1
0
mirror of https://github.com/rkujawa/rk65c02.git synced 2024-12-13 16:30:01 +00:00
rk65c02/src/emulation.c
2017-02-17 12:45:22 +01:00

1102 lines
22 KiB
C

#include <stdio.h>
#include <assert.h>
#include "emulation.h"
/* RMB, SMB, BBR, BBS are handled by these */
static void emul_rmb(rk65c02emu_t *, void *, instruction_t *, uint8_t);
static void emul_smb(rk65c02emu_t *, void *, instruction_t *, uint8_t);
static void emul_bbr(rk65c02emu_t *, void *, instruction_t *, uint8_t);
static void emul_bbs(rk65c02emu_t *, void *, instruction_t *, uint8_t);
/* Convert 8-bit BCD to binary value. */
static inline uint8_t from_bcd(uint8_t val)
{
uint8_t rv;
/* Not really the best way to do it. */
rv = 10 * (val >> 4) + (0x0F & val);
return rv;
}
/* Convert 8-bit binary to BCD value. */
static inline uint8_t to_bcd(uint8_t val)
{
uint16_t shift, digit;
uint8_t bcd;
shift = 0;
bcd = 0;
while (val > 0) {
digit = val % 10;
bcd += (digit << shift);
shift += 4;
val /= 10;
}
return bcd;
}
/*
* Implementation of emulation of instructions follows below.
*/
/* ADC - add with carry */
void
emul_adc(rk65c02emu_t *e, void *id, instruction_t *i)
{
uint8_t arg;
uint16_t res; /* meh */
arg = instruction_data_read_1(e, (instrdef_t *) id, i);
if (e->regs.P & P_DECIMAL)
res = from_bcd(e->regs.A) + from_bcd(arg);
else
res = e->regs.A + arg;
if (e->regs.P & P_CARRY)
res++;
if ((e->regs.A ^ res) & (arg ^ res) & 0x80)
e->regs.P |= P_SIGN_OVERFLOW;
else
e->regs.P &= ~P_SIGN_OVERFLOW;
if (e->regs.P & P_DECIMAL) {
/* if the result does not fit into two BCD digits then set carry */
if (res > 99)
e->regs.P |= P_CARRY;
else
e->regs.P &= ~P_CARRY;
} else {
/* if the result does not fit into 8 bits then set carry */
if (res > 0xFF)
e->regs.P |= P_CARRY;
else
e->regs.P &= ~P_CARRY;
}
/* squash the result into accumulator's 8 bits, lol */
if (e->regs.P & P_DECIMAL)
e->regs.A = to_bcd(res);
else
e->regs.A = (uint8_t) res;
instruction_status_adjust_zero(e, e->regs.A);
instruction_status_adjust_negative(e, e->regs.A);
}
/* AND - logical AND */
void
emul_and(rk65c02emu_t *e, void *id, instruction_t *i)
{
e->regs.A &= (instruction_data_read_1(e, (instrdef_t *) id, i));
instruction_status_adjust_zero(e, e->regs.A);
instruction_status_adjust_negative(e, e->regs.A);
}
/* ASL - shift left one bit */
void
emul_asl(rk65c02emu_t *e, void *id, instruction_t *i)
{
uint8_t val;
val = instruction_data_read_1(e, (instrdef_t *) id, i);
/* carry flag value equals contents of bit 7 */
if (val & 0x80)
e->regs.P |= P_CARRY;
else
e->regs.P &= ~P_CARRY;
/* shift left by one bit */
val <<= 1;
instruction_status_adjust_zero(e, val);
instruction_status_adjust_negative(e, val);
instruction_data_write_1(e, (instrdef_t *) id, i, val);
}
/* BBRx - branch on bit reset (handles BBR0-7) */
static void
emul_bbr(rk65c02emu_t *e, void *id, instruction_t *i, uint8_t bit)
{
uint8_t val;
/* read value from zero page */
val = instruction_data_read_1(e, (instrdef_t *) id, i);
/* if bit is clear then branch */
if (!(BIT(val, bit)))
program_counter_branch(e, (int8_t) i->op2);
else
program_counter_increment(e, id);
}
void
emul_bbr0(rk65c02emu_t *e, void *id, instruction_t *i)
{
