25.6.2016

Brutal Deluxe Software

Merlin 32

(C)2011-2015 by Antoine VIGNAU and Olivier ZARDINI

> What is Merlin 32 ?

Merlin 32 is a multi-pass Cross Assembler running under Windows, Linux and Mac OS X targeting 8 bit processors in the 6502 series (such as 6502 and 65c02) and
the 16 bit 65¢816 processor.

Itis compatible with Glen Bredon's Merlin 16+ syntax, including support for Macros, Pre-processor, Logical Expressions, Conditional Operations, Variables, Loops, Local
Labels...

It can build fixed position object code or relocatable executables (OMF v2.1) as we can find on 16 bits Apple ligs operating systems like Prodos 16 or GS/OS (S16, Exe,
CDA, NDA, FST, PIF, Library, Tool...).

Merlin 32 is part of the Brutal Deluxe's Cross Development Tools Project, a full set of utilities available on Windows (and other) platforms to enable the creation of new
Apple ligs software : 65¢816 Assembler, 65c816 Disassembler, 65¢816 Simulator, Graphic File Converter, Resource Catcher...

> About Merlin 32

The idea behind the creation of Merlin 32 was not to re-build a Merlin 16+ clone on a modern computer like a PC running Windows. Merlin 16+ is a great software
including a full screen Text Editor, an 6502 / 65c02 / 65c816 Assembler, a Linker (including OMF support for Apple ligs executable), a set of Disk Utilities (copy files,
delete files, rename files...), a Disassembler (Source Error) and much more. But Merlin 16+ is running on a single-process machine (the Apple ligs) and this is now
outdated. You can only perform one task after the other and there is no way to read / edit several source files at the same time (you have to save / close the first file before
opening the other one). The editor, tailor made for assembly language editing, is limited to 24 lines and 80 columns, in 2 colors. You have to quit the editing of a source
code to run it. And if it crash, you have to restart the operating system and restart everything (starting Merlin 16+, loading the source files...). Because of the Apple ligs
limitations, Merlin 16+ is limited (a source file can't be larger than 64 KB). There is no way to extend it while itis running inside an Apple ligs and there is no guarantee you

are not going to crash the system while you are trying to execute your code (no memory protection due to 65¢816 architecture).

It was time to provide a way to continue the Apple ligs programming with modern tools, on a modern computer. Everyone has its own habits, so there was no need to clone
the Full Text Editor. There are many very good IDE that can be used to write 65c¢816 source code (Eclipse, Visual Studio, ...). You can also use your favorite Text editor
(Emacs, PSPad, UltraEdit...) where several files can be edited together (you can copy/ paste from one to the other, split the screen to see several files on the screen atthe
same time) and the syntax highlighting helps you to read the code (one color per category of items). You can take advantage of the screen resolution (a 23" screen
provides a text editor of 55 lines and 230 columns !) and you can keep the source file opened in the editor while you are assembling / linking the program in another
window and there is no risk anymore to crash the system while trying to execute the program in the emulator (or in a real Apple ligs). The speed, even if itis not the core
argument for a cross assembler, lets you assemble large projects in few seconds, instead of minutes (if not hours) on a real Apple ligs. All the data exchanges are
simplified. You can copy/ paste source code from a Web Page or a text file and use it directly on your text editor. No need any more to convert the file into a valid Merlin 16+
format (high bit setto 1) before moving it to a disk image and use it under Merlin 16+. Because the source files are now stored on your modern computer as standard text
files, you can use Source Control utilities like SVN to share your sources, backup them and check for modifications using revision tool.

With Merlin 32, we provide the assembler and the linker to turn the source code (6502 / 65c02 / 65c816) as a binary object (fixed position or relocatable with OMF
support). All the edit job has to be done outside (with the text editor). You can assemble and link from a command window or you can use you IDE to associate the
assembling syntax to a button. You probably have to work with CADIUS, another cross-development utility, to perform some basic tasks like indenting the source code (in
the assembler style) or transferring the output of the assembly process (object code) or the source code into an Apple Il disk image (.2mg, .po...).

There are already many cross-assemblers running on Windows capable to assemble 65c¢816 source code (xa, wla dx, xasm, mads...). Most of them were used to
assemble source code targeting the Super Nintendo system (using a 65c816 like the Apple ligs) or used as extension of 6502 cross assemblers dedicated to
Commodore 64 or Atari XL computers. They could be used to assemble 65c816 code for the Apple ligs but at least two major features are always missing :

- The capability to assemble source code using Merlin 16+ syntax (directives, macro, expressions, variables...)

