1
0
mirror of https://github.com/rkujawa/rk65c02.git synced 2024-12-11 18:49:16 +00:00
rk65c02/src/instruction.c
2018-03-23 13:37:07 +01:00

447 lines
9.1 KiB
C

#include <stdio.h>
#include <stdint.h>
#include <stdlib.h>
#include <stdbool.h>
#include <errno.h>
#include <assert.h>
#include <string.h>
#include "bus.h"
#include "rk65c02.h"
#include "65c02isa.h"
#include "log.h"
#include "instruction.h"
instruction_t
instruction_fetch(bus_t *b, uint16_t addr)
{
instruction_t i;
instrdef_t id;
i.opcode = bus_read_1(b, addr);
id = instruction_decode(i.opcode);
//assert(i.def.opcode != OP_UNIMPL);
/* handle operands */
switch (id.mode) {
case IMMEDIATE:
case ZP:
case ZPX:
case ZPY:
case IZP:
case IZPX:
case IZPY:
case RELATIVE:
i.op1 = bus_read_1(b, addr+1);
break;
case ABSOLUTE:
case ABSOLUTEX:
case ABSOLUTEY:
case IABSOLUTE:
case IABSOLUTEX:
case ZPR:
i.op1 = bus_read_1(b, addr+1);
i.op2 = bus_read_1(b, addr+2);
break;
case IMPLIED:
default:
break;
}
return i;
}
void
instruction_print(instruction_t *i)
{
char *str;
str = instruction_string_get(i);
printf("%s", str);
free(str);
}
char *
instruction_string_get(instruction_t *i)
{
#define INSTR_STR_LEN 16
instrdef_t id;
char *str;
str = malloc(INSTR_STR_LEN);
if (str == NULL) {
rk65c02_log(LOG_CRIT, "Error allocating memory for buffer: %s.",
strerror(errno));
return NULL;
}
memset(str, 0, INSTR_STR_LEN);
id = instruction_decode(i->opcode);
switch (id.mode) {
case IMPLIED:
snprintf(str, INSTR_STR_LEN, "%s", id.mnemonic);
break;
case ACCUMULATOR:
snprintf(str, INSTR_STR_LEN, "%s A", id.mnemonic);
break;
case IMMEDIATE:
snprintf(str, INSTR_STR_LEN, "%s #%#02x", id.mnemonic, i->op1);
break;
case ZP:
snprintf(str, INSTR_STR_LEN, "%s %#02x", id.mnemonic, i->op1);
break;
case ZPX:
snprintf(str, INSTR_STR_LEN, "%s %#02x,X", id.mnemonic, i->op1);
break;
case ZPY:
snprintf(str, INSTR_STR_LEN, "%s %#02x,Y", id.mnemonic, i->op1);
break;
case IZP:
snprintf(str, INSTR_STR_LEN, "%s (%#02x)", id.mnemonic, i->op1);
break;
case IZPX:
snprintf(str, INSTR_STR_LEN, "%s (%#02x,X)", id.mnemonic, i->op1);
break;
case IZPY:
snprintf(str, INSTR_STR_LEN, "%s (%#02x),Y", id.mnemonic, i->op1);
break;
case ZPR:
snprintf(str, INSTR_STR_LEN, "%s %#02x,%#02x", id.mnemonic, i->op1, i->op2);
break;
case ABSOLUTE:
snprintf(str, INSTR_STR_LEN, "%s %#02x%02x", id.mnemonic, i->op2, i->op1);
break;
case ABSOLUTEX:
snprintf(str, INSTR_STR_LEN, "%s %#02x%02x,X", id.mnemonic, i->op2, i->op1);
break;
case ABSOLUTEY:
snprintf(str, INSTR_STR_LEN, "%s %#02x%02x,Y", id.mnemonic, i->op2, i->op1);
break;
case IABSOLUTE:
snprintf(str, INSTR_STR_LEN, "%s (%#02x%02x)", id.mnemonic, i->op2, i->op1);
break;
case IABSOLUTEX:
snprintf(str, INSTR_STR_LEN, "%s (%#02x%02x,X)", id.mnemonic, i->op2, i->op1);
break;
case RELATIVE:
snprintf(str, INSTR_STR_LEN, "%s %#02x", id.mnemonic, i->op1);
break;
}
return str;
}
assembler_t
assemble_init(bus_t *b, uint16_t pc)
{
assembler_t asmblr;
asmblr.bus = b;
asmblr.pc = pc;
return asmblr;
}
bool
assemble_single_implied(assembler_t *a, const char *mnemonic)
{
return assemble_single(a, mnemonic, IMPLIED, 0, 0);
}
bool
assemble_single(assembler_t *a, const char *mnemonic, addressing_t mode, uint8_t op1, uint8_t op2)
{
uint8_t *asmbuf;
uint8_t bsize;
bool rv;
