/* * WDC to OMF Linker. * * */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "obj816.h" #include "expression.h" #include "omf.h" #ifndef O_BINARY #define O_BINARY 0 #endif struct { bool _v = false; bool _C = false; bool _X = false; bool _S = false; std::string _o; unsigned _errors = 0; } flags; enum class endian { little = __ORDER_LITTLE_ENDIAN__, big = __ORDER_BIG_ENDIAN__, native = __BYTE_ORDER__ }; template void swap_if(T &t, std::false_type) {} void swap_if(uint8_t &, std::true_type) {} void swap_if(uint16_t &value, std::true_type) { value = __builtin_bswap16(value); } void swap_if(uint32_t &value, std::true_type) { value = __builtin_bswap32(value); } void swap_if(uint64_t &value, std::true_type) { value = __builtin_bswap64(value); } template void le_to_host(T &value) { swap_if(value, std::integral_constant{}); } #pragma pack(push, 1) struct Header { uint32_t magic; /* magic number for detection */ uint16_t version; /* version number of object format */ uint8_t filetype; /* file type, object or library */ }; #pragma pack(pop) struct section { std::string name; uint8_t flags = 0; uint32_t org = 0; uint32_t size = 0; unsigned number = -1; std::vector data; std::vector expressions; unsigned end_symbol = 0; // auto-generated _END_{name} symbol. }; struct symbol { std::string name; uint8_t type = 0; uint8_t flags = 0; uint32_t offset = 0; int section = -1; }; template uint8_t read_8(T &iter) { uint8_t tmp = *iter; ++iter; return tmp; } template uint16_t read_16(T &iter) { uint16_t tmp = 0; tmp |= *iter << 0; ++iter; tmp |= *iter << 8; ++iter; return tmp; } template uint32_t read_32(T &iter) { uint32_t tmp = 0; tmp |= *iter << 0; ++iter; tmp |= *iter << 8; ++iter; tmp |= *iter << 16; ++iter; tmp |= *iter << 24; ++iter; return tmp; } template std::string read_cstring(T &iter) { std::string s; for(;;) { uint8_t c = *iter; ++iter; if (!c) break; s.push_back(c); } return s; } template std::string read_pstring(T &iter) { std::string s; unsigned size = *iter; ++iter; s.reserve(size); while (size--) { uint8_t c = *iter; ++iter; s.push_back(c); } return s; } std::vector
read_sections(const std::vector §ion_data) { std::vector
sections; auto iter = section_data.begin(); while (iter != section_data.end()) { section s; s.number = read_8(iter); s.flags = read_8(iter); s.size = read_32(iter); s.org = read_32(iter); if (!(s.flags & SEC_NONAME)) s.name = read_cstring(iter); sections.emplace_back(std::move(s)); } return sections; } std::vector read_symbols(const std::vector &symbol_data) { std::vector symbols; auto iter = symbol_data.begin(); while (iter != symbol_data.end()) { symbol s; s.type = read_8(iter); s.flags = read_8(iter); s.section = read_8(iter); s.offset = s.type == S_UND ? 0 : read_32(iter); s.name = read_cstring(iter); symbols.emplace_back(std::move(s)); } return symbols; } std::unordered_map section_map; std::vector