- The capability to build relocated object code using OMF format (Apple ligs 16 bit executables)

Merlin 16+ was one of the two most popular assemblers at the time for the Apple ligs (the other one was Orca M) and many source codes are written using Merlin 16+
syntax (like our tools & games). We do not have to be compatible with Merlin 16+ syntax just to be able to re-assemble old files. We could have done a source converter to
solve thatissue. We have to be compatible with Merlin 16+ syntax because we have to make sure that the source code used into Merlin 32 on our PC running Windows
could be sent back to the Apple ligs to be also assembled with Merlin 16+. Even if we do 90% of the job with a cross-assembler, there are always few things that requires
an Apple ligs and its development toolset to build some parts like the Resource ones (menu, icon, about...). We don't say that Merlin 32 is going to replace Merlin 16+ and
all the terrific development tools that already exist on the Apple ligs platform. We say that we can speed up the process of writing code by using 90% of the time the cross
assembler and 10% of the time the native Apple ligs tools like Merlin 16+, Genesys, Iconed, GS Bug... With OMFAnalyzer tool, you can compare the output of Merlin 16+

and the output of Merlin 32 to ensure they both have generated the same object code (fixed address or relocatable) from the same source code.

The capability to build valid OMF relocatable executable files is something that the Super Nintendo cross-assemblers can't provide. The Apple ligs is the most advanced
software environment using the 65¢816 processor and because of its operating system, it required a shared memory system capable to run several programs together in
the same memory space. This implies memory management tools, dynamic loading of files, relocatable code, etc. At the opposite, the Super Nintendo games code run in

ROM and don't have to deal with dynamic allocation or relocatable code.

Due to memory constraints, Merlin 16+ has some internal limitations :
- a Source File can't be larger to 64 KB
- a Source Line can't be larger than 255 characters
- a Label can't be larger than 26 characters
- the Operand part can't be larger than 80 characters
- the number of Externals is limited to 255
- Macros can be nested to a depth > 15

http://mww.brutaldeluxe.fr/products/crossdevtools/merlin/index html

1/29

25.6.2016 Brutal Deluxe Software

- Conditions can't be nested to a depth > 8
- Symbol table is limited to 4096 symbols of length less than 12 and 2048 symbols of length 12 or over

Merlin 32 doesn't have any of these arbitrary limits. You can write your source code as you want but if you wish one day to send back the source code to the Apple ligs and
re-assemble it with Merlin 16+, check first your source code with the list above.

> Merlin 32 output

The 65¢816 addressing space is 16 MB, divided into 256 memory Banks of 64 KB each (from 00 to FF). Bank 00 contains the Stack and the Direct Page.

111 1)1 02 03 7y E0 1 FF

0000

FFFF

63c816 Memory Banks

The PCis 16 bit, so the code execution is limited within the current bank boundary ($FFFF + 1 = $0000). If a code is bigger than 64 KB, it has to be splitinto small chunks
of code (each of them < 64 KB) and spread over the memory banks. The connection between the chunks of code from different memory banks use LONG addressing
mode instructions (LDAL, STAL, JMPL, JSL...). In the Merlin 32 documentation, we will use the word Segment to define a chunk of 65c816 object code (with a size < 64 KB)
located in one memory bank (not boundary cross). AProgram, depending on its size, can use one or several Segments.

Merlin 32 lets you build 5 types of Programs :

> SINGLE SEGMENT / FIXED ADDRESS

The source files are assembled as One Binary File and it has to be loaded at a fixed address in memory (defined by the ORG directive of the source file) :

ORG 5030800 [I]1] (L1 02 13
DSE Segl [mm]
PHE
FLB
¥BD LDAL £00C000 — m —
BPL EBD
STAL 200C010 Segl
FFFF
Source Code fssemble Program Load 63c816 Memory

> MULTI SEGMENTS / FIXED ADDRESS

The source files (one set of files per segment) are assembled as Several Binary Files (one per segment) and they have to be loaded at a fixed address in

memory (defined by the ORG directives of the source files) :

