.com/safiire/n65.git synced 2024-12-12 00:29:03 +00:00
n65/lib/instruction.rb
Safiire 2c938f7312 This is s a big rewrite including: A scoped symbol table, segment and
bank management, Use of promises to resolve symbols that are used before
they are defined.  A base class for all instructions and assembler
directives.  Hopefully my scoped symbols can be used to create C like
data structures in the zero page, ie sprite.x   New code to prodce the
final ROM.  Basically everything was rewritten.
2015-03-05 12:33:56 -08:00

335 lines
10 KiB
Ruby

require_relative 'opcodes'
module Assembler6502
####
## Represents a single 6502 Instruction
class Instruction
attr_reader :op, :arg, :mode, :hex, :description, :length, :cycle, :boundry_add, :flags, :address
## Custom Exceptions
class InvalidInstruction < StandardError; end
class UnresolvedSymbols < StandardError; end
class InvalidAddressingMode < StandardError; end
class AddressOutOfRange < StandardError; end
Mnemonic = '([A-Za-z]{3})'
Hex8 = '\$([A-Fa-f0-9]{2})'
Hex16 = '\$([A-Fa-f0-9]{4})'
Immediate = '\#\$([0-9A-F]{2})'
Sym = '([a-zZ-Z_][a-zA-Z0-9_\.]+)'
Branches = '(BPL|BMI|BVC|BVS|BCC|BCS|BNE|BEQ|bpl|bmi|bvc|bvs|bcc|bcs|bne|beq)'
XReg = '[Xx]'
YReg = '[Yy]'
AddressingModes = {
:relative => {
:example => 'B** my_label',
:display => '%s $%.4X',
:regex => /$^/i, # Will never match this one
:regex_label => /^#{Branches}\s+#{Sym}$/
},
:immediate => {
:example => 'AAA #$FF',
:display => '%s #$%.2X',
:regex => /^#{Mnemonic}\s+#{Immediate}$/,
:regex_label => /^#{Mnemonic}\s+#(<|>)#{Sym}$/
},
:implied => {
:example => 'AAA',
:display => '%s',
:regex => /^#{Mnemonic}$/
},
:zero_page => {
:example => 'AAA $FF',
:display => '%s $%.2X',
:regex => /^#{Mnemonic}\s+#{Hex8}$/
},
:zero_page_x => {
:example => 'AAA $FF, X',
:display => '%s $%.2X, X',
:regex => /^#{Mnemonic}\s+#{Hex8}\s?,\s?#{XReg}$/
},
:zero_page_y => {
:example => 'AAA $FF, Y',
:display => '%s $%.2X, Y',
:regex => /^#{Mnemonic}\s+#{Hex8}\s?,\s?#{YReg}$/
},
:absolute => {
:example => 'AAA $FFFF',
:display => '%s $%.4X',
:regex => /^#{Mnemonic}\s+#{Hex16}$/,
:regex_label => /^#{Mnemonic}\s+#{Sym}$/
},
:absolute_x => {
:example => 'AAA $FFFF, X',
:display => '%s $%.4X, X',
:regex => /^#{Mnemonic}\s+#{Hex16}\s?,\s?#{XReg}$/,
:regex_label => /^#{Mnemonic}\s+#{Sym}\s?,\s?#{XReg}$/
},
:absolute_y => {
:example => 'AAA $FFFF, Y',
:display => '%s $%.4X, Y',
:regex => /^#{Mnemonic}\s+#{Hex16}\s?,\s?#{YReg}$/,
:regex_label => /^#{Mnemonic}\s+#{Sym}\s?,\s?#{YReg}$/
},
:indirect => {
:example => 'AAA ($FFFF)',
:display => '%s ($%.4X)',
:regex => /^#{Mnemonic}\s+\(#{Hex16}\)$/,
:regex_label => /^#{Mnemonic}\s+\(#{Sym}\)$/
},
:indirect_x => {
:example => 'AAA ($FF, X)',
:display => '%s ($%.2X, X)',
:regex => /^#{Mnemonic}\s+\(#{Hex8}\s?,\s?#{XReg}\)$/,
:regex_label => /^#{Mnemonic}\s+\(#{Sym}\s?,\s?#{XReg}\)$/
},
:indirect_y => {
:example => 'AAA ($FF), Y)',
:display => '%s ($%.2X), Y',
:regex => /^#{Mnemonic}\s+\(#{Hex8}\)\s?,\s?#{YReg}$/,
:regex_label => /^#{Mnemonic}\s+\(#{Sym}\)\s?,\s?#{YReg}$/
}
}
####
## Parse one line of assembly, returns nil if the line
## is ultimately empty of asm instructions
## Raises SyntaxError if the line is malformed in some way
def self.parse(line)
## Try to parse this line in each addressing mode
AddressingModes.each do |mode, parse_info|
## We have regexes that match each addressing mode
match_data = parse_info[:regex].match(line)
unless match_data.nil?
## We must have a straight instruction without symbols, construct
## an Instruction from the match_data, and return it
_, op, arg = match_data.to_a
arg = arg.to_i(16) unless arg.nil?
return Instruction.new(op, arg, mode)
else
## Can this addressing mode even use labels?
unless parse_info[:regex_label].nil?