sections; std::unordered_map symbol_map; std::vector symbols; std::unordered_set undefined_symbols; /* * replace undefined symbols (if possible) and simplify expressions. * */ void simplify() { for (auto &s : sections) { for (auto &e : s.expressions) { bool delta = false; // first check for undefined symbols. if (e.undefined) { e.undefined = false; for (auto &t : e.stack) { if (t.tag == OP_SYM) { const auto &ss = symbols[t.section]; switch(ss.type & 0x0f) { case S_UND: e.undefined = true; break; case S_REL: t = expr{OP_LOC, ss.offset, (uint32_t)ss.section}; delta = true; break; case S_ABS: t = expr{OP_VAL, (uint32_t)ss.offset}; delta = true; break; } } } } if (e.stack.size() > 1) simplify_expression(e); } } } /* * read and process all sections... * if section > 5, remap based on name. * */ void one_module(const std::vector &data, const std::vector §ion_data, const std::vector &symbol_data) { std::array remap_section; int current_section = SECT_CODE; std::vector *data_ptr = §ions[current_section].data; std::fill(remap_section.begin(), remap_section.end(), -1); remap_section[SECT_PAGE0] = SECT_PAGE0; remap_section[SECT_CODE] = SECT_CODE; remap_section[SECT_KDATA] = SECT_KDATA; remap_section[SECT_DATA] = SECT_DATA; remap_section[SECT_UDATA] = SECT_UDATA; std::vector
local_sections = read_sections(section_data); std::vector local_symbols = read_symbols(symbol_data); // convert local sections to global for (auto &s : local_sections) { if (s.number <= SECT_UDATA) { sections[s.number].size += s.size; // for page0 / udata sections. continue; } // todo -- should install section name as global symbol? auto iter = section_map.find(s.name); if (iter == section_map.end()) { int virtual_section = sections.size(); remap_section[s.number] = virtual_section; s.number = virtual_section; sections.emplace_back(s); symbol_map.emplace(s.name, virtual_section); } else { auto &ss = sections[iter->second]; assert(ss.flags == s.flags); // check org???? remap_section[s.number] = iter->second; s.number = iter->second; // update size (for ref-only sections) ss.size += s.size; } } // convert local symbols to global. for (auto &s : local_symbols) { if (s.type == S_UND) { auto iter = symbol_map.find(s.name); if (iter == symbol_map.end()) { s.section = symbols.size(); symbol_map.emplace(s.name, s.section); undefined_symbols.emplace(s.name); } else { // already exists... const auto &ss = symbols[iter->second]; if (ss.type != S_UND) s = ss; } continue; } // remap and fudge the offset. if ((s.type & 0x0f) == S_REL) { int virtual_section = remap_section[s.section]; assert(virtual_section != -1); s.section = virtual_section; s.offset += sections[virtual_section].data.size(); } else { s.section = -1; } constexpr const unsigned mask = SF_GBL | SF_DEF; if ((s.flags & mask) == mask) { auto iter = symbol_map.find(s.name); if (iter == symbol_map.end()) { unsigned tmp = symbols.size(); symbol_map.emplace(s.name, tmp); symbols.emplace_back(s); } else { auto &ss = symbols[iter->second]; // if it was undefined, define it! if (ss.type == S_UND) { ss = s; undefined_symbols.erase(s.name); } else { // ok if symbols are identical.. if (ss.type != s.type || ss.flags != s.flags || ss.section != s.section || ss.offset != s.offset) { warnx("Duplicate label %s", s.name.c_str()); flags._errors++; } } } } } auto iter = data.begin(); for(;;) { uint8_t op = read_8(iter); if (op == REC_END) return; if (op < 0xf0) { data_ptr->insert(data_ptr->end(), iter, iter + op); iter += op; continue; } switch(op) { case REC_SPACE: { uint16_t count = read_16(iter); data_ptr->insert(data_ptr->end(), count, 0); break; } case REC_SECT: { /* switch sections */ uint8_t s = read_8(iter); current_section = remap_section[s]; assert(current_section > 0 && current_section < sections.size()); data_ptr = §ions[current_section].data; break; } case REC_ORG: { assert(!"ORG