] ORG £009000 il i1 02 13
I{ DSE Segl @ [mm]
L -
CRG £020800
DSK Seg2 — m —p
1 [— eg? [sest]
1 ORG £030800
1 DSK Seq3 m FFFF
L€ o= Seq3
Source Code Assemble Program Load 65¢816 Memory

> MULTI SEGMENTS / FIXED ADDRESS / MERGED

The source files (one set of files per segment) are assembled as One or Several Binary Files (several segments may be merged into one binary file). They
have to be loaded at a fixed address in memory. If several segments are merged into one binary file, the beginning address of a segmentis set as the end
address + 1 of the previous segment. The Fixed Address of the First segment of the binary files are defined by the ORG directives of the Link file. The names

of the binaryfiles are defined by the DSK directives of the Link file :

http://mww.brutaldeluxe.fr/products/crossdevtools/merlin/index html

2/29

25.6.2016 Brutal Deluxe Software

B st] | B R
+
5992

— WultiSeg e

‘ S5egl Source Files

‘ Seg2 Source Files

[

e [
. FFFF
‘ 5eg3 Source Files 5993
Source Code fscemble Program Load 03c816 Memory

> SINGLE SEGMENT / RELOCATABLE

The source files are assembled as a Single OMF Segment file and will to be loaded by GS/OS at ANY address in memory (use of REL directive in the source

file) :
AEL o 02 M
DSK Segl I:Iﬂm]
PHE
PLB
KBD LDAL $00C000 —) % —
BPL EED
STAL £00C010 Seql
goros IEF
Source Code fscemble Program Loader 03c816 Memory

> MULTI SEGMENTS / RELOCATABLE

The source files (one set of files per segment) are assembled as a Multi-OMF Segments file and will to be loaded by GS/OS at ANY address in memory
(use of REL directive in the source files) :

L REL 0w M 02 03
i DSE Seqgl [mm]
n
k REL
DSKE Seg2 — % —
F
i — HultiSeg
: DSK Seg3 FFFF
L 65/05
Source Code Assemble Program Loader 09c816 Memory

Building a multi-segments programs (fixed address or relocatable) requires a definition file named Link File. The syntax of the Link file is described below, in the sections

named Building Multi-Segments Fixed-Address Files and Building Multi-Segments OMF Files.

The Fixed Address binary files can be used in any system using a 65¢816 processor like the Apple ligs, the SNES, the Commodore PET 65816 CPU card, the CS/A 65816
CPU board, the CMD SuperCPU...

The Relocatable Programs can only be used on an Apple ligs running GS/OS. The details about OMF Files data structure (Header + Object Code + Relocation Dictionary)
can be found in the Apple ligs GS/OS Reference book, Appendix F : Object Module Format version 2.1. You can DUMP / COMPARE OMF Files using our OMFAnalyzer
Tool.

> Command List

If you do not provide any parameter on the command line, Merlin32 displays a quick reminder of the required parameters :

C:\AppleIIgs>Merlin32.exe
Merlin32.exe v 1.0 (c) Brutal Deluxe 2011-2015
Usage : Merlin32.exe [-V] <macro_folder_path> <source_file_path>.

Syntax
Merlin32.exe [-V] <macro_folder_path> <source_file_path>

Example
Merlin32.exe -V c:\AppleIIgs\Merlin\Library c:\AppleIIgs\Source\Cogito\Cogito.s

Here are the parameters description :
- The first parameter -V (Verbose) is optional. If set, it builds a text file containing the output of the assembly process
- The second parameter (<macro_folder_path>)is the path of the Folder containing all Macro definition files (¥ .Macs.s)
- The third parameter (<source_file_path>) is the path of the Master source file (or the Link file) to be assembled

Few remarks about the parameters required on the Command Line and the software behavior :

http://mww.brutaldeluxe.fr/products/crossdevtools/merlin/index html

3/29

25.6.2016

- If the Windows File or folder paths contains Space characters, quote the path to awid conflicts (Merlin32.exe -V "c:\Users and

Brutal Deluxe Software

Settings\Merlin\Library" c:\Source\Cogito\Cogito.s).

- Any error occurring during the execution of the assembly process is immediately displayed on the screen.

- If you are transferring Source files or Macro files from a disk image or FTP server, make sure you transfer the file as a text file.

- If you are transferring Merlin source file (*.s) from a disk image, you may have to clear the high bit. You can use Cadius for that job (Cadius.exe CLEARHIGHBIT

<source_file_path>).

