/* Copyright (c) 2010,2014 Michael Steil, Brian Silverman, Barry Silverman Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. */ //#define DEBUG /************************************************************ * * Libc Functions and Basic Data Types * ************************************************************/ #include #include #include typedef unsigned char uint8_t; typedef unsigned short uint16_t; typedef unsigned int BOOL; #define YES 1 #define NO 0 /************************************************************ * * 6502 Description: Nodes, Transistors and Probes * ************************************************************/ /* nodes */ #include "segdefs.h" /* transistors */ #include "transdefs.h" /* node numbers of probes */ #include "nodenames.h" /************************************************************ * * Global Data Types * ************************************************************/ /* the smallest types to fit the numbers */ typedef uint16_t nodenum_t; typedef uint16_t transnum_t; typedef uint16_t count_t; /************************************************************ * * Bitmap Data Structures and Algorithms * ************************************************************/ #if 0 /* on 64 bit CPUs */ typedef unsigned long long bitmap_t; #define BITMAP_SHIFT 6 #define BITMAP_MASK 63 #define ONE 1ULL #else typedef unsigned int bitmap_t; #define BITMAP_SHIFT 5 #define BITMAP_MASK 31 #define ONE 1 #endif #define WORDS_FOR_BITS(a) (a/(sizeof(bitmap_t) * 8)+1) static inline void bitmap_clear(bitmap_t *bitmap, count_t count) { bzero(bitmap, WORDS_FOR_BITS(count)*sizeof(bitmap_t)); } static inline void set_bitmap(bitmap_t *bitmap, int index, BOOL state) { if (state) bitmap[index>>BITMAP_SHIFT] |= ONE << (index & BITMAP_MASK); else bitmap[index>>BITMAP_SHIFT] &= ~(ONE << (index & BITMAP_MASK)); } static inline BOOL get_bitmap(bitmap_t *bitmap, int index) { return (bitmap[index>>BITMAP_SHIFT] >> (index & BITMAP_MASK)) & 1; } /************************************************************ * * Data Structures for Nodes * ************************************************************/ /* list of nodes that need to be recalculated */ typedef struct { nodenum_t *list; count_t count; } list_t; typedef struct { nodenum_t nodes; nodenum_t transistors; /* everything that describes a node */ bitmap_t *nodes_pullup; bitmap_t *nodes_pulldown; bitmap_t *nodes_value; nodenum_t **nodes_gates; nodenum_t **nodes_c1c2s; count_t *nodes_gatecount; count_t *nodes_c1c2count; nodenum_t *nodes_dependants; nodenum_t *nodes_left_dependants; nodenum_t **nodes_dependant; nodenum_t **nodes_left_dependant; /* everything that describes a transistor */ nodenum_t *transistors_gate; nodenum_t *transistors_c1; nodenum_t *transistors_c2; bitmap_t *transistors_on; /* the nodes we are working with */ nodenum_t *list1; list_t listin; /* the indirect nodes we are collecting for the next run */ nodenum_t *list2; list_t listout; bitmap_t *listout_bitmap; nodenum_t *group; count_t groupcount; bitmap_t *groupbitmap; enum { contains_nothing, contains_hi, contains_pullup, contains_pulldown, contains_vcc, contains_vss } group_contains_value; } state_t; #define INCLUDED_FROM_PERFECT6502_C #include "perfect6502.h" #undef INCLUDED_FROM_PERFECT6502_C /* * The "value" propertiy of VCC and GND is never evaluated in the code, * so we don't bother initializing it properly or special-casing writes. */ static inline void set_nodes_pullup(state_t *state, transnum_t t, BOOL s) { set_bitmap(state->nodes_pullup, t, s); } static inline BOOL get_nodes_pullup(state_t *state, transnum_t t) { return get_bitmap(state->nodes_pullup, t); } static inline void set_nodes_pulldown(state_t *state, transnum_t t, BOOL s) { set_bitmap(state->nodes_pulldown, t, s); } static inline BOOL get_nodes_pulldown(state_t *state, transnum_t t) { return get_bitmap(state->nodes_pulldown, t); } static inline void