emul_bbr(e, id, i, 0);
}
void
emul_bbr1(rk65c02emu_t *e, void *id, instruction_t *i)
{
emul_bbr(e, id, i, 1);
}
void
emul_bbr2(rk65c02emu_t *e, void *id, instruction_t *i)
{
emul_bbr(e, id, i, 2);
}
void
emul_bbr3(rk65c02emu_t *e, void *id, instruction_t *i)
{
emul_bbr(e, id, i, 3);
}
void
emul_bbr4(rk65c02emu_t *e, void *id, instruction_t *i)
{
emul_bbr(e, id, i, 4);
}
void
emul_bbr5(rk65c02emu_t *e, void *id, instruction_t *i)
{
emul_bbr(e, id, i, 5);
}
void
emul_bbr6(rk65c02emu_t *e, void *id, instruction_t *i)
{
emul_bbr(e, id, i, 6);
}
void
emul_bbr7(rk65c02emu_t *e, void *id, instruction_t *i)
{
emul_bbr(e, id, i, 7);
}
/* BBSx - branch on bit set (handles BBS0-7) */
static void
emul_bbs(rk65c02emu_t *e, void *id, instruction_t *i, uint8_t bit)
{
uint8_t val;
/* read value from zero page */
val = instruction_data_read_1(e, (instrdef_t *) id, i);
/* if bit is set then branch */
if (BIT(val, bit))
program_counter_branch(e, (int8_t) i->op2);
else
program_counter_increment(e, id);
}
void
emul_bbs0(rk65c02emu_t *e, void *id, instruction_t *i)
{
emul_bbs(e, id, i, 0);
}
void
emul_bbs1(rk65c02emu_t *e, void *id, instruction_t *i)
{
emul_bbs(e, id, i, 1);
}
void
emul_bbs2(rk65c02emu_t *e, void *id, instruction_t *i)
{
emul_bbs(e, id, i, 2);
}
void
emul_bbs3(rk65c02emu_t *e, void *id, instruction_t *i)
{
emul_bbs(e, id, i, 3);
}
void
emul_bbs4(rk65c02emu_t *e, void *id, instruction_t *i)
{
emul_bbs(e, id, i, 4);
}
void
emul_bbs5(rk65c02emu_t *e, void *id, instruction_t *i)
{
emul_bbs(e, id, i, 5);
}
void
emul_bbs6(rk65c02emu_t *e, void *id, instruction_t *i)
{
emul_bbs(e, id, i, 6);
}
void
emul_bbs7(rk65c02emu_t *e, void *id, instruction_t *i)
{
emul_bbs(e, id, i, 7);
}
/* BIT - check if one or more bits are set */
void
emul_bit(rk65c02emu_t *e, void *id, instruction_t *i)
{
/* uint8_t v = instruction_data_read_1(e, (instrdef_t *) id, i);
printf("%x\n", v);*/
/* zero flag set if acculumator AND memory equals zero */
if (e->regs.A & instruction_data_read_1(e, (instrdef_t *) id, i))
e->regs.P &= ~P_ZERO;
else
e->regs.P |= P_ZERO;
/* immediate addressing does not affect the overflow flag */
if ( ((instrdef_t *)id)->mode != IMMEDIATE) {
if (BIT(instruction_data_read_1(e, (instrdef_t *) id, i), 6))
e->regs.P |= P_SIGN_OVERFLOW;
else
e->regs.P &= ~P_SIGN_OVERFLOW;
}
if (BIT(instruction_data_read_1(e, (instrdef_t *) id, i), 7))
e->regs.P |= P_NEGATIVE;
else
e->regs.P &= ~P_NEGATIVE;
}
/* BCC - branch on carry clear */
void
emul_bcc(rk65c02emu_t *e, void *id, instruction_t *i)
{
if (!(e->regs.P & P_CARRY))
program_counter_branch(e, (int8_t) i->op1);
else
program_counter_increment(e, id);
}
/* BCS - branch on carry set */
void
emul_bcs(rk65c02emu_t *e, void *id, instruction_t *i)
{
if (e->regs.P & P_CARRY)
program_counter_branch(e, (int8_t) i->op1);
else
program_counter_increment(e, id);
}
/* BEQ - branch on equal */
void
emul_beq(rk65c02emu_t *e, void *id, instruction_t *i)
{
if (e->regs.P & P_ZERO)
program_counter_branch(e, (int8_t) i->op1);
else
program_counter_increment(e, id);
}
/* BMI - branch on result minus */
void
emul_bmi(rk65c02emu_t *e, void *id, instruction_t *i)
{
if (e->regs.P & P_NEGATIVE)