- If you are opening Merlin source file (*.s) from a text file or by getting the code by a copy/ paste from a web site, you may have to indent the source to make it easier to

read with a Text editor on Windows. You can use Cadius for thatjob (Cadius.exe INDENT

During the execution of the process, a progression status is displayed on the screen :

<source_file_path>).

C:\AppleIIgs\Merlin\>Merlin32.exe -V C:\AppleIIgs\Merlin\Library
C:\AppleIIgs\Source\Cogito\Cogito.s
Merlin32.exe v 1.0, (c) Brutal Deluxe 2011-2015

+ Assemble project files..

o Loading Sources files...

- Cogito.s
- Cogito.Main.s
- Cogito.Bout.s

o Loading Macro files..

- Int.Macs.s

- Locator.Macs.s
- Mem.Macs.s

- Misc.Macs.s

- Sound.Macs.s

- Tool220.Macs.s
- Util.Macs.s

Build Label table...

Build Code Line...

O 0000000000000 O0OO0OO0OO0OO0OO0OO0OO0

Build Data Line...
o Build Object Code...
+ Link project files...

Check for Err lines..

o Build OMF output file...

=> Creating OMF file

Check for duplicated Macros...
Decoding lines types...
Process local/variable Labels...
Process Asterisk lines...
Build External table...
Build Equivalence table...
Build Variable table...
Process Equivalence values...
Replace Lup with code...
Replace Macros with Code...
Process MX directives...
Process Conditional directives...

Check for duplicated Labels...

Check for unknown Source 1lines...
Check for Dum lines..
Compute Operand Code size...
Compute Operand Data size...
Compute Line address...

'"C:\AppleIIgs\Source\Cogito\Cogito'

+ Create Output Text file...

=> Creating Output file

As a result, if everything went ok, you get one binary file (fixed position object code or OMF file) and, if the -V option was enabled, a text file containing the output of the

assemblyprocess (Cogito_Output.txt):

'C:\AppleIIgs\Source\Cogito\Cogito_Output.txt"’

Line | # File
Source Code

______ U
1] 1 Cogito.s
| K o e e e —m e
2| 1 Cogito.s
| *
3| 1 Cogito.s
| * COGITO
4 | 1 Cogito.s
| *
51 1 Cogito.s
| * Brutal Deluxe
6 | 1 Cogito.s
| *
7|1 1 Cogito.s