not supported."); break; } case REC_RELEXP: case REC_EXPR: { expression e; e.relative = op == REC_RELEXP; e.offset = data_ptr->size(); e.size = read_8(iter); data_ptr->insert(data_ptr->end(), e.size, 0); /**/ for(;;) { op = read_8(iter); if (op == OP_END) break; switch(op) { case OP_VAL: { uint32_t offset = read_32(iter); e.stack.emplace_back(op, offset); break; } case OP_SYM: { uint16_t symbol = read_16(iter); assert(symbol < local_symbols.size()); auto &s = local_symbols[symbol]; switch (s.type & 0x0f) { case S_UND: // S_UND indicates it's still undefined globally. e.stack.emplace_back(OP_SYM, 0, s.section); /* section is actually a symbol number */ e.undefined = true; break; case S_REL: e.stack.emplace_back(OP_LOC, s.offset, s.section); break; case S_ABS: e.stack.emplace_back(OP_VAL, s.offset); break; default: assert(!"unsupported symbol flags."); } break; } case OP_LOC: { uint8_t section = read_8(iter); uint32_t offset = read_32(iter); int real_section = remap_section[section]; assert(real_section >= 0); e.stack.emplace_back(op, offset, real_section); break; } // operations.. //unary case OP_NOT: case OP_NEG: case OP_FLP: // binary case OP_EXP: case OP_MUL: case OP_DIV: case OP_MOD: case OP_SHR: case OP_SHL: case OP_ADD: case OP_SUB: case OP_AND: case OP_OR: case OP_XOR: case OP_EQ: case OP_GT: case OP_LT: case OP_UGT: case OP_ULT: e.stack.emplace_back(op); break; default: assert(!"unsupported expression opcode."); } } sections[current_section].expressions.emplace_back(std::move(e)); break; } case REC_LINE: break; case REC_DEBUG: { uint16_t size = read_16(iter); iter += size; break; } } } } /* * n.b -- UDATA and PAGE0 are ref only, therefore no data is generated. * as a special case for UDATA (but not PAGE0) have a flag so it will be 0-filled and generate data? * */ void init() { sections.resize(5); sections[SECT_PAGE0].number = SECT_PAGE0; sections[SECT_PAGE0].flags = SEC_DATA | SEC_NONAME | SEC_DIRECT | SEC_REF_ONLY; sections[SECT_PAGE0].name = "page0"; sections[SECT_CODE].number = SECT_CODE; sections[SECT_CODE].flags = SEC_NONAME; sections[SECT_CODE].name = "code"; sections[SECT_KDATA].number = SECT_KDATA; sections[SECT_KDATA].flags = SEC_DATA | SEC_NONAME; sections[SECT_KDATA].name = "kdata"; sections[SECT_DATA].number = SECT_DATA; sections[SECT_DATA].flags = SEC_DATA | SEC_NONAME; sections[SECT_DATA].name = "data"; sections[SECT_UDATA].number = SECT_UDATA; sections[SECT_UDATA].flags = SEC_DATA | SEC_NONAME | SEC_REF_ONLY; sections[SECT_UDATA].name = "udata"; /* * For each section, [the linker] creates three symbols, * _ROM_BEG_secname, _BEG_secname and _END_secname, which * correspond to the rom location and the execution beginning * and end of the section. These will be used more in the next * two sections of code. */ // n.b - only for pre-defined sections [?], skip the _ROM_BEG_* symbols... static std::string names[] = { "_BEG_PAGE0", "_END_PAGE0", "_BEG_CODE", "_END_CODE", "_BEG_KDATA", "_END_KDATA", "_BEG_DATA", "_END_DATA", "_BEG_UDATA", "_END_UDATA", }; for (int i = 0; i < 5; ++i) { // begin is 0. symbol s; s.name = names[i * 2]; s.section = i; s.type = S_REL; s.flags = SF_DEF | SF_GBL; symbol_map.emplace(s.name, i * 2); symbols.emplace_back(s); // end is undefined... s.name = names[i * 2 + 1]; s.section = i * 2 + 1; // symbol number. s.type = S_UND; s.flags = 0; symbol_map.emplace(s.name, i * 2 + 1); symbols.emplace_back(s); } } void generate_end() { /* const std::string names[] = { "_END_PAGE0", "_END_CODE", "_END_KDATA" "_END_DATA" "_END_UDATA" }; */ for (int i = 0; i < 5; ++i) { symbol s; s.section = i; s.type = S_REL; s.flags = SF_DEF | SF_GBL; s.offset = sections[i].size; // data.size() doesn't word w/ ref_only symbols[i * 2 + 1] = s; } } std::vector omf_segments; template void append(std::vector &to, std::vector &from) { to.insert(to.end(), std::make_move_iterator(from.begin()), std::make_move_iterator(from.end()) ); } template void append(std::vector &to, const std::vector &from) { to.insert(to.end(), from.begin(), from.end() ); } template void append(std::vector &to, unsigned count, const T& value) { to.insert(to.end(), count, value ); } /* * convert a wdc expression to an omf reloc/interseg record. * */ void to_omf(const expression &e, omf::segment &seg) { if (e.stack.empty()) return; //? if (e.stack.size() == 1 && e.stack[0].tag == OP_VAL) { uint32_t value = e.stack[0].value; for(int i = 0; i < e.size; ++i, value >>= 8) seg.data[e.offset + i] = value & 0xff; return; } if (e.stack.size() == 1 && e.stack[0].tag == OP_LOC) { auto &loc = e.stack[0]; uint32_t value = loc.value; if (loc.section == 0) { warnx("Unable to relocate (invalid segment)."); flags._errors++; return; } if (loc.section == seg.segnum) { omf::reloc r; r.size = e.size; r.offset = e.offset; r.value = value; // also store value in data for (int i = 0; i < e.size; ++i, value >>= 8) seg.data[e.offset + i] = value & 0xff; seg.relocs.emplace_back(r); } else { omf::interseg r; r.size = e.size; r.offset = e.offset; r.segment = loc.section; r.segment_offset = loc.value; seg.intersegs.emplace_back(r); } return; } if (e.stack.size() == 3 && e.stack[0].tag == OP_LOC && e.stack[1].tag == OP_VAL && (e.stack[2].tag == OP_SHL || e.stack[2].tag == OP_SHR)) { auto &loc = e.stack[0]; auto &shift = e.stack[1]; auto &op = e.stack[2]; if (shift.value > 24) { warnx("shift %d", shift.value); for(int i = 0; i < e.size; ++i) seg.data[e.offset +i] = 0; return; } if (loc.section == 0) { warnx("Unable to relocate expression (invalid segment)."); flags._errors++; return; } uint32_t value = loc.value; uint8_t shift_value = shift.value; if (op.tag == OP_SHR) { value >>= shift_value; shift_value = -shift_value; } else { value <<= shift_value; } if (loc.section == seg.segnum) { omf::reloc r; r.size = e.size; r.offset = e.offset; r.value = loc.value; r.shift = shift_value; // also store value in data for (int i = 0; i < e.size; ++i, value >>= 8) seg.data[e.offset + i] = value & 0xff; seg.relocs.emplace_back(r); } else { omf::interseg r; r.size = e.size; r.offset = e.offset; r.segment = loc.section; r.segment_offset = loc.value; r.shift = shift_value; seg.intersegs.emplace_back(r); } return; } warnx("Relocation expression too complex."); flags._errors++; return; } void build_omf_segments() { std::vector< std::pair > remap; remap.resize(sections.size()); #if 0 if (!flags._X) { // create an expressload segments. // (should verify it's expressable later...) omf::segment seg; seg.segnum = omf_segments.size()+ 1; seg.kind = 0x8001; // dynamic data segment seg.segname = "~ExpressLoad"; omf_segments.emplace_back(std::move(seg)); } #endif // if data + code can fit in one bank, merge them // otherwise, merge all data sections and 1 omf segment // per