program_counter_branch(e, (int8_t) i->op1);
else
program_counter_increment(e, id);
}
/* BNE - branch on not equal */
void
emul_bne(rk65c02emu_t *e, void *id, instruction_t *i)
{
if (!(e->regs.P & P_ZERO))
program_counter_branch(e, (int8_t) i->op1);
else
program_counter_increment(e, id);
}
/* BPL - branch on result plus */
void
emul_bpl(rk65c02emu_t *e, void *id, instruction_t *i)
{
if (!(e->regs.P & P_NEGATIVE))
program_counter_branch(e, (int8_t) i->op1);
else
program_counter_increment(e, id);
}
/* BRA - branch always */
void
emul_bra(rk65c02emu_t *e, void *id, instruction_t *i)
{
program_counter_branch(e, (int8_t) i->op1);
}
/* BRK - break! or rather cause an IRQ in software */
void
emul_brk(rk65c02emu_t *e, void *id, instruction_t *i)
{
e->regs.PC += 2;
e->regs.P |= P_BREAK;
rk65c02_irq(e);
}
/* BVC - branch on overflow clear */
void
emul_bvc(rk65c02emu_t *e, void *id, instruction_t *i)
{
if (!(e->regs.P & P_SIGN_OVERFLOW))
program_counter_branch(e, (int8_t) i->op1);
else
program_counter_increment(e, id);
}
/* BVS - branch on overflow set */
void
emul_bvs(rk65c02emu_t *e, void *id, instruction_t *i)
{
if (e->regs.P & P_SIGN_OVERFLOW)
program_counter_branch(e, (int8_t) i->op1);
else
program_counter_increment(e, id);
}
/* CLC - clear carry flag */
void
emul_clc(rk65c02emu_t *e, void *id, instruction_t *i)
{
e->regs.P &= ~P_CARRY;
}
/* CLD - clear decimal flag */
void
emul_cld(rk65c02emu_t *e, void *id, instruction_t *i)
{
e->regs.P &= ~P_DECIMAL;
}
/* CLI - clear interrupt disable flag */
void
emul_cli(rk65c02emu_t *e, void *id, instruction_t *i)
{
e->regs.P &= ~P_IRQ_DISABLE;
}
/* CLV - clear overflow flag */
void
emul_clv(rk65c02emu_t *e, void *id, instruction_t *i)
{
e->regs.P &= ~P_SIGN_OVERFLOW;
}
/* CMP - compare accumulator and memory location */
void
emul_cmp(rk65c02emu_t *e, void *id, instruction_t *i)
{
uint8_t val, sr;
val = instruction_data_read_1(e, (instrdef_t *) id, i);
sr = e->regs.A - val;
instruction_status_adjust_zero(e, sr);
instruction_status_adjust_negative(e, sr);
if (e->regs.A < val)
e->regs.P &= ~P_CARRY;
else
e->regs.P |= P_CARRY;
}
/* CPX - compare X and memory location */
void
emul_cpx(rk65c02emu_t *e, void *id, instruction_t *i)
{
uint8_t val, sr;
val = instruction_data_read_1(e, (instrdef_t *) id, i);
sr = e->regs.X - val;
instruction_status_adjust_zero(e, sr);
instruction_status_adjust_negative(e, sr);
if (e->regs.X < val)
e->regs.P &= ~P_CARRY;
else
e->regs.P |= P_CARRY;
}
/* CPY - compare Y and memory location */
void
emul_cpy(rk65c02emu_t *e, void *id, instruction_t *i)
{
uint8_t val, sr;
val = instruction_data_read_1(e, (instrdef_t *) id, i);
sr = e->regs.Y - val;
instruction_status_adjust_zero(e, sr);
instruction_status_adjust_negative(e, sr);
if (e->regs.Y < val)
e->regs.P &= ~P_CARRY;
else
e->regs.P |= P_CARRY;
}
/* DEC - decrement memory location/acumulator */
void
emul_dec(rk65c02emu_t *e, void *id, instruction_t *i)
{
uint8_t val;
/* this is absurdly inefficient */
val = instruction_data_read_1(e, (instrdef_t *) id, i);
val--;
instruction_data_write_1(e, id, i, val);
instruction_status_adjust_zero(e, val);
instruction_status_adjust_negative(e, val);
}
/* DNX - decrement X */
