n65/lib/n65/instruction.rb

309 lines
9.5 KiB
Ruby

require_relative 'opcodes'
require_relative 'regexes'
module N65
####
## Represents a single 6502 Instruction
class Instruction
attr_reader :op, :arg, :mode, :hex, :description, :length, :cycle, :boundry_add, :flags, :address
## Custom Exceptions
class InvalidInstruction < StandardError; end
class UnresolvedSymbols < StandardError; end
class InvalidAddressingMode < StandardError; end
class AddressOutOfRange < StandardError; end
class ArgumentTooLarge < StandardError; end
## Include Regexes
include Regexes
AddressingModes = {
:relative => {
:example => 'B** my_label',
:display => '%s $%.4X',
:regex => /$^/i, # Will never match this one
:regex_label => /^#{Branches}\s+#{Sym}$/
},
:immediate => {
:example => 'AAA #$FF',
:display => '%s #$%.2X',
:regex => /^#{Mnemonic}\s+#{Immediate}$/,
:regex_label => /^#{Mnemonic}\s+#(<|>)#{Sym}$/
},
:implied => {
:example => 'AAA',
:display => '%s',
:regex => /^#{Mnemonic}$/
},
:zero_page => {
:example => 'AAA $FF',
:display => '%s $%.2X',
:regex => /^#{Mnemonic}\s+#{Num8}$/,
:regex_label => /^#{Mnemonic}\s+#{Sym}\s+zp$/
},
:zero_page_x => {
:example => 'AAA $FF, X',
:display => '%s $%.2X, X',
:regex => /^#{Mnemonic}\s+#{Num8}\s?,\s?#{XReg}$/,
:regex_label => /^#{Mnemonic}\s+#{Sym}\s?,\s?#{XReg}\s+zp$/
},
:zero_page_y => {
:example => 'AAA $FF, Y',
:display => '%s $%.2X, Y',
:regex => /^#{Mnemonic}\s+#{Num8}\s?,\s?#{YReg}$/,
:regex_label => /^#{Mnemonic}\s+#{Sym}\s?,\s?#{YReg} zp$/
},
:absolute => {
:example => 'AAA $FFFF',
:display => '%s $%.4X',
:regex => /^#{Mnemonic}\s+#{Num16}$/,
:regex_label => /^#{Mnemonic}\s+#{Sym}$/
},
:absolute_x => {
:example => 'AAA $FFFF, X',
:display => '%s $%.4X, X',
:regex => /^#{Mnemonic}\s+#{Num16}\s?,\s?#{XReg}$/,
:regex_label => /^#{Mnemonic}\s+#{Sym}\s?,\s?#{XReg}$/
},
:absolute_y => {
:example => 'AAA $FFFF, Y',
:display => '%s $%.4X, Y',
:regex => /^#{Mnemonic}\s+#{Num16}\s?,\s?#{YReg}$/,
:regex_label => /^#{Mnemonic}\s+#{Sym}\s?,\s?#{YReg}$/
},
:indirect => {
:example => 'AAA ($FFFF)',
:display => '%s ($%.4X)',
:regex => /^#{Mnemonic}\s+\(#{Num16}\)$/,
:regex_label => /^#{Mnemonic}\s+\(#{Sym}\)$/
},
:indirect_x => {
:example => 'AAA ($FF, X)',
:display => '%s ($%.2X, X)',
:regex => /^#{Mnemonic}\s+\(#{Num8}\s?,\s?#{XReg}\)$/,
:regex_label => /^#{Mnemonic}\s+\(#{Sym}\s?,\s?#{XReg}\)$/
},
:indirect_y => {
:example => 'AAA ($FF), Y)',
:display => '%s ($%.2X), Y',
:regex => /^#{Mnemonic}\s+\(#{Num8}\)\s?,\s?#{YReg}$/,
:regex_label => /^#{Mnemonic}\s+\(#{Sym}\)\s?,\s?#{YReg}$/
}
}
####
## Parse one line of assembly, returns nil if the line
## is ultimately empty of asm instructions
## Raises SyntaxError if the line is malformed in some way
def self.parse(line)
## Try to parse this line in each addressing mode
AddressingModes.each do |mode, parse_info|
## We have regexes that match each addressing mode
match_data = parse_info[:regex].match(line)
unless match_data.nil?
## We must have a straight instruction without symbols, construct
## an Instruction from the match_data, and return it
_, op, arg_hex, arg_bin = match_data.to_a
## Until I think of something better, it seems that the union regex
## puts a hexidecimal argument in one capture, and a binary in the next
## This is annoying, but still not as annoying as using Treetop to parse
if arg_hex != nil
return Instruction.new(op, arg_hex.to_i(16), mode)
elsif arg_bin != nil
return Instruction.new(op, arg_bin.to_i(2), mode)
else
return Instruction.new(op, nil, mode)
end
else
## Can this addressing mode even use labels?
unless parse_info[:regex_label].nil?