set_nodes_value(state_t *state, transnum_t t, BOOL s) { set_bitmap(state->nodes_value, t, s); } static inline BOOL get_nodes_value(state_t *state, transnum_t t) { return get_bitmap(state->nodes_value, t); } /************************************************************ * * Data Structures and Algorithms for Transistors * ************************************************************/ static inline void set_transistors_on(state_t *state, transnum_t t, BOOL s) { set_bitmap(state->transistors_on, t, s); } static inline BOOL get_transistors_on(state_t *state, transnum_t t) { return get_bitmap(state->transistors_on, t); } /************************************************************ * * Data Structures and Algorithms for Lists * ************************************************************/ static inline nodenum_t listin_get(state_t *state, count_t i) { return state->listin.list[i]; } static inline count_t listin_count(state_t *state) { return state->listin.count; } static inline void lists_switch(state_t *state) { list_t tmp = state->listin; state->listin = state->listout; state->listout = tmp; } static inline void listout_clear(state_t *state) { state->listout.count = 0; bitmap_clear(state->listout_bitmap, state->nodes); } static inline void listout_add(state_t *state, nodenum_t i) { if (!get_bitmap(state->listout_bitmap, i)) { state->listout.list[state->listout.count++] = i; set_bitmap(state->listout_bitmap, i, 1); } } /************************************************************ * * Data Structures and Algorithms for Groups of Nodes * ************************************************************/ /* * a group is a set of connected nodes, which consequently * share the same value * * we use an array and a count for O(1) insert and * iteration, and a redundant bitmap for O(1) lookup */ static inline void group_clear(state_t *state) { state->groupcount = 0; bitmap_clear(state->groupbitmap, state->nodes); } static inline void group_add(state_t *state, nodenum_t i) { state->group[state->groupcount++] = i; set_bitmap(state->groupbitmap, i, 1); } static inline nodenum_t group_get(state_t *state, count_t n) { return state->group[n]; } static inline BOOL group_contains(state_t *state, nodenum_t el) { return get_bitmap(state->groupbitmap, el); } static inline count_t group_count(state_t *state) { return state->groupcount; } /************************************************************ * * Node and Transistor Emulation * ************************************************************/ static void addNodeToGroup(state_t *state, nodenum_t n) { /* * We need to stop at vss and vcc, otherwise we'll revisit other groups * with the same value - just because they all derive their value from * the fact that they are connected to vcc or vss. */ if (n == vss) { state->group_contains_value = contains_vss; return; } if (n == vcc) { if (state->group_contains_value != contains_vss) state->group_contains_value = contains_vcc; return; } if (group_contains(state, n)) return; group_add(state, n); if (state->group_contains_value < contains_pulldown && get_nodes_pulldown(state, n)) { state->group_contains_value = contains_pulldown; } if (state->group_contains_value < contains_pullup && get_nodes_pullup(state, n)) { state->group_contains_value = contains_pullup; } if (state->group_contains_value < contains_hi && get_nodes_value(state, n)) { state->group_contains_value = contains_hi; } /* revisit all transistors that control this node */ for (count_t t = 0; t < state->nodes_c1c2count[n]; t++) { transnum_t tn = state->nodes_c1c2s[n][t]; /* if the transistor connects c1 and c2... */ if (get_transistors_on(state, tn)) { /* if original node was connected to c1, continue with c2 */ if (state->transistors_c1[tn] == n) addNodeToGroup(state, state->transistors_c2[tn]); else addNodeToGroup(state, state->transistors_c1[tn]); } } } static inline void addAllNodesToGroup(state_t *state, nodenum_t node) { group_clear(state); state->group_contains_value = contains_nothing; addNodeToGroup(state, node); } static inline BOOL getGroupValue(state_t *state) { switch (state->group_contains_value) { case contains_vcc: case contains_pullup: case contains_hi: return YES; case contains_vss: case contains_pulldown: case contains_nothing: return NO; } } void recalcNode(state_t *state, nodenum_t node) { /* * get all nodes that are connected through * transistors, starting with this one */ addAllNodesToGroup(state, node); /* get the state of the group */ BOOL newv = getGroupValue(state); /* * - set all nodes to the group state * - check all transistors switched by nodes of the group * - collect all nodes behind toggled transistors * for the next run */ for (count_t i = 0; i < group_count(state); i++) { nodenum_t nn = group_get(state, i); if (get_nodes_value(state, nn) != newv) { set_nodes_value(state, nn, newv); for (count_t t = 0; t < state->nodes_gatecount[nn]; t++) { transnum_t tn = state->nodes_gates[nn][t]; set_transistors_on(state, tn, newv); } if (newv) { for (count_t g = 0; g < state->nodes_left_dependants[nn]; g++) { listout_add(state, state->nodes_left_dependant[nn][g]); } } else { for (count_t g = 0; g < state->nodes_dependants[nn]; g++) { listout_add(state, state->nodes_dependant[nn][g]); } } } } } void recalcNodeList(state_t *state) { for (int j = 0; j < 100; j++) { /* loop limiter */ /* * make the secondary list our primary list, use * the data storage of the primary list as the * secondary list */ lists_switch(state); if (!listin_count(state)) break; listout_clear(state); /* * for all nodes, follow their paths through * turned-on transistors, find the state of the * path and assign it to all nodes, and re-evaluate * all transistors controlled by this path, collecting * all nodes that changed because of it for the next run */ for (count_t i = 0; i < listin_count(state); i++) { nodenum_t n = listin_get(state, i); recalcNode(state, n); } } listout_clear(state); } /************************************************************ * * Node State * ************************************************************/ static inline void setNode(state_t *state, nodenum_t nn, BOOL s) { BOOL oldstate = get_nodes_pullup(state, nn); if (s != oldstate) { set_nodes_pullup(state, nn, s); set_nodes_pulldown(state, nn, !s); listout_add(state, nn); } } static inline BOOL isNodeHigh(state_t *state, nodenum_t nn) { return get_nodes_value(state, nn); } /************************************************************ * * Interfacing and Extracting State * ************************************************************/ #define read8(state, n0,n1,n2,n3,n4,n5,n6,n7) ((uint8_t)(isNodeHigh(state, n0) << 0) | (isNodeHigh(state, n1) << 1) | (isNodeHigh(state, n2) << 2) | (isNodeHigh(state, n3) << 3) | (isNodeHigh(state, n4) << 4) | (isNodeHigh(state, n5) << 5) | (isNodeHigh(state, n6) << 6) | (isNodeHigh(state, n7) << 7)) uint16_t readAddressBus(state_t *state) { return read8(state, ab0,ab1,ab2,ab3,ab4,ab5,ab6,ab7) | (read8(state, ab8,ab9,ab10,ab11,ab12,ab13,ab14,ab15) << 8); } uint8_t readDataBus(state_t *state) { return read8(state, db0,db1,db2,db3,db4,db5,db6,db7); } void writeDataBus(state_t *state, uint8_t d) { static const nodenum_t dbnodes[8] = { db0, db1, db2, db3, db4, db5, db6, db7 }; for (int i = 0; i < 8; i++, d>>=1) setNode(state, dbnodes[i], d & 1); } BOOL readRW(state_t *state) { return isNodeHigh(state, rw); } uint8_t readA(state_t *state) { return read8(state, a0,a1,a2,a3,a4,a5,a6,a7); } uint8_t readX(state_t *state) { return read8(state, x0,x1,x2,x3,x4,x5,x6,x7); } uint8_t readY(state_t *state) { return read8(state, y0,y1,y2,y3,y4,y5,y6,y7); } uint8_t readP(state_t *state) { return read8(state, p0,p1,p2,p3,p4,p5,p6,p7); } uint8_t readIR(state_t *state) { return read8(state, notir0,notir1,notir2,notir3,notir4,notir5,notir6,notir7) ^ 