void
emul_dex(rk65c02emu_t *e, void *id, instruction_t *i)
{
e->regs.X--;
instruction_status_adjust_zero(e, e->regs.X);
instruction_status_adjust_negative(e, e->regs.X);
}
/* DNY - decrement Y */
void
emul_dey(rk65c02emu_t *e, void *id, instruction_t *i)
{
e->regs.Y--;
instruction_status_adjust_zero(e, e->regs.Y);
instruction_status_adjust_negative(e, e->regs.Y);
}
/* EOR - logical exclusive OR */
void
emul_eor(rk65c02emu_t *e, void *id, instruction_t *i)
{
e->regs.A ^= instruction_data_read_1(e, (instrdef_t *) id, i);
instruction_status_adjust_zero(e, e->regs.A);
instruction_status_adjust_negative(e, e->regs.A);
}
/* INC - increment memory location/acumulator */
void
emul_inc(rk65c02emu_t *e, void *id, instruction_t *i)
{
uint8_t val;
/* this is absurdly inefficient */
val = instruction_data_read_1(e, (instrdef_t *) id, i);
val++;
instruction_data_write_1(e, id, i, val);
instruction_status_adjust_zero(e, val);
instruction_status_adjust_negative(e, val);
}
/* INX - increment X */
void
emul_inx(rk65c02emu_t *e, void *id, instruction_t *i)
{
e->regs.X++;
instruction_status_adjust_zero(e, e->regs.X);
instruction_status_adjust_negative(e, e->regs.X);
}
/* INY - increment Y */
void
emul_iny(rk65c02emu_t *e, void *id, instruction_t *i)
{
e->regs.Y++;
instruction_status_adjust_zero(e, e->regs.Y);
instruction_status_adjust_negative(e, e->regs.Y);
}
/* JMP - JUMP~ */
void
emul_jmp(rk65c02emu_t *e, void *id, instruction_t *i)
{
uint16_t target, iaddr;
switch (((instrdef_t *)id)->mode) {
case ABSOLUTE:
target = i->op1 + (i->op2 << 8);
break;
case IABSOLUTE:
iaddr = i->op1 + (i->op2 << 8);
target = bus_read_1(e->bus, iaddr);
target |= bus_read_1(e->bus, iaddr+1) << 8;
break;
case IABSOLUTEX:
iaddr = i->op1 + (i->op2 << 8) + e->regs.X;
target = bus_read_1(e->bus, iaddr);
target |= bus_read_1(e->bus, iaddr + 1) << 8;
break;
default:
assert(false); /* should never happen, lol */
break;
}
e->regs.PC = target;
}
/* JSR - jump to subroutine */
void
emul_jsr(rk65c02emu_t *e, void *id, instruction_t *i)
{
uint16_t jumpaddr; /* addres to jump to */
uint16_t retaddr; /* return address */
jumpaddr = i->op1 + (i->op2 << 8);
retaddr = e->regs.PC + 2; /* XXX */
/* push return address to stack */
stack_push(e, retaddr >> 8);
stack_push(e, retaddr & 0xFF);
/* change program counter to point to the new location */
e->regs.PC = jumpaddr;
}
/* LDA - load to accumulator */
void
emul_lda(rk65c02emu_t *e, void *id, instruction_t *i)
{
e->regs.A = instruction_data_read_1(e, (instrdef_t *) id, i);
instruction_status_adjust_zero(e, e->regs.A);
instruction_status_adjust_negative(e, e->regs.A);
}
/* LDX - load to X */
void
emul_ldx(rk65c02emu_t *e, void *id, instruction_t *i)
{
e->regs.X = instruction_data_read_1(e, (instrdef_t *) id, i);
instruction_status_adjust_zero(e, e->regs.X);
instruction_status_adjust_negative(e, e->regs.X);
}
/* LDY - load to Y */
void
emul_ldy(rk65c02emu_t *e, void *id, instruction_t *i)
{
e->regs.Y = instruction_data_read_1(e, (instrdef_t *) id, i);
instruction_status_adjust_zero(e, e->regs.Y);
instruction_status_adjust_negative(e, e->regs.Y);
}
/* LSR - shift right one bit */
void
emul_lsr(rk65c02emu_t *e, void *id, instruction_t *i)