rv = assemble_single_buf(&asmbuf, &bsize, mnemonic, mode, op1, op2);
if (rv == false)
return rv;
rv = bus_load_buf(a->bus, a->pc, asmbuf, bsize);
free(asmbuf);
a->pc += bsize;
return rv;
}
bool
assemble_single_buf_implied(uint8_t **buf, uint8_t *bsize, const char *mnemonic)
{
return assemble_single_buf(buf, bsize, mnemonic, IMPLIED, 0, 0);
}
bool
assemble_single_buf(uint8_t **buf, uint8_t *bsize, const char *mnemonic, addressing_t mode, uint8_t op1, uint8_t op2)
{
instrdef_t id;
uint8_t opcode;
bool found;
found = false;
opcode = 0;
/* find the opcode for given mnemonic and addressing mode */
while (opcode < 0xFF) {
id = instruction_decode(opcode);
if ((strcmp(mnemonic, id.mnemonic) == 0) && (id.mode == mode)) {
found = true;
break;
}
opcode++;
}
if (!found) {
rk65c02_log(LOG_ERROR,
"Couldn't find opcode for mnemonic %s mode %x.",
mnemonic, mode);
return false;
}
*bsize = id.size;
*buf = malloc(id.size);
if(*buf == NULL) {
rk65c02_log(LOG_ERROR, "Error allocating assembly buffer.");
return false;
}
/* fill the buffer */
memset(*buf, 0, id.size);
(*buf)[0] = opcode;
/* XXX */
if (id.size > 1)
(*buf)[1] = op1;
if (id.size > 2)
(*buf)[2] = op2;
return found;
}
void
disassemble(bus_t *b, uint16_t addr)
{
instruction_t i;
instrdef_t id;
i = instruction_fetch(b, addr);
id = instruction_decode(i.opcode);
printf("%X:\t", addr);
instruction_print(&i);
printf("\t\t// ");
if (id.size == 1)
printf("%X", id.opcode);
else if (id.size == 2)
printf("%X %X", id.opcode, i.op1);
else if (id.size == 3)
printf("%X %X %X", id.opcode, i.op1, i.op2);
printf("\n");
}
instrdef_t
instruction_decode(uint8_t opcode)
{
instrdef_t id;
id = instrs[opcode];
return id;
}
void
instruction_status_adjust_zero(rk65c02emu_t *e, uint8_t regval)
{
if (regval == 0)
e->regs.P |= P_ZERO;
else
e->regs.P &= ~P_ZERO;
}
void
instruction_status_adjust_negative(rk65c02emu_t *e, uint8_t regval)
{
if (regval & NEGATIVE)
e->regs.P |= P_NEGATIVE;
else
e->regs.P &= ~P_NEGATIVE;
}
void
instruction_data_write_1(rk65c02emu_t *e, instrdef_t *id, instruction_t *i, uint8_t val)
{
uint16_t iaddr;
switch (id->mode) {
case ZP:
case ZPR:
bus_write_1(e->bus, i->op1, val);
break;
case ZPX:
/* XXX: wraps around zero page? */
bus_write_1(e->bus, i->op1 + e->regs.X, val);
break;
case ZPY:
bus_write_1(e->bus, i->op1 + e->regs.Y, val);
break;
case IZP:
iaddr = bus_read_1(e->bus, i->op1);
iaddr |= (bus_read_1(e->bus, i->op1 + 1) << 8);
bus_write_1(e->bus, iaddr, val);
break;
case ABSOLUTE:
bus_write_1(e->bus, i->op1 + (i->op2 << 8), val);
break;
case IZPX:
/* XXX */
iaddr = bus_read_1(e->bus, i->op1 + e->regs.X);
iaddr |= (bus_read_1(e->bus, i->op1 + e->regs.X + 1) << 8);
bus_write_1(e->bus, iaddr, val);
break;
case IZPY:
/* XXX */
iaddr = bus_read_1(e->bus, i->op1);
iaddr |= (bus_read_1(e->bus, i->op1 + 1) << 8);
bus_write_1(e->bus, iaddr, val + e->regs.Y);
break;
case ABSOLUTEX:
bus_write_1(e->bus, (i->op1 + (i->op2 << 8)) + e->regs.X, val);
break;
case ABSOLUTEY:
bus_write_1(e->bus, (i->op1 + (i->op2 << 8)) + e->regs.Y, val);
break;
case ACCUMULATOR:
e->regs.A = val;
break;
case IMMEDIATE:
case RELATIVE:
case IABSOLUTE:
case IABSOLUTEX:
/*
* IABSOLUTE, IABSOLUTEX, RELATIVE are only for branches
* and jumps. They do not read or write anything, only modify
* PC which is handled within emulation of a given opcode.