code section. // code is next segment... unsigned code_segment = 0; unsigned data_segment = 0; { omf_segments.emplace_back(); auto &seg = omf_segments.back(); code_segment = data_segment = seg.segnum = omf_segments.size(); seg.kind = 0x0000; // static code segment. auto &s = sections[SECT_CODE]; remap[s.number] = std::make_pair(code_segment, 0); append(seg.data, s.data); s.data.clear(); } uint32_t total_code_size = 0; uint32_t total_data_size = 0; for (const auto &s : sections) { if (s.flags & SEC_REF_ONLY) continue; if (s.flags & SEC_DATA) { total_data_size += s.size; } else { total_code_size += s.size; } } // add in UDATA total_data_size += sections[SECT_UDATA].size; if (total_data_size + sections[SECT_CODE].size > 0xffff) { omf_segments.emplace_back(); auto &seg = omf_segments.back(); data_segment = seg.segnum = omf_segments.size(); seg.kind = 0x0001; // static data segment. } //omf::segment &code_seg = omf_segments[code_segment-1]; omf::segment &data_seg = omf_segments[data_segment-1]; // KDATA, DATA, UDATA, other segment order. for (auto &s : sections) { if (s.flags & SEC_REF_ONLY) continue; if ((s.flags & SEC_DATA) == 0) continue; remap[s.number] = std::make_pair(data_segment, data_seg.data.size()); append(data_seg.data, s.data); s.data.clear(); } // add in UDATA { auto &s = sections[SECT_UDATA]; remap[s.number] = std::make_pair(data_segment, data_seg.data.size()); append(data_seg.data, s.size, (uint8_t)0); } // for all other sections, create a new segment. for (auto &s : sections) { if (s.flags & SEC_REF_ONLY) continue; if (s.flags & SEC_DATA) continue; if (s.number == SECT_CODE) continue; omf::segment seg; seg.segnum = omf_segments.size() + 1; seg.kind = 0x0000; // static code. seg.data = std::move(s.data); seg.segname = s.name; s.data.clear(); remap[s.number] = std::make_pair(seg.segnum, 0); omf_segments.emplace_back(std::move(seg)); } // add a stack segment at the end if (flags._S) { auto &s = sections[SECT_PAGE0]; // create stack/dp segment. uint32_t size = s.size; if (size) { // ???? size = (size + 255) & ~255; omf::segment seg; seg.segnum = omf_segments.size() + 1; seg.kind = 0x12; // static dp/stack segment. seg.data.resize(size, 0); seg.loadname = "~Stack"; omf_segments.emplace_back(std::move(seg)); // remap SECT_PAGE0... remap[s.number] = std::make_pair(seg.segnum, 0); } else { warnx("page0 is 0 sized. Stack/dp segment not created."); } } // now adjust all the expressions, simplify, and convert to reloc records. for (auto &s :sections) { for (auto &e : s.expressions) { for (auto &t : e.stack) { if (t.tag == OP_LOC) { const auto &x = remap[t.section]; t.section = x.first; t.value += x.second; } } simplify_expression(e); to_omf(e, omf_segments[s.number-1]); } } // and we're done... } bool one_file(const std::string &name) { int fd = open(name.c_str(), O_RDONLY | O_BINARY); if (fd < 0) { warn("Unable to open %s", name.c_str()); return false; } bool rv = false; Header h; ssize_t ok; ok = read(fd, &h, sizeof(h)); if (ok != sizeof(h)) { warnx("Invalid object file: %s", name.c_str()); close(fd); return false; } le_to_host(h.magic); le_to_host(h.version); le_to_host(h.filetype); if (h.magic != MOD_MAGIC || h.version != MOD_VERSION || h.filetype < MOD_OBJECT || h.filetype > MOD_LIBRARY) { warnx("Invalid object file: %s", name.c_str()); close(fd); return false; } if (h.filetype == MOD_LIBRARY) { warnx("%s