{
uint8_t val;
val = instruction_data_read_1(e, (instrdef_t *) id, i);
/* carry flag value equals contents of bit 0 */
if (val & 0x1)
e->regs.P |= P_CARRY;
else
e->regs.P &= ~P_CARRY;
/* shift right by one bit */
val >>= 1;
instruction_status_adjust_zero(e, val);
/* XXX: cannot ever be negative */
instruction_status_adjust_negative(e, val);
instruction_data_write_1(e, (instrdef_t *) id, i, val);
}
/* NOP - do nothing */
void
emul_nop(rk65c02emu_t *e, void *id, instruction_t *i)
{
}
/* ORA - logical inclusive OR */
void
emul_ora(rk65c02emu_t *e, void *id, instruction_t *i)
{
e->regs.A |= instruction_data_read_1(e, (instrdef_t *) id, i);
instruction_status_adjust_zero(e, e->regs.A);
instruction_status_adjust_negative(e, e->regs.A);
}
/* PHA - push accumulator to stack */
void
emul_pha(rk65c02emu_t *e, void *id, instruction_t *i)
{
stack_push(e, e->regs.A);
}
/* PHP - push processor flags to stack */
void
emul_php(rk65c02emu_t *e, void *id, instruction_t *i)
{
stack_push(e, e->regs.P);
}
/* PHX - push X to stack */
void
emul_phx(rk65c02emu_t *e, void *id, instruction_t *i)
{
stack_push(e, e->regs.X);
}
/* PHY - push Y to stack */
void
emul_phy(rk65c02emu_t *e, void *id, instruction_t *i)
{
stack_push(e, e->regs.Y);
}
/* PLA - pull from stack to accumulator */
void
emul_pla(rk65c02emu_t *e, void *id, instruction_t *i)
{
e->regs.A = stack_pop(e);
instruction_status_adjust_zero(e, e->regs.A);
instruction_status_adjust_negative(e, e->regs.A);
}
/* PLP - pull from stack to processor flags */
void
emul_plp(rk65c02emu_t *e, void *id, instruction_t *i)
{
e->regs.P = stack_pop(e) | P_UNDEFINED;
}
/* PLX - pull from stack to X */
void
emul_plx(rk65c02emu_t *e, void *id, instruction_t *i)
{
e->regs.X = stack_pop(e);
}
/* PLY - pull from stack to Y */
void
emul_ply(rk65c02emu_t *e, void *id, instruction_t *i)
{
e->regs.Y = stack_pop(e);
}
/* RTI - return from interrupt */
void
emul_rti(rk65c02emu_t *e, void *id, instruction_t *i)
{
uint16_t retaddr;
/* restore processor status from stack */
e->regs.P = stack_pop(e) | P_UNDEFINED;
/* restore PC */
retaddr = stack_pop(e);
retaddr|= stack_pop(e) << 8;
e->regs.PC = retaddr;
}
/* RTS - return from subroutine */
void
emul_rts(rk65c02emu_t *e, void *id, instruction_t *i)
{
uint16_t retaddr;
retaddr = stack_pop(e);
retaddr|= stack_pop(e) << 8;
e->regs.PC = retaddr;
}
/* RMBx - reset memory bit (handles RMB0-RMB7) */
static void
emul_rmb(rk65c02emu_t *e, void *id, instruction_t *i, uint8_t bit)
{
uint8_t val;
val = instruction_data_read_1(e, (instrdef_t *) id, i);
val &= ~(1 << bit);
instruction_data_write_1(e, id, i, val);
}
void
emul_rmb0(rk65c02emu_t *e, void *id, instruction_t *i)
{
emul_rmb(e, id, i, 0);
}
void
emul_rmb1(rk65c02emu_t *e, void *id, instruction_t *i)
{
emul_rmb(e, id, i, 1);
}
void
emul_rmb2(rk65c02emu_t *e, void *id, instruction_t *i)
{
emul_rmb(e, id, i, 2);
}
void
emul_rmb3(rk65c02emu_t *e, void *id, instruction_t *i)
{
emul_rmb(e, id, i, 3);
}
void
emul_rmb4(rk65c02emu_t *e, void *id, instruction_t *i)
{
emul_rmb(e, id, i, 4);
}
void
emul_rmb5(rk65c02emu_t *e, void *id, instruction_t *i)
{
emul_rmb(e, id, i, 5);
}
void