0xFF; } uint8_t readSP(state_t *state) { return read8(state, s0,s1,s2,s3,s4,s5,s6,s7); } uint8_t readPCL(state_t *state) { return read8(state, pcl0,pcl1,pcl2,pcl3,pcl4,pcl5,pcl6,pcl7); } uint8_t readPCH(state_t *state) { return read8(state, pch0,pch1,pch2,pch3,pch4,pch5,pch6,pch7); } uint16_t readPC(state_t *state) { return (readPCH(state) << 8) | readPCL(state); } /************************************************************ * * Tracing/Debugging * ************************************************************/ unsigned int cycle; void chipStatus(state_t *state) { BOOL clk = isNodeHigh(state, clk0); uint16_t a = readAddressBus(state); uint8_t d = readDataBus(state); BOOL r_w = isNodeHigh(state, rw); printf("halfcyc:%d phi0:%d AB:%04X D:%02X RnW:%d PC:%04X A:%02X X:%02X Y:%02X SP:%02X P:%02X IR:%02X", cycle, clk, a, d, r_w, readPC(state), readA(state), readX(state), readY(state), readSP(state), readP(state), readIR(state)); if (clk) { if (r_w) printf(" R$%04X=$%02X", a, memory[a]); else printf(" W$%04X=$%02X", a, d); } printf("\n"); } /************************************************************ * * Address Bus and Data Bus Interface * ************************************************************/ uint8_t memory[65536]; uint8_t mRead(uint16_t a) { return memory[a]; } void mWrite(uint16_t a, uint8_t d) { memory[a] = d; } static inline void handleMemory(state_t *state) { if (isNodeHigh(state, rw)) writeDataBus(state, mRead(readAddressBus(state))); else mWrite(readAddressBus(state), readDataBus(state)); } /************************************************************ * * Main Clock Loop * ************************************************************/ void step(state_t *state) { BOOL clk = isNodeHigh(state, clk0); /* invert clock */ setNode(state, clk0, !clk); recalcNodeList(state); /* handle memory reads and writes */ if (!clk) handleMemory(state); cycle++; } /************************************************************ * * Initialization * ************************************************************/ static inline void add_nodes_dependant(state_t *state, nodenum_t a, nodenum_t b) { for (count_t g = 0; g < state->nodes_dependants[a]; g++) if (state->nodes_dependant[a][g] == b) return; state->nodes_dependant[a][state->nodes_dependants[a]++] = b; } static inline void add_nodes_left_dependant(state_t *state, nodenum_t a, nodenum_t b) { for (count_t g = 0; g < state->nodes_left_dependants[a]; g++) if (state->nodes_left_dependant[a][g] == b) return; state->nodes_left_dependant[a][state->nodes_left_dependants[a]++] = b; } state_t * setupNodesAndTransistors() { /* allocate state */ state_t *state = malloc(sizeof(state_t)); state->nodes = sizeof(segdefs)/sizeof(*segdefs); state->transistors = sizeof(transdefs)/sizeof(*transdefs); state->nodes_pullup = malloc(WORDS_FOR_BITS(state->nodes) * sizeof(*state->nodes_pullup)); state->nodes_pulldown = malloc(WORDS_FOR_BITS(state->nodes) * sizeof(*state->nodes_pulldown)); state->nodes_value = malloc(WORDS_FOR_BITS(state->nodes) * sizeof(*state->nodes_value)); state->nodes_gates = malloc(state->nodes * sizeof(*state->nodes_gates)); for (count_t i = 0; i < state->nodes; i++) { state->nodes_gates[i] = malloc(state->nodes * sizeof(**state->nodes_gates)); } state->nodes_c1c2s = malloc(state->nodes * sizeof(*state->nodes_c1c2s)); for (count_t i = 0; i < state->nodes; i++) { state->nodes_c1c2s[i] = malloc(2 * state->nodes * sizeof(**state->nodes_c1c2s)); } state->nodes_gatecount = malloc(state->nodes * sizeof(*state->nodes_gatecount)); state->nodes_c1c2count = malloc(state->nodes * sizeof(*state->nodes_c1c2count)); state->nodes_dependants = malloc(state->nodes * sizeof(*state->nodes_dependants)); state->nodes_left_dependants = malloc(state->nodes * sizeof(*state->nodes_left_dependants)); state->nodes_dependant = malloc(state->nodes * sizeof(*state->nodes_dependant)); for (count_t i = 0; i < state->nodes; i++) { state->nodes_dependant[i] = malloc(state->nodes * sizeof(**state->nodes_dependant)); } state->nodes_left_dependant = malloc(state->nodes * sizeof(*state->nodes_left_dependant)); for (count_t i = 0; i < state->nodes; i++) { state->nodes_left_dependant[i] = malloc(state->nodes * sizeof(**state->nodes_left_dependant)); } state->transistors_gate = malloc(state->transistors * sizeof(*state->transistors_gate)); state->transistors_c1 = malloc(state->transistors * sizeof(*state->transistors_c1)); state->transistors_c2 = malloc(state->transistors * sizeof(*state->transistors_c2)); state->transistors_on = malloc(WORDS_FOR_BITS(state->transistors) * sizeof(*state->transistors_on)); state->list1 = malloc(state->nodes * sizeof(*state->list1)); state->list2 = malloc(state->nodes * sizeof(*state->list2)); state->listout_bitmap = malloc(WORDS_FOR_BITS(state->nodes) * sizeof(*state->listout_bitmap)); state->group = malloc(state->nodes * sizeof(*state->group)); state->groupbitmap = malloc(WORDS_FOR_BITS(state->nodes) * sizeof(*state->groupbitmap)); state->listin.list = state->list1; state->listout.list = state->list2; count_t i; /* copy nodes into r/w data structure */ for (i = 0; i < state->nodes; i++) { set_nodes_pullup(state, i, segdefs[i] == 1); state->nodes_gatecount[i] = 0; state->nodes_c1c2count[i] = 0; } /* copy transistors into r/w data structure */ count_t j = 0; for (i = 0; i < state->transistors; i++) { nodenum_t gate = transdefs[i].gate; nodenum_t c1 = transdefs[i].c1; nodenum_t c2 = transdefs[i].c2; /* skip duplicate transistors */ BOOL found = NO; for (count_t j2 = 0; j2 < j; j2++) { if (state->transistors_gate[j2] == gate && ((state->transistors_c1[j2] == c1 && state->transistors_c2[j2] == c2) || (state->transistors_c1[j2] == c2 && state->transistors_c2[j2] == c1))) { found = YES; } } if (!found) { state->transistors_gate[j] = gate; state->transistors_c1[j] = c1; state->transistors_c2[j] = c2; j++; } } state->transistors = j; /* cross reference transistors in nodes data structures */ for (i = 0; i < state->transistors; i++) { nodenum_t gate = state->transistors_gate[i]; nodenum_t c1 = state->transistors_c1[i]; nodenum_t c2 = state->transistors_c2[i]; state->nodes_gates[gate][state->nodes_gatecount[gate]++] = i; state->nodes_c1c2s[c1][state->nodes_c1c2count[c1]++] = i; state->nodes_c1c2s[c2][state->nodes_c1c2count[c2]++] = i; } for (i = 0; i < state->nodes; i++) { state->nodes_dependants[i] = 0; state->nodes_left_dependants[i] = 0; for (count_t g = 0; g < state->nodes_gatecount[i]; g++) { transnum_t t = state->nodes_gates[i][g]; nodenum_t c1 = state->transistors_c1[t]; if (c1 != vss && c1 != vcc) { add_nodes_dependant(state, i, c1); } nodenum_t c2 = state->transistors_c2[t]; if (c2 != vss && c2 != vcc) { add_nodes_dependant(state, i, c2); } if (c1 != vss && c1 != vcc) { add_nodes_left_dependant(state, i, c1); } else { add_nodes_left_dependant(state, i, c2); } } } return state; } void resetChip(state_t *state) { #if 0 /* unneseccary - RESET will stabilize the network anyway */ /* all nodes are down */ for (nodenum_t nn = 0; nn < state->nodes; nn++) { set_nodes_value(state, nn, 0); } /* all transistors are off */ for (transnum_t tn = 0; tn < state->transistors; tn++) set_transistors_on(state, tn, NO); #endif setNode(state, res, 0); setNode(state, clk0, 1); setNode(state, rdy, 1); setNode(state, so, 0); setNode(state, irq, 1); setNode(state, nmi, 1); for (count_t i = 0; i < state->nodes; i++) listout_add(state, i); recalcNodeList(state); /* hold RESET for 8 cycles */ for (int i = 0; i < 16; i++) step(state); /* release RESET */ setNode(state, res, 1); recalcNodeList(state); cycle = 0; } state_t * initAndResetChip() { /* set up data structures for efficient emulation */ state_t *state = setupNodesAndTransistors(); /* set initial state of nodes, transistors, inputs; RESET chip */ resetChip(state); return state; }