#include #include #include #include #include #include #include "system.h" #include "MKCpu.h" #include "Memory.h" #include "Display.h" #include "VMachine.h" #include "GraphDisp.h" #include "MemMapDev.h" #include "MKGenException.h" using namespace std; using namespace MKBasic; #define ANIM_DELAY 250 const bool ClsIfDirty = true; VMachine *pvm = NULL; Regs *preg = NULL; bool ioecho = false, opbrk = false, needhelp = false; bool loadbin = false, loadhex = false, reset = false, execvm = false; int g_stackdisp_lines = 1; string ramfile = "dummy.ram"; bool ShowRegs(Regs *preg, VMachine *pvm, bool ioecho, bool showiostat); void ShowHelp(); void CmdArgHelp(string prgname); void CopyrightBanner(); /* *-------------------------------------------------------------------- * Method: RunSingleInstr() * Purpose: Execute single instruction of the CPU (all cycles). * Arguments: addr - unsigned short, instruction address * Returns: pointer to CPU registers *-------------------------------------------------------------------- */ Regs *RunSingleInstr(unsigned short addr) { Regs *ret = NULL; do { ret = pvm->Step(addr); } while (ret->CyclesLeft > 0); return ret; } /* *-------------------------------------------------------------------- * Method: RunSingleCurrInstr() * Purpose: Execute single instruction of the CPU (all cycles) * at current address. * Arguments: n/a * Returns: pointer to CPU registers *-------------------------------------------------------------------- */ Regs *RunSingleCurrInstr() { Regs *ret = NULL; do { ret = pvm->Step(); } while (ret->CyclesLeft > 0); return ret; } /* *-------------------------------------------------------------------- * Method: PrintVMErr() * Purpose: Print the warning/error message. * Arguments: err - integer, error code * Returns: n/a *-------------------------------------------------------------------- */ void PrintVMErr(int err) { bool pressenter = true; switch (err) { case MEMIMGERR_RAMBIN_EOF: cout << "WARNING: Unexpected EOF (image shorter than 64kB)."; cout << endl; break; case MEMIMGERR_RAMBIN_OPEN: cout << "WARNING: Unable to open memory image file." << endl; break; case MEMIMGERR_RAMBIN_HDR: cout << "WARNING: Problem with binary image header." << endl; break; case MEMIMGERR_RAMBIN_NOHDR: cout << "WARNING: No header found in binary image." << endl; break; case MEMIMGERR_RAMBIN_HDRANDEOF: cout << "WARNING: Problem with binary image header." << endl; cout << "WARNING: Unexpected EOF (image shorter than 64kB)."; cout << endl; break; case MEMIMGERR_RAMBIN_NOHDRANDEOF: cout << "WARNING: No header found in binary image." << endl; cout << "WARNING: Unexpected EOF (image shorter than 64kB)."; cout << endl; break; case MEMIMGERR_INTELH_OPEN: cout << "WARNING: Unable to open Intel HEX file." << endl; break; case MEMIMGERR_INTELH_SYNTAX: cout << "ERROR: Syntax error." << endl; break; case MEMIMGERR_INTELH_FMT: cout << "ERROR: Intel HEX format error." << endl; break; case MEMIMGERR_VM65_OPEN: cout << "ERROR: Unable to open memory definition file."; cout << endl; break; case MEMIMGERR_VM65_IGNPROCWRN: cout << "WARNING: There were problems while processing"; cout << " memory definition file." << endl; break; case VMERR_SAVE_SNAPSHOT: cout << "WARNING: There was a problem saving memory snapshot."; cout << endl; break; default: pressenter = false; break; } if (pressenter) { cout << "Press [ENTER]..."; getchar(); } } #if defined(LINUX) #include void trap_signal(int signum); /* *-------------------------------------------------------------------- * Method: trap_signal() * Purpose: handle signal * Arguments: signum - signal # * Returns: n/a *-------------------------------------------------------------------- */ void trap_signal(int signum) { cout << "Signal caught: " << dec << signum << endl; if (NULL != pvm && NULL != preg) { pvm->SetOpInterrupt(true); opbrk = true; } //exit(signum); return; } #endif #if defined(WINDOWS) #include BOOL CtrlHandler(DWORD fdwCtrlType); /* *-------------------------------------------------------------------- * Method: CtrlHandler() * Purpose: handle signal * Arguments: fdwCtrlType - event type * Returns: BOOL - TRUE if event handled, FALSE if needs further * processing. *-------------------------------------------------------------------- */ BOOL