is a library", name.c_str()); close(fd); // todo -- add to library list... return true; } // rv = true; lseek(fd, 0, SEEK_SET); for(;;) { Mod_head h; ok = read(fd, &h, sizeof(h)); if (ok == 0) break; // eof. rv = false; if (ok < sizeof(h)) { warnx("Invalid object file: %s", name.c_str()); break; } le_to_host(h.h_magic); le_to_host(h.h_version); le_to_host(h.h_filtyp); le_to_host(h.h_namlen); le_to_host(h.h_recsize); le_to_host(h.h_secsize); le_to_host(h.h_symsize); le_to_host(h.h_optsize); le_to_host(h.h_tot_secs); le_to_host(h.h_num_secs); le_to_host(h.h_num_syms); assert(h.h_magic == MOD_MAGIC); assert(h.h_version == 1); assert(h.h_filtyp == 1); std::string module_name; { // now read the name (h_namlen includes 0 terminator.) std::vector tmp; tmp.resize(h.h_namlen); ok = read(fd, tmp.data(), h.h_namlen); if (ok != h.h_namlen) { warnx("Invalid object file: %s", name.c_str()); break; } module_name.assign(tmp.data()); } std::vector record_data; std::vector symbol_data; std::vector section_data; record_data.resize(h.h_recsize); ok = read(fd, record_data.data(), h.h_recsize); if (ok != h.h_recsize) { warnx("Truncated object file: %s", name.c_str()); break; } section_data.resize(h.h_secsize); ok = read(fd, section_data.data(), h.h_secsize); if (ok != h.h_secsize) { warnx("Truncated object file: %s", name.c_str()); break; } symbol_data.resize(h.h_symsize); ok = read(fd, symbol_data.data(), h.h_symsize); if (ok != h.h_symsize) { warnx("Truncated object file: %s", name.c_str()); break; } if (flags._v) { printf("Processing %s:%s\n", name.c_str(), module_name.c_str()); } // should probably pass in name and module.... one_module(record_data, section_data, symbol_data); rv = true; } close(fd); return rv; } void help() { exit(0); } void usage() { exit(EX_USAGE); } int main(int argc, char **argv) { std::vector _l; std::vector _L; int c; while ((c = getopt(argc, argv, "vCXL:l:o:")) != -1) { switch(c) { case 'v': flags._v = true; break; case 'X': flags._X = true; break; case 'C': flags._C = true; break; case 'o': flags._o = optarg; break; case 'l': _l.emplace_back(optarg); break; case 'L': _L.emplace_back(optarg); break; case 'h': help(); break; case ':': case '?': default: usage(); } } argc -= optind; argv += optind; if (argc == 0) usage(); init(); for (int i = 0 ; i < argc; ++i) { if (!one_file(argv[i])) flags._errors++; } // simplify(); // for each undefined, try to find it in a library... // ... except for the _BEG / _END symbols! for (const auto & s : undefined_symbols) { printf("%s\n", s.c_str()); } generate_end(); if (flags._v) { for (const auto &s : sections) { //if (s.flags & SEC_REF_ONLY) continue; printf("section %3d %-20s $%04x $%04x\n", s.number, s.name.c_str(), (uint32_t)s.data.size(), s.size); } fputs("\n", stdout); } build_omf_segments(); if (flags._v) { for (const auto &s : omf_segments) { printf("segment %3d %-20s $%04x\n", s.segnum, s.segname.c_str(), (uint32_t)s.data.size()); for (auto &r : s.relocs) { printf(" %02x %02x %06x %06x\n", r.size, r.shift, r.offset, r.value); } for (auto &r : s.intersegs) { printf(" %02x %02x %06x %02x %04x %06x\n", r.size, r.shift, r.offset, r.file, r.segment, r.segment_offset); } } } if (flags._o.empty()) flags._o = "out.omf"; void save_omf(std::vector &segments, bool expressload, const std::string &path); save_omf(omf_segments, !flags._X, flags._o); }