emul_rmb6(rk65c02emu_t *e, void *id, instruction_t *i)
{
emul_rmb(e, id, i, 6);
}
void
emul_rmb7(rk65c02emu_t *e, void *id, instruction_t *i)
{
emul_rmb(e, id, i, 7);
}
/* ROL - rotate left */
void
emul_rol(rk65c02emu_t *e, void *id, instruction_t *i)
{
bool ncarry;
uint8_t val;
ncarry = false;
val = instruction_data_read_1(e, (instrdef_t *) id, i);
/* new carry flag value equals contents of bit 7 */
if (val & 0x80)
ncarry = true;
/* shift left by one bit */
val <<= 1;
/* bit 0 is set from current value of carry flag */
if (e->regs.P & P_CARRY)
val |= 0x1;
else
val &= ~0x1;
if (ncarry)
e->regs.P |= P_CARRY;
else
e->regs.P &= ~P_CARRY;
instruction_status_adjust_zero(e, val);
instruction_status_adjust_negative(e, val);
instruction_data_write_1(e, (instrdef_t *) id, i, val);
}
/* ROR - rotate right */
void
emul_ror(rk65c02emu_t *e, void *id, instruction_t *i)
{
bool ncarry;
uint8_t val;
ncarry = false;
val = instruction_data_read_1(e, (instrdef_t *) id, i);
/* new carry flag value equals contents of bit 0 */
if (val & 0x1)
ncarry = true;
/* shift right by one bit */
val >>= 1;
/* bit 7 is set from current value of carry flag */
if (e->regs.P & P_CARRY)
val |= 0x80;
else
val &= ~0x80;
if (ncarry)
e->regs.P |= P_CARRY;
else
e->regs.P &= ~P_CARRY;
instruction_status_adjust_zero(e, val);
instruction_status_adjust_negative(e, val);
instruction_data_write_1(e, (instrdef_t *) id, i, val);
}
/* SBC - substract with carry */
void
emul_sbc(rk65c02emu_t *e, void *id, instruction_t *i)
{
uint8_t arg;
uint16_t res; /* meh */
arg = instruction_data_read_1(e, (instrdef_t *) id, i);
if (e->regs.P & P_DECIMAL)
res = from_bcd(e->regs.A) - from_bcd(arg);
else
res = e->regs.A - arg;
/* if the carry flag is NOT set then "borrow" */
if (!(e->regs.P & P_CARRY))
res--;
if ((e->regs.A ^ res) & ((0xFF-arg) ^ res) & 0x80)
e->regs.P |= P_SIGN_OVERFLOW;
else
e->regs.P &= ~P_SIGN_OVERFLOW;
if (e->regs.P & P_DECIMAL)
if ((res > 99) || (res < 0))
e->regs.P &= ~P_CARRY;
else
e->regs.P |= P_CARRY;
else
/* if the result does not fit into 8 bits then clear carry */
if (res & 0x8000)
e->regs.P &= ~P_CARRY;
else
e->regs.P |= P_CARRY;
/* squash the result into accumulator's 8 bits, lol */
if (e->regs.P & P_DECIMAL)
e->regs.A = to_bcd(res);
else
e->regs.A = (uint8_t) res;
instruction_status_adjust_zero(e, e->regs.A);
instruction_status_adjust_negative(e, e->regs.A);
}
/* SED - set the decimal flag */
void
emul_sed(rk65c02emu_t *e, void *id, instruction_t *i)
{
e->regs.P |= P_DECIMAL;
}
/* SEC - set the carry flag */
void
emul_sec(rk65c02emu_t *e, void *id, instruction_t *i)
{
e->regs.P |= P_CARRY;
}
/* SEI - set the interrupt disable flag */
void
emul_sei(rk65c02emu_t *e, void *id, instruction_t *i)
{
e->regs.P |= P_IRQ_DISABLE;
}
/* SMBx - set memory bit (handles SMB0-SMB7) */
static void
emul_smb(rk65c02emu_t *e, void *id, instruction_t *i, uint8_t bit)
{
uint8_t val;
val = instruction_data_read_1(e, (instrdef_t *) id, i);
val |= (1 << bit);
instruction_data_write_1(e, id, i, val);
}
void
emul_smb0(rk65c02emu_t *e, void *id, instruction_t *i)
{
emul_smb(e, id, i, 0);
}
void
emul_smb1(rk65c02emu_t *e, void *id, instruction_t *i)
{
emul_smb(e, id, i, 1);