CtrlHandler(DWORD fdwCtrlType) { switch( fdwCtrlType ) { case CTRL_C_EVENT: //Beep( 750, 300 ); if (NULL != pvm && NULL != preg) { pvm->SetOpInterrupt(true); opbrk = true; } return TRUE; case CTRL_CLOSE_EVENT: //Beep( 600, 200 ); cout << "Ctrl-Close event" << endl; return TRUE ; case CTRL_BREAK_EVENT: //Beep( 900, 200 ); if (NULL != pvm && NULL != preg) { pvm->SetOpInterrupt(true); opbrk = true; } return TRUE; case CTRL_LOGOFF_EVENT: //Beep( 1000, 200 ); cout << "Ctrl-Logoff event" << endl; return FALSE; case CTRL_SHUTDOWN_EVENT: Beep( 750, 500 ); cout << "Ctrl-Shutdown event" << endl; return FALSE; default: return FALSE; } } #endif /* *-------------------------------------------------------------------- * Method: PromptNewAddress() * Purpose: Prompt user to enter 16-bit address (hex) in console. * Arguments: prompt - prompt text * Returns: unsigned int - address entered by user *-------------------------------------------------------------------- */ unsigned int PromptNewAddress(string prompt) { unsigned int newaddr = 0x10000; while (newaddr > 0xFFFF) { cout << prompt; cin >> hex >> newaddr; } return newaddr; } /* *-------------------------------------------------------------------- * Thank you stackoverflow.com. * http://stackoverflow.com/questions/111928/ * is-there-a-printf-converter-to-print-in-binary-format *-------------------------------------------------------------------- */ #define BYTETOBINARYPATTERN "%d%d%d%d%d%d%d%d" #define BYTETOBINARY(byte) \ (byte & 0x80 ? 1 : 0), \ (byte & 0x40 ? 1 : 0), \ (byte & 0x20 ? 1 : 0), \ (byte & 0x10 ? 1 : 0), \ (byte & 0x08 ? 1 : 0), \ (byte & 0x04 ? 1 : 0), \ (byte & 0x02 ? 1 : 0), \ (byte & 0x01 ? 1 : 0) /* *-------------------------------------------------------------------- * Method: ShowRegs() * Purpose: Display status of CPU registers on DOS console. * Arguments: preg - pointer to registers structure * pvm - pointer to VM * ioaddr - address setup for char I/O emulation * ioecho - local I/O echo flag * showiostat - if true, I/O emulation status is shown * Returns: boolean - true if the stack pointer was longer than * 15 (the screen must be cleared). *-------------------------------------------------------------------- */ bool ShowRegs(Regs *preg, VMachine *pvm, bool ioecho, bool showiostat) { bool ret = false; char sBuf[80] = {0}; sprintf(sBuf, "| PC: $%04x | Acc: $%02x (" BYTETOBINARYPATTERN ") | X: $%02x | Y: $%02x |", preg->PtrAddr, preg->Acc, BYTETOBINARY(preg->Acc), preg->IndX, preg->IndY); cout << "*-------------*-----------------------*----------*----------*" << endl; cout << sBuf << endl; cout << "*-------------*-----------------------*----------*----------*" << endl; cout << "| NV-BDIZC |" << endl; cout << "| " << bitset<8>((int)preg->Flags) << " |"; cout << " Last instr.: " << preg->LastInstr << " " << endl; cout << "*-------------*" << endl; cout << endl; cout << "Stack: $" << hex << (unsigned short)preg->PtrStack << " " << endl; cout << " \r"; // display stack contents cout << " ["; int j = 0, stacklines = 1; for (unsigned int addr = 0x0101 + preg->PtrStack; addr < 0x0200; addr++) { unsigned int hv = (unsigned int)pvm->MemPeek8bit(addr); if (hv < 16) { cout << 0; } cout << hex << hv << " "; j++; if (j > 15) { cout << "]" << endl; cout << " ["; j=0; stacklines++; } } cout << "] " << endl; ret = (stacklines < g_stackdisp_lines); g_stackdisp_lines = stacklines; // end display stack contents if (showiostat) { cout << endl << "I/O status: " << (pvm->GetCharIOActive() ? "enabled" : "disabled") << ", "; cout << " at: $" << hex << pvm->GetCharIOAddr() << ", "; cout << " local echo: " << (ioecho ? "ON" : "OFF") << "." << endl; cout << "Graphics status: " << (pvm->GetGraphDispActive() ? "enabled" : "disabled") << ", "; cout << " at: $" << hex << pvm->GetGraphDispAddr() << endl; cout << "ROM: " << ((pvm->IsROMEnabled()) ? "enabled." : "disabled.") << " "; cout << "Range: $" << hex << pvm->GetROMBegin() << " - $" << hex << pvm->GetROMEnd() << "." << endl; cout << "Op-code execute history: " << (pvm->IsExecHistoryActive() ? "enabled" : "disabled"); cout << "." << endl; } cout << " \r"; return ret; } /* *-------------------------------------------------------------------- * Method: * Purpose: * Arguments: * Returns: *-------------------------------------------------------------------- */ void ShowMenu() { cout << "------------------------------------+----------------------------------------" << endl; cout << " C - continue, S - step | A - set address for next step" << endl; cout << " G - go/cont. from new address | N - go number of steps, P - IRQ" << endl; cout << " I - toggle char I/O emulation | X - execute from new address" << endl; cout << " T - show I/O console | B - blank (clear) screen" << endl; cout << " E - toggle I/O local echo | F - toggle registers animation" << endl; cout << " J - set animation delay | M - dump memory, W - write memory" << endl; cout << " K - toggle ROM emulation | R - show registers, Y - snapshot" << endl; cout << " L - load memory image | O - display op-code exec. history" << endl; cout << " D - disassemble code in memory | Q - quit, 0 - reset, H - help" << endl; cout << " V - toggle graphics emulation | U - enable/disable exec. history" << endl; cout << "------------------------------------+----------------------------------------" << endl; } /* *-------------------------------------------------------------------- * Method: RUNSTEPS() - macro * Purpose: Execute multiple steps of CPU emulation. * Arguments: * step - boolean flag, true if step by step mode * nsteps - # if steps * brk - current status of break flag * preg - pointer to CPU registers * stct - step counter * pvm - pointer to VM * lrts - status of last RTS flag * anim - boolean flag, true - registers animation mode * delay - delay for anim mode * enrom - rom enabled/disabled flag * rombegin - begin address of emulated ROM * romend - end address of emulated ROM * * Returns: n/a *-------------------------------------------------------------------- */ #define RUNSTEPS(step,nsteps,brk,preg,stct,pvm,lrts,anim,delay) \ { \ bool cls = false; \ brk = preg->SoftIrq; \ lrts = preg->LastRTS; \ while(step && nsteps > 1 && !brk && !lrts && !opbrk) { \ cout << "addr: $" << hex << preg->PtrAddr << ", step: " << dec << stct; \ cout << " \r"; \ preg = RunSingleCurrInstr(); \ if (anim) { \ if (cls & ClsIfDirty) { pvm->ClearScreen(); cls = false; } \ pvm->ScrHome(); \ cls = ShowRegs(preg,pvm,false,false); \ cout << endl; \ this_thread::sleep_for(chrono::milliseconds(delay)); \ } \ brk = preg->SoftIrq; \ lrts = preg->LastRTS; \ nsteps--; \ stct++; \ } \ } /* *-------------------------------------------------------------------- * Method: ShowSpeedStats() * Purpose: * Arguments: * Returns: *-------------------------------------------------------------------- */ void ShowSpeedStats() { cout << endl; cout << dec; cout << "CPU emulation speed stats: " << endl; cout << "|-> Average speed based on 1MHz CPU: " << pvm->GetPerfStats().perf_onemhz << " %" << endl; cout << "|-> Last measured # of cycles exec.: " << pvm->GetPerfStats().prev_cycles << endl; cout << "|-> Last measured time of execution: " << pvm->GetPerfStats().prev_usec << " usec" << endl; cout << endl; } /* *-------------------------------------------------------------------- * Method: ExecHistory() * Purpose: * Arguments: * Returns: *-------------------------------------------------------------------- */ void ExecHistory() { if (pvm->IsExecHistoryActive()) { queue exechist(pvm->GetExecHistory()); cout << "PC : INSTR ACC | X | Y | PS | SP" << endl; cout << "------------------------------------+-----+-----+-----+-----" << endl; while (exechist.size()) { cout << exechist.front() << endl; exechist.pop(); } } else { cout << "Sorry. Op-code execute history is currently disabled." << endl; } } /* *-------------------------------------------------------------------- * Method: LoadImage() * Purpose: Load memory image from file. Set new execute address. * Arguments: newaddr - current execute address * Returns: unsigned int - new execute address *-------------------------------------------------------------------- */ unsigned int LoadImage(unsigned int newaddr) { char typ = 0; for (char c = tolower(typ); c != 'a' && c != 'b' && c != 'h' && c != 'd'; c = tolower(typ)) { cout << "Type (A - auto/B - binary/H - Intel HEX/D - definition): "; cin >> typ; } cout << " ["; switch (tolower(typ)) { case 'a': cout << "auto"; break; case 'b': cout << "binary"; break; case 'h': cout << "Intel HEX"; break; case 'd': cout << "definition"; break; default: break; // should never happen } cout << "]" << endl; string name; cout << "Memory Image File Name: "; cin >> name; cout << " [" << name << "]" << endl; if (typ == 'b') PrintVMErr (pvm->LoadRAMBin(name)); else if (typ == 'h') PrintVMErr (pvm->LoadRAMHex(name)); else if (typ == 'd') { PrintVMErr (pvm->LoadRAMDef(name)); if (pvm->IsAutoExec()) execvm = true; if (newaddr == 0) newaddr = 0x10000; } else { // automatic file format detection pvm->LoadRAM(name); if (pvm->IsAutoExec()) execvm = true; if (newaddr == 0) newaddr = 0x10000; } return newaddr; } /* *-------------------------------------------------------------------- * Method: ToggleIO() * Purpose: * Arguments: * Returns: *-------------------------------------------------------------------- */ unsigned int ToggleIO(unsigned int ioaddr) { if (pvm->GetCharIOActive()) { pvm->DisableCharIO(); cout << "I/O deactivated." << endl; } else { ioaddr = PromptNewAddress("Address (0..FFFF): "); cout << " [" << hex << ioaddr << "]" << endl; pvm->SetCharIO(ioaddr, ioecho); cout << "I/O activated." << endl; } return ioaddr; } /* *-------------------------------------------------------------------- * Method: ToggleGrDisp() * Purpose: * Arguments: * Returns: *-------------------------------------------------------------------- */ unsigned int ToggleGrDisp(unsigned int graddr) { if (pvm->GetGraphDispActive()) { pvm->DisableGraphDisp(); cout << "Graphics display deactivated." << endl; } else { graddr = PromptNewAddress("Address (0..FFFF): "); cout << " [" << hex << graddr << "]" << endl; pvm->SetGraphDisp(graddr); cout << "Graphics display activated." << endl; } return graddr; } /* *-------------------------------------------------------------------- * Method: WriteToMemory() * Purpose: * Arguments: * Returns: *-------------------------------------------------------------------- */ void WriteToMemory() { unsigned int tmpaddr = PromptNewAddress("Address (0..FFFF): "); cout << " [" << hex << tmpaddr << "]" << endl; cout << "Enter hex bytes [00..FF] values separated with NL or spaces, end with [100]:" << endl; unsigned short v = 0; while (true) { cin >> hex >> v; cout << " " << hex << v; if (v > 0xFF) break; pvm->MemPoke8bit(tmpaddr++, v & 0xFF); }; cout << endl; } /* *-------------------------------------------------------------------- * Method: DisassembleMemory() * Purpose: * Arguments: * Returns: *-------------------------------------------------------------------- */ void DisassembleMemory() { unsigned int addrbeg = 0x10000, addrend = 0x10000; cout << "Enter address range (0..0xFFFF)..." << endl; addrbeg = PromptNewAddress("Start address (0..FFFF): "); cout << " [" << hex << addrbeg << "]" << endl; addrend = PromptNewAddress("End address (0..FFFF): "); cout << " [" << hex << addrend << "]" << endl; cout << endl; for (unsigned int addr = addrbeg; addr <= addrend;) { char instrbuf[DISS_BUF_SIZE]; addr = pvm->Disassemble((unsigned short)addr, instrbuf); cout << instrbuf << endl; } } /* *-------------------------------------------------------------------- * Method: DumpMemory() * Purpose: * Arguments: * Returns: *-------------------------------------------------------------------- */ void DumpMemory() { unsigned int addrbeg = 0x10000, addrend = 0x10000; cout << "Enter address range (0..0xFFFF)..." << endl; addrbeg = PromptNewAddress("Start address (0..FFFF): "); cout << " [" << hex << addrbeg << "]" << endl; addrend = PromptNewAddress("End address (0..FFFF): "); cout << " [" << hex << addrend << "]" << endl; cout << endl; for (unsigned int addr = addrbeg; addr <= addrend; addr+=16) { cout << "\t|"; for (unsigned int j=0; j < 16; j++) { unsigned int hv = (unsigned int)pvm->MemPeek8bit(addr+j); if (hv < 16) { cout << 0; } cout << hex << hv << " "; } cout << "|"; for (int j=0; j < 16; j++) { char cc = (char)pvm->MemPeek8bit(addr+j); if (isprint(cc)) cout << cc; else cout << "?"; } cout << '\r'; cout << hex << addr; cout << endl; } } /* *-------------------------------------------------------------------- * Method: LoadArgs() * Purpose: Parse command line arguments. * Arguments: int argc, char *argv[], standard C command line args. * Returns: n/a *-------------------------------------------------------------------- */ void LoadArgs(int argc, char *argv[]) { for (int i=1; iLoadRAMBin(ramfile)); if (!reset) { reset = execvm = pvm->IsAutoReset(); } } } else if (loadhex) { pvm = new VMachine(romfile, "dummy.ram"); if (NULL != pvm) PrintVMErr (pvm->LoadRAMHex(ramfile)); } else { pvm = new VMachine(romfile, ramfile); if (NULL != pvm) PrintVMErr(pvm->GetLastError()); if (NULL != pvm && !reset) { reset = execvm = pvm->IsAutoReset(); } } if (NULL == pvm) { throw MKGenException("Out of memory"); } pvm->ClearScreen(); CopyrightBanner(); string cmd; bool runvm = false, step = false, brk = false, execaddr = false, stop = true; bool lrts = false, anim = false, enrom = pvm->IsROMEnabled(), show_menu = true; unsigned int newaddr = pvm->GetRunAddr(), ioaddr = pvm->GetCharIOAddr(); unsigned int graddr = pvm->GetGraphDispAddr(); unsigned int rombegin = pvm->GetROMBegin(), romend = pvm->GetROMEnd(), delay = ANIM_DELAY; int nsteps = 0; if (pvm->IsAutoExec()) { execvm = true; } if (newaddr == 0) newaddr = 0x10000; while (true) { preg = pvm->GetRegs(); if (runvm) { if (anim) pvm->ClearScreen(); int stct = 1; if (execaddr) { preg = ((step) ? RunSingleInstr(newaddr) : pvm->Run(newaddr)); RUNSTEPS(step,nsteps,brk,preg,stct,pvm,lrts,anim,delay); execaddr = false; } else { preg = ((step) ? RunSingleCurrInstr() : pvm->Run()); RUNSTEPS(step,nsteps,brk,preg,stct,pvm,lrts,anim,delay); } if (step) cout << "\rExecuted " << dec << stct << ((stct == 1) ? " step." : " steps.") << " " << endl; nsteps = 0; runvm = step = false; newaddr = 0x10000; } else if (execvm) { if (reset) { pvm->Reset(); preg = pvm->GetRegs(); reset = false; } else { preg = (execaddr ? pvm->Exec(newaddr) : pvm->Exec()); } execvm = false; execaddr = false; brk = preg->SoftIrq; lrts = preg->LastRTS; newaddr = 0x10000; } if (brk || opbrk || stop || lrts) { pvm->ClearScreen(); pvm->ShowIO(); cout << endl; if (opbrk) { cout << "Interrupted at " << hex << preg->PtrAddr << endl; } else if (brk) { cout << "BRK at " << hex << preg->PtrAddr << endl; } else if (lrts) { cout << "FINISHED at " << hex << ((newaddr > 0xFFFF) ? preg->PtrAddr : newaddr) << endl; } else if (stop) { cout << "STOPPED at " << hex << ((newaddr > 0xFFFF) ? preg->PtrAddr : newaddr) << endl; } ShowSpeedStats(); opbrk = brk = stop = lrts = false; pvm->SetOpInterrupt(false); ShowRegs(preg,pvm,ioecho,true); show_menu = true; } if (show_menu) { ShowMenu(); show_menu = false; } else { cout << endl; cout << "Type '?' and press ENTER for Menu ..." << endl; cout << endl; } cout << "> "; cin >> cmd; char c = tolower(cmd.c_str()[0]); if (c == '?') { show_menu = true; } else if (c == 'h') { // display help ShowHelp(); } else if (c == 'p') { // Interrupt ReQuest pvm->Interrupt(); cout << "OK" << endl; show_menu = true; } else if (c == 'y') { // save snapshot of current CPU and memory in binary image string name; cout << "Enter file name: "; cin >> name; cout << " [" << name << "]" << endl; if (0 == pvm->SaveSnapshot(name)) { cout << "OK" << endl; } else { cout << "ERROR!" << endl; cout << "errno=" << errno << endl; } } else if (c == '0') { // reset CPU reset = true; execvm = true; runvm = false; show_menu = true; } else if (c == 'o') { ExecHistory(); } else if (c == 'l') { // load memory image newaddr = LoadImage(newaddr); } else if (c == 'k') { // toggle ROM emulation if (!enrom) { enrom = true; do { rombegin = PromptNewAddress("ROM begin (0200..FFFF): "); } while (rombegin < 0x0200); cout << " [" << hex << rombegin << "]" << endl; do { romend = PromptNewAddress("ROM end (ROMBEGIN+1..FFFF): "); } while (romend <= rombegin); cout << " [" << hex << romend << "]" << endl; pvm->EnableROM(rombegin, romend); cout << "ROM activated." << endl; } else { enrom = false; pvm->DisableROM(); cout << "ROM deactivated." << endl; } } else if (c == 'j') { // set registers animation delay cout << "Delay [ms]: "; cin >> dec >> delay; cout << " [" << dec << delay << "]" << endl; } else if (c == 'f') { // toggle registers animation in step mode anim = !anim; cout << "Registers status animation " << ((anim) ? "enabled." : "disabled.") << endl; } else if (c == 'b') { // clear screen pvm->ClearScreen(); } else if (c == 'r') { // show registers stop = true; } else if (c == 'e') { // toggle local echo for I/O console if (pvm->GetCharIOActive()) { ioecho = !ioecho; cout << "I/O echo is " << (ioecho ? "activated." : "deactivated.") << endl; pvm->SetCharIO(ioaddr, ioecho); } else { cout << "ERROR: I/O is deactivated." << endl; } } else if (c == 't') { // show I/O console if (pvm->GetCharIOActive()) { pvm->ShowIO(); } else { cout << "ERROR: I/O is deactivated." << endl; } } else if (c == 'i') { // toggle I/O ioaddr = ToggleIO(ioaddr); } else if (c == 'v') { // toggle graphics display graddr = ToggleGrDisp(graddr); } else if (c == 'w') { // write to memory WriteToMemory(); } else if (c == 'a') { // change run address execaddr = stop = true; newaddr = PromptNewAddress("Address (0..FFFF): "); cout << " [" << hex << newaddr << "]" << endl; } else if (c == 's') { runvm = step = stop = true; } else if (c == 'n') { // execute # of steps nsteps = 0; while (nsteps < 1) { cout << "# of steps [n>1]: "; cin >> dec >> nsteps; } cout << " [" << dec << nsteps << "]" << endl; runvm = step = stop = true; show_menu = true; } else if (c == 'c') { // continue running code runvm = true; show_menu = true; } else if (c == 'g') { // run from new address until BRK runvm = true; execaddr = true; newaddr = PromptNewAddress("Address (0..FFFF): "); cout << " [" << hex << newaddr << "]" << endl; show_menu = true; } else if (c == 'x') { // execute code at address execvm = true; execaddr = true; newaddr = PromptNewAddress("Address (0..FFFF): "); cout << " [" << hex << newaddr << "]" << endl; show_menu = true; } else if (c == 'q') { // quit break; } else if (c == 'd') { // disassemble code in memory DisassembleMemory(); } else if (c == 'm') { // dump memory DumpMemory(); } else if (c == 'u') { // toggle enable/disable op-code exec. history pvm->EnableExecHistory(!pvm->IsExecHistoryActive()); cout << "Op-code execute history has been "; cout << (pvm->IsExecHistoryActive() ? "enabled" : "disabled") << "."; cout << endl; } } } catch (MKGenException& ex) { cout << ex.GetCause() << endl; } catch (...) { cout << "ERROR: Fatal." << endl; } return 0; } /* *-------------------------------------------------------------------- * Method: CopyrightBanner() * Purpose: Display copyright information. * Arguments: n/a * Returns: n/a *-------------------------------------------------------------------- */ void CopyrightBanner() { cout << "Virtual Machine/CPU Emulator (MOS 6502) and Debugger." << endl; cout << "Copyright (C) by Marek Karcz 2016. All rights reserved." << endl; } /* *-------------------------------------------------------------------- * Method: CmdArgHelp() * Purpose: Display command line arguments help/Usage. * Arguments: prgname - string, program name * Returns: n/a *-------------------------------------------------------------------- */ void CmdArgHelp(string prgname) { CopyrightBanner(); cout << endl << endl; cout << "Usage:" << endl << endl; cout << "\t" << prgname; cout << " [-h] | [ramdeffile] [-b | -x] [-r]" << endl; cout << endl << endl; cout << "Where:" << endl << endl; cout << "\tramdeffile - RAM definition file name" << endl; cout << "\t-b - specify input format as binary" << endl; cout << "\t-x - specify input format as Intel HEX" << endl; cout << "\t-r - after loading, perform CPU RESET" << endl; cout << "\t-h - print this help screen" << endl; cout << R"( When ran with no arguments, program will load default memory definition files: default.rom, default.ram and will enter the debug console menu. When ramdeffile argument is provided with no input format specified, program will attempt to automatically detect input format and load the memory definition from the file, set the flags and parameters depending on the contents of the memory definition file and enter the corresponding mode of operation as defined in that file. If input format is specified (-b|-x), program will load memory from the provided image file and enter the debug console menu. )"; cout << endl; } /* *-------------------------------------------------------------------- * Method: ShowHelp() * Purpose: Display Debugger Console Command Reference help. * Arguments: n/a * Returns: n/a *-------------------------------------------------------------------- */ void ShowHelp() { cout << R"(Debugger Console Command Reference. S - step Executes single opcode at current address. C - continue Continues code execution from current address until BRK. M - dump memory Usage: M [startaddr] [endaddr] Where: startaddr,endaddr - memory addr. in hexadecimal format [0000..FFFF]. Dumps contents of memory, hexadecimal and ASCII formats." G - go/continue from new address until BRK Usage: G [address] Where: address - memory addr. in hexadecimal format [0000.FFFF]. Executes code at provided address, interrupted by BRK opcode. X - execute code from new address until RTS Usage: X [address] Where: address - memory addr. in hexadecimal format [0000.FFFF]. Executes code at provided address, until RTS (last one). Q - quit Exits from the emulator/debugger. A - set address for next step Usage: A [address] Where: address - memory addr. in hexadecimal format [0000.FFFF]. Sets current address to a new value. N - go number of steps Usage: N [steps] Where: steps - number of steps in decimal format Execute number of opcodes provided in steps argument starting from current address. P - IRQ Send maskable interrupt request to CPU (set the IRQ line LOW). W - write to memory Usage: W [address] [hexval] [hexval] ... 100 Where: address - memory addr. in hexadecimal format [0000.FFFF], hexval - byte value in hexadecimal format [00.FF]. Writes provided values to memory starting at specified address. I - toggle char I/O emulation Usage: I [address] Where: address - memory addr. in hexadecimal format [0000.FFFF], Toggles basic character I/O emulation. When enabled, all writes to the specified memory address also writes a character code to to a virtual console. All reads from specified memory address are interpreted as console character input. V - toggle graphics display (video) emulation Usage: V [address] Where: address - memory addr. in hexadecimal format [0000.FFFF], Toggles basic raster (pixel) based RGB graphics display emulation. When enabled, window with graphics screen will open and several registers are available to control the device starting at provided base address. Read programmers reference for detailed documentation regarding the available registers and their functions. R - show registers Displays CPU registers, flags and stack. Y - snapshot Usage: Y [file_name] Where: file_name - the name of the output file. Save snapshot of current CPU and memory in a binary file. T - show I/O console Displays/prints the contents of the virtual console screen. Note that in run mode (commands X, G or C), virtual screen is displayed automatically in real-time if I/O emulation is enabled. E - toggle I/O local echo Toggles local echo on/off when I/O emulation is enabled. B - blank (clear) screen Clears the screen, useful when after exiting I/O emulation or registers animation (long stack) your screen is messed up. F - toggle registers animation mode When in multi-step debug mode (command: N), displaying registers can be suppressed or, when animation mode is enabled - they will be continuously displayed after each executed step. J - set registers status animation delay Usage: J [delay] Where: delay - time of delay in milliseconds, Sets the time added at the end of each execution step in multi step mode (command: N). The default value is 250 ms. K - toggle ROM emulation Usage: K [rombegin] [romend] - to enable, K - to disable, (OR just use 'K' in both cases and be prompted for arguments.) Where: rombegin - hexadecimal address [0200..FFFF], romend - hexadecimal address [rombegin+1..FFFF]. Enable/disable ROM emulation and define address range to which the ROM (read-only memory) will be mapped. Default range: $D000-$DFFF. L - load memory image Usage: L [image_type] [image_name] Where: image_type - A - (auto), B (binary), H (Intel HEX) OR D (definition), image_name - name of the image file. This function allows to load new memory image from either binary image file, Intel HEX format file or the ASCII definition file. With option 'A' selected, automatic input format detection will be attempted. The binary image is always loaded from address 0x0000 and can be up to 64kB long. The definition file format is a plain text file that can contain following keywords and data: ADDR This keyword defines the run address of the executable code. It is optional, but if exists, it must be the 1-st keyword in the definition file. Address in decimal or hexadecimal ($xxxx) format must follow in the next