*/
default:
rk65c02_log(LOG_ERROR,
"unhandled addressing mode for opcode %x\n", i->opcode);
break;
}
}
uint8_t
instruction_data_read_1(rk65c02emu_t *e, instrdef_t *id, instruction_t *i)
{
uint8_t rv; /* data read from the bus */
uint16_t iaddr; /* indirect address */
rv = 0;
switch (id->mode) {
case ACCUMULATOR:
rv = e->regs.A;
break;
case IMMEDIATE:
rv = i->op1;
break;
case ZP:
case ZPR:
rv = bus_read_1(e->bus, i->op1);
break;
case ZPX:
/* XXX: wraps around zero page? */
rv = bus_read_1(e->bus, i->op1 + e->regs.X);
break;
case ZPY:
rv = bus_read_1(e->bus, i->op1 + e->regs.Y);
break;
case IZP:
iaddr = bus_read_1(e->bus, i->op1);
iaddr |= (bus_read_1(e->bus, i->op1 + 1) << 8);
rv = bus_read_1(e->bus, iaddr);
break;
case IZPX:
/* XXX: what about page wraps / roll over */
iaddr = bus_read_1(e->bus, i->op1 + e->regs.X);
iaddr |= (bus_read_1(e->bus, i->op1 + e->regs.X + 1) << 8);
rv = bus_read_1(e->bus, iaddr);
break;
case IZPY:
/* XXX: what about page wraps / roll over */
iaddr = bus_read_1(e->bus, i->op1);
iaddr |= (bus_read_1(e->bus, i->op1 + 1) << 8);
rv = bus_read_1(e->bus, iaddr) + e->regs.Y;
break;
case ABSOLUTE:
rv = bus_read_1(e->bus, i->op1 + (i->op2 << 8));
break;
case ABSOLUTEX:
rv = bus_read_1(e->bus, (i->op1 + (i->op2 << 8)) + e->regs.X);
break;
case ABSOLUTEY:
rv = bus_read_1(e->bus, (i->op1 + (i->op2 << 8)) + e->regs.Y);
break;
case IABSOLUTE:
case IABSOLUTEX:
case RELATIVE:
/*
* IABSOLUTE, IABSOLUTEX, RELATIVE are only for branches
* and jumps. They do not read or write anything, only modify
* PC which is handled within emulation of a given opcode.
*/
default:
rk65c02_log(LOG_ERROR,
"unhandled addressing mode for opcode %x\n", i->opcode);
break;
}
return rv;
}
/* put value onto the stack */
void
stack_push(rk65c02emu_t *e, uint8_t val)
{
bus_write_1(e->bus, STACK_START+e->regs.SP, val);
e->regs.SP--;
}
/* pull/pop value from the stack */
uint8_t
stack_pop(rk65c02emu_t *e)
{
uint8_t val;
e->regs.SP++;
val = bus_read_1(e->bus, STACK_START+e->regs.SP);
return val;
}
/* increment program counter based on instruction size (opcode + operands) */
void
program_counter_increment(rk65c02emu_t *e, instrdef_t *id)
{
e->regs.PC += id->size;
}
void
program_counter_branch(rk65c02emu_t *e, int8_t boffset)
{
e->regs.PC += boffset + 2;
}
/* check whether given instruction modify program counter */
bool
instruction_modify_pc(instrdef_t *id)
{
return id->modify_pc;
}