## See if it does in fact have a symbolic argument
match_data = parse_info[:regex_label].match(line)
unless match_data.nil?
## We have found an assembly instruction containing a symbolic
## argument. We can resolve this symbol later by looking at the
## symbol table in the #exec method
match_array = match_data.to_a
## If we have a 4 element array, this means we matched something
## like LDA #<label, which is a legal immediate one byte value
## by taking the msb. We need to make that distinction in the
## Instruction, by passing an extra argument
if match_array.size == 4
_, op, byte_selector, arg = match_array
return Instruction.new(op, arg, mode, byte_selector.to_sym)
puts "I found one with #{byte_selector} #{arg}"
else
_, op, arg = match_array
return Instruction.new(op, arg, mode)
end
end
end
end
end
## We just don't recognize this line of asm, it must be a Syntax Error
fail(SyntaxError, line)
end
####
## Create an instruction. Having the instruction op a downcased symbol is nice
## because that can later be used to index into our opcodes hash in OpCodes
## OpCodes contains the definitions of each OpCode
def initialize(op, arg, mode, byte_selector = nil)
## Lookup the definition of this opcode, otherwise it is an invalid instruction
@byte_selector = byte_selector.nil? ? nil : byte_selector.to_sym
fail(InvalidInstruction, "Bad Byte selector: #{byte_selector}") unless [:>, :<, nil].include?(@byte_selector)
@op = op.downcase.to_sym
definition = OpCodes[@op]
fail(InvalidInstruction, op) if definition.nil?
@arg = arg
## Be sure the mode is an actually supported mode.
@mode = mode.to_sym
fail(InvalidAddressingMode, mode) unless AddressingModes.has_key?(@mode)
if definition[@mode].nil?
fail(InvalidInstruction, "#{op} cannot be used in #{mode} mode")
end
@description, @flags = definition.values_at(:description, :flags)
@hex, @length, @cycles, @boundry_add = definition[@mode].values_at(:hex, :len, :cycles, :boundry_add)
end
####
## Execute writes the emitted bytes to virtual memory, and updates PC
## If there is a symbolic argument, we can try to resolve it now, or
## promise to resolve it later.
def exec(assembler)
## Save these current values into the closure/promise
pc = assembler.program_counter
segment = assembler.current_segment
bank = assembler.current_bank
## Create a promise if this symbol is not defined yet.
promise = lambda do
@arg = assembler.symbol_table.resolve_symbol(@arg)
## If the instruction uses a byte selector, we need to apply that.
@arg = apply_byte_selector(@byte_selector, @arg)
## If the instruction is relative we need to work out how far away it is
@arg = @arg - pc - 2 if @mode == :relative
assembler.write_memory(emit_bytes, pc, segment, bank)
end
case @arg
when Fixnum, NilClass
assembler.write_memory(emit_bytes)
when String
begin
promise.call
rescue SymbolTable::UndefinedSymbol
placeholder = [@hex, 0xDE, 0xAD][0...@length]
## I still have to write a placeholder instruction of the right
## length. The promise will come back and resolve the address.
assembler.write_memory(placeholder, pc, segment, bank)
return promise
end
end
end
####
## Apply a byte selector to an argument
def apply_byte_selector(byte_selector, value)
return value if byte_selector.nil?
case byte_selector
when :>
high_byte(value)
when :<
low_byte(value)
end
end
####
## Emit bytes from asm structure
def emit_bytes
case @length
when 1
[@hex]
when 2
[@hex, @arg]
when 3
[@hex] + break_16(@arg)
else
fail("Can't handle instructions > 3 bytes")
end
end
####
## Resolve symbols
=begin
def resolve_symbols(symbols)
if unresolved_symbols?
if symbols[@arg].nil?
fail(SyntaxError, "Unknown symbol #{@arg.inspect}")
end
## It is possible to resolve a symbol to a 16-bit address and then
## use byte_selector to select the msb or lsb
unless @byte_selector.nil?
arg_16 = symbols[@arg].address
@arg = case @byte_selector
when :>
high_byte(arg_16)
when :<
low_byte(arg_16)
end
return @arg
end
## Based on this instructions length, we should resolve the address
## to either an absolute one, or a relative one. The only relative addresses
## are the branching ones, which are 2 bytes in size, hence the extra 2 byte difference
case @length
when 2
@arg = symbols[@arg].address - @address - 2
when 3
@arg = symbols[@arg].address
else
fail(SyntaxError, "Probably can't use symbol #{@arg.inspect} with #{@op}")
end
end
end
=end
####
## Pretty Print
def to_s
#display = AddressingModes[@mode][:display]
#if @arg.kind_of?(String)
#sprintf("#{display} (#{@mode}, #{@arg})", @op, 0x0)
#else
#sprintf("#{display} (#{@mode})", @op, @arg)
#end
end
private
####
## Break an integer into two 8-bit parts
def break_16(integer)
[integer & 0x00FF, (integer & 0xFF00) >> 8]
end
####
## Take the high byte of a 16-bit integer
def high_byte(word)
(word & 0xFF00) >> 8
end
####
## Take the low byte of a 16-bit integer
def low_byte(word)
word & 0xFF
end
end
end