line. ORG Changes the current address counter. The line that follows sets the new address in decimal or hexadecimal format. Data that follows will be put in memory starting from that address. This keyword is optional and can be used multiple times in the definition file. IOADDR Defines the address of the character I/O emulation. The next line sets the address of I/O emulation in decimal or hexadecimal format. If the I/O emulation is enabled (see ENIO keyword), then any character written to this address will be sent to the virtual console. The reading from that address will invoke character input from the emulated console. That input procedure is of blocking type. To invoke non-blocking character procedure, reading should be performed from IOADDR+1. ROMBEGIN Defines the address in memory where the beginning of the Read Only memory is mapped. The next line that follows this keyword sets the address in decimal or hexadecimal format. ROMEND Defines the address in memory where the end of the Read Only Memory is mapped. The next line that follows this keyword sets the address in decimal or hexadecimal format. ENIO Putting this keyword in memory definition file enables rudimentary character I/O emulation and virtual console emulation. ENROM Putting this keyword in memory definition file enables emulation of Read Only Memory, in range of addresses defined by ROMBEGIN and ROMEND keywords. EXEC Define starting address of code which will be automatically executed after the memory image is loaded. The next line that follows this keyword sets the address in decimal or hexadecimal format. RESET Enables auto-reset of the CPU. After loading the memory definition file, the CPU reset sequence will be initiated. ENGRAPH Enables raster graphics device emulation. GRAPHADDR Defines the base address of raster graphics device. The next line that follows sets the address in decimal or hexadecimal format. NOTE: The binary image file can contain a header which contains definitions corresponding to the above parameters at fixed positions. This header is created when user saves the snapshot of current emulator memory image and status. Example use scenario: * User loads the image definition file. * User adjusts various parameters of the emulator (enables/disables devices, sets addresses, changes memory contents). * User saves the snapshot with 'Y' command. * Next time user loads the snapshot image, all the parameters and memory contents stick. This way game status can be saved or a BASIC interpreter with BASIC program in it. See command 'Y' for details. O - display op-codes history Show the history of last executed op-codes/instructions, full with disassembled mnemonic, argument and CPU registers and status. NOTE: op-codes execute history must be enabled, see command 'U'. D - diassemble code in memory Usage: D [startaddr] [endaddr] Where: startaddr,endaddr - hexadecimal address [0000..FFFF]. Attempt to disassemble code in specified address range and display the results (print) on the screen in symbolic form. 0 - reset Run the processor initialization sequence, just like the real CPU when its RTS signal is set to LOW and HIGH again. CPU will disable interrupts, copy address from vector $FFFC to processors PC and will start executing code. Programmer must put initialization routine under address pointed by $FFFC vector, which will set the arithmetic mode, initialize stack, I/O devices and enable IRQ if needed before jumping to main loop. The reset routine disables trapping last RTS opcode if stack is empty, so the VM will never return from opcodes execution loop unless user interrupts with CTRL-C or CTRL-Break. ? - display commands menu Display the menu of all available in Debug Console commands. U - enable/disable exec. history Toggle enable/disable of op-codes execute history. Disabling this feature improves performance. NOTE: 1. If no arguments provided, each command will prompt user to enter missing data. 2. It is possible to exit from running program to debugger console by pressing CTRL-C or CTRL-Pause/Break, which will generate a "Operator Interrupt". However in the character input mode use CTRL-Y combination or CTRL-Break (DOS), CTRL-C (Linux). You may need to press ENTER after that in input mode (DOS). )"; cout << endl; }