## See if it does in fact have a symbolic argument
match_data = parse_info[:regex_label].match(line)
unless match_data.nil?
## We have found an assembly instruction containing a symbolic
## argument. We can resolve this symbol later by looking at the
## symbol table in the #exec method
match_array = match_data.to_a
## If we have a 4 element array, this means we matched something
## like LDA #<label, which is a legal immediate one byte value
## by taking the msb. We need to make that distinction in the
## Instruction, by passing an extra argument
if match_array.size == 4
_, op, byte_selector, arg = match_array
return Instruction.new(op, arg, mode, byte_selector.to_sym)
else
_, op, arg = match_array
return Instruction.new(op, arg, mode)
end
end
end
end
end
## We just don't recognize this line of asm, it must be a Syntax Error
fail(SyntaxError, line)
end
####
## Create an instruction. Having the instruction op a downcased symbol is nice
## because that can later be used to index into our opcodes hash in OpCodes
## OpCodes contains the definitions of each OpCode
def initialize(op, arg, mode, byte_selector = nil)
## Lookup the definition of this opcode, otherwise it is an invalid instruction
@byte_selector = byte_selector.nil? ? nil : byte_selector.to_sym
fail(InvalidInstruction, "Bad Byte selector: #{byte_selector}") unless [:>, :<, nil].include?(@byte_selector)
@op = op.downcase.to_sym
definition = OpCodes[@op]
fail(InvalidInstruction, op) if definition.nil?
@arg = arg
## Be sure the mode is an actually supported mode.
@mode = mode.to_sym
fail(InvalidAddressingMode, mode) unless AddressingModes.has_key?(@mode)
if definition[@mode].nil?
fail(InvalidInstruction, "#{op} cannot be used in #{mode} mode")
end
@description, @flags = definition.values_at(:description, :flags)
@hex, @length, @cycles, @boundry_add = definition[@mode].values_at(:hex, :len, :cycles, :boundry_add)
end
####
## Return if this instruction is a zero page instruction
def zero_page_instruction?
[:zero_page, :zero_page_x, :zero_page_y].include?(@mode)
end
####
## Execute writes the emitted bytes to virtual memory, and updates PC
## If there is a symbolic argument, we can try to resolve it now, or
## promise to resolve it later.
def exec(assembler)
promise = assembler.with_saved_state do |saved_assembler|
@arg = saved_assembler.symbol_table.resolve_symbol(@arg)
## If the instruction uses a byte selector, we need to apply that.
@arg = apply_byte_selector(@byte_selector, @arg)
## If the instruction is relative we need to work out how far away it is
@arg = @arg - saved_assembler.program_counter - 2 if @mode == :relative
saved_assembler.write_memory(emit_bytes)
end
case @arg
when Fixnum, NilClass
assembler.write_memory(emit_bytes)
when String
begin
## This is a bug, I don't believe it will ever get here.
## I think it always resolves every symbol later.
promise.call
rescue SymbolTable::UndefinedSymbol
placeholder = [@hex, 0xDE, 0xAD][0...@length]
## I still have to write a placeholder instruction of the right
## length. The promise will come back and resolve the address.
assembler.write_memory(placeholder)
return promise
end
end
end
####
## Apply a byte selector to an argument
def apply_byte_selector(byte_selector, value)
return value if byte_selector.nil?
case byte_selector
when :>
high_byte(value)
when :<
low_byte(value)
end
end
####
## Emit bytes from asm structure
def emit_bytes
case @length
when 1
[@hex]
when 2
if zero_page_instruction? && @arg < 0 || @arg > 0xff
fail(ArgumentTooLarge, "For #{@op} in #{@mode} mode, only 8-bit values are allowed")
end
[@hex, @arg]
when 3
[@hex] + break_16(@arg)
else
fail("Can't handle instructions > 3 bytes")
end
end
####
## Pretty Print
def to_s
#display = AddressingModes[@mode][:display]
#if @arg.kind_of?(String)
#sprintf("#{display} (#{@mode}, #{@arg})", @op, 0x0)
#else
#sprintf("#{display} (#{@mode})", @op, @arg)
#end
end
private
####
## Break an integer into two 8-bit parts
def break_16(integer)
[integer & 0x00FF, (integer & 0xFF00) >> 8]
end
####
## Take the high byte of a 16-bit integer
def high_byte(word)
(word & 0xFF00) >> 8
end
####
## Take the low byte of a 16-bit integer
def low_byte(word)
word & 0xFF
end
end
end