}
void
emul_smb2(rk65c02emu_t *e, void *id, instruction_t *i)
{
emul_smb(e, id, i, 2);
}
void
emul_smb3(rk65c02emu_t *e, void *id, instruction_t *i)
{
emul_smb(e, id, i, 3);
}
void
emul_smb4(rk65c02emu_t *e, void *id, instruction_t *i)
{
emul_smb(e, id, i, 4);
}
void
emul_smb5(rk65c02emu_t *e, void *id, instruction_t *i)
{
emul_smb(e, id, i, 5);
}
void
emul_smb6(rk65c02emu_t *e, void *id, instruction_t *i)
{
emul_smb(e, id, i, 6);
}
void
emul_smb7(rk65c02emu_t *e, void *id, instruction_t *i)
{
emul_smb(e, id, i, 7);
}
/* STP - stop the processor */
void
emul_stp(rk65c02emu_t *e, void *id, instruction_t *i)
{
e->state = STOPPED;
e->stopreason = STP;
}
/* STA - store accumulator */
void
emul_sta(rk65c02emu_t *e, void *id, instruction_t *i)
{
instruction_data_write_1(e, id, i, e->regs.A);
}
/* STX - store X */
void
emul_stx(rk65c02emu_t *e, void *id, instruction_t *i)
{
instruction_data_write_1(e, id, i, e->regs.X);
}
/* STY - store Y */
void
emul_sty(rk65c02emu_t *e, void *id, instruction_t *i)
{
instruction_data_write_1(e, id, i, e->regs.Y);
}
/* STZ - store zero */
void
emul_stz(rk65c02emu_t *e, void *id, instruction_t *i)
{
instruction_data_write_1(e, id, i, 0);
}
/* TAX - transfer accumulator to X */
void
emul_tax(rk65c02emu_t *e, void *id, instruction_t *i)
{
e->regs.X = e->regs.A;
instruction_status_adjust_zero(e, e->regs.X);
instruction_status_adjust_negative(e, e->regs.X);
}
/* TAY - transfer accumulator to Y */
void
emul_tay(rk65c02emu_t *e, void *id, instruction_t *i)
{
e->regs.Y = e->regs.A;
instruction_status_adjust_zero(e, e->regs.Y);
instruction_status_adjust_negative(e, e->regs.Y);
}
/* TRB - test and reset bits */
void
emul_trb(rk65c02emu_t *e, void *id, instruction_t *i)
{
uint8_t val;
val = instruction_data_read_1(e, (instrdef_t *) id, i);
if (e->regs.A & val)
e->regs.P &= ~P_ZERO;
else
e->regs.P |= P_ZERO;
instruction_data_write_1(e, (instrdef_t *) id, i,
val & (e->regs.A ^ 0xFF));
}
/* TSB - test and set bits */
void
emul_tsb(rk65c02emu_t *e, void *id, instruction_t *i)
{
uint8_t val;
val = instruction_data_read_1(e, (instrdef_t *) id, i);
if (e->regs.A & val)
e->regs.P &= ~P_ZERO;
else
e->regs.P |= P_ZERO;
instruction_data_write_1(e, (instrdef_t *) id, i,
val | e->regs.A);
}
/* TSX - transfer stack pointer to X */
void
emul_tsx(rk65c02emu_t *e, void *id, instruction_t *i)
{
e->regs.X = e->regs.SP;
instruction_status_adjust_zero(e, e->regs.X);
instruction_status_adjust_negative(e, e->regs.X);
}
/* TXA - transfer X to accumulator */
void
emul_txa(rk65c02emu_t *e, void *id, instruction_t *i)
{
e->regs.A = e->regs.X;
instruction_status_adjust_zero(e, e->regs.A);
instruction_status_adjust_negative(e, e->regs.A);
}
/* TXS - transfer X to stack pointer */
void
emul_txs(rk65c02emu_t *e, void *id, instruction_t *i)
{
e->regs.SP = e->regs.X;
}
/* TYA - transfer Y to accumulator */
void
emul_tya(rk65c02emu_t *e, void *id, instruction_t *i)
{
e->regs.A = e->regs.Y;
instruction_status_adjust_zero(e, e->regs.A);
instruction_status_adjust_negative(e, e->regs.A);
}
/* WAI - wait for interrupt */
void
emul_wai(rk65c02emu_t *e, void *id, instruction_t *i)
{
e->state = STOPPED;
e->stopreason = WAI;
}