| * Version: 2.0 du 26/08/94 *

8 | 1 Cogito.s

http://mww.brutaldeluxe.fr/products/crossdevtools/merlin/index html

| Comment
| Comment
| Comment
| Comment
| Comment
| Ccomment
| Comment

| Comment

| 11 |
| 11 |
| 11 |

| 11 |

e | o000
@ | oooo0
@ | oooo0
0 | oeo0
0 | o000
@ | o000
@ | ooo00
0 | oeo0

4/29

25.6.2016

9 | 1 Cogito.s

|

10 | 1 Cogito.s
| mx

1 | 1 Cogito.s
I

12 | 1 Cogito.s
| 1st

13 | 1 Cogito.s
| rel

14 | 1 Cogito.s
| dsk

15 | 1 Cogito.s
I

16 | 1 Cogito.s
| use

17 | 1 Cogito.s
| use

18 | 1 Cogito.s
| use

19 | 1 Cogito.s
| use

20 | 1 Cogito.s
| use

21 | 1 Cogito.s
| use

22 | 1 Cogito.s
| use

23 | 1 Cogito.s
|

24 | 1 Cogito.s
| *--- Parametres Page Zero

25 | 1 Cogito.s
|

26 | 1 Cogito.s
| Debut =

27 | 1 Cogito.s
| Arrivee =

28 | 1 Cogito.s
|

29 | 1 Cogito.s
| probDOS =

30| 1 Cogito.s
|

31 | 1 Cogito.s
| K o o o e e e e e e mmmmemmo -

32 | 1 Cogito.s
| * Initialisations d'entree

33 | 1 Cogito.s
| H o m e

34 | 1 Cogito.s
|

35 | 1 Cogito.s
| phk

36 | 1 Cogito.s
| plb

37 | 1 Cogito.s
|

38 | 1 Cogito.s
| _TLStartUp

40 | 1 Cogito.s
| LDX

41 | 1 Cogito.s
| JsL

42 | 1 Cogito.s
| pha

43 | 1 Cogito.s
| _MMStartUp

45 | 1 Cogito.s
| LDX

46 | 1 Cogito.s
| JsL

47 | 1 Cogito.s
| pla

48 | 1 Cogito.s
| sta

49 | 1 Cogito.s
| _MTStartUp

51 | 1 Cogito.s
| LDX

52 | 1 Cogito.s
| JsL

Brutal Deluxe Software

9 | Empty | 11 | | 0 | o000
10 | Directive | eo | | o | eee0
%00
11 | Empty | eo | | 0 | o000
12 | Directive | o0 | | o | o000
off
13 | Directive | o0 | | o | oo0e0
14 | Directive | eo | | 0 | o000
Cogito.1
15 | Empty | oo | | 0 | o000
16 | Directive | o0 | | o | o000
4/Int.Macs
17 | Directive | o0 | | o | ooe0
4/Locator.Macs
18 | Directive | eo | | o | eeee
4/Mem.Macs
19 | Directive | eo | | 0 | o000
4/Misc.Macs
20 | Directive | eo | | o | oee00
4/Sound.Macs
21 | Directive | o0 | | o | o000
4/Tool220.Macs
22 | Directive | o0 | | 0 | o000
4/Util.Macs
23 | Empty | oo | | 0 | o000
24 | Comment | eo | | 0 | o000
25 | Empty | eo | | e | o000
26 | Equivalence | @@ | | 0 | o000
$00
27 | Equivalence | @@ | | 0 | o000
$04
28 | Empty | o0 | | 0 | o000
29 | Equivalence | 0o | | o | ooe0
$e100a8
30 | Empty | o0 | | 0 | oeo0
31 | Comment | eo | | 0 | o000
32 | Comment | eo | | 0 | o000
33 | Comment | o0 | | 0 | ooo00
34 | Empty | o0 | | 0 | oeo0
35 | Code | o0 | | 1 | o000
36 | Code | oo | [1 | eeel
37 | Empty | eo | | e | o002
38 | Macro | o0 | | 0 | ee02
38 | Code | o0 | | 3 | 0002
#$201 ; load tool call #

38 | Code | oo | [4 | o005
$E10000 ; go to dispatcher

39 | Code | eo | | 1 | 0009
40 | Macro | o0 | | 0 | ee0A
40 | Code | oo | | 3 | ee0A
#$202 ; load tool call #

40 | Code | o0 | [4 | eeeD
$E10000 ; go to dispatcher

41 | Code | oo | | 1 | ee11
42 | Code | e0 | 2 | 3 | ee12
myID

43 | Macro | o0 | | 0 | ee1s
43 | Code | o0 | | 3 | ee15
#$203 ; load tool call #

43 | Code | o0 | | 4 | o018
$E10000 ; go to dispatcher

http://mww.brutaldeluxe.fr/products/crossdevtools/merlin/index html

4B

AB

A2

22

48

A2

22

68

8D

A2

22

o1

00

02

00

D8

03

00

02

00 E1

02

00 E1

AD

02

00 E1

5/29

25.6.2016
53

55

56

57

58

59

Cogito.s

_IMStartUp

Cogito.s

LDX

Cogito.s

JSL

Cogito.s

Cogito.s

sep

Cogito.s

ldal

Brutal Deluxe Software

44 | Macro | @0 |
44 | Code | o0 |
#$208B ;
44 | Code | eo |
$E10000 H
45 | Empty | e0 |
46 | Code | 10 |
#$20

47 | Code | 10 |
$e0c022

| 0 | eeic

| 3 | eelC : A2

load tool call #

| 4 | @@1F : 22

go to dispatcher

| o | 0023
| 2 | @023 : E2

| 4 | @025 : AF

0B 02

00 00 E1

20

22 Co EO

The output file lets you check the pre-processor job (replace Macros with code, expand Lups, resolve local labels, compute expressions...), the assembler job

(addressing mode, AXY registers size, object code, ...) and the linker job (multi-org directives, addresses to be patched for relocated code, ...).

Here is a quick explanation for the columns available in the output file :

- Line : Global line number (1 to N).

-#File Line : Source file number (>1 if several source files are involved using PUT directive) and Local source file line number.

- Line Type : Type of source code line : Empty, Comment, Directive, Equivalence, Macro, Code or Data

- MX : Size for M (Accumulator) and X (X and Y Registers).This is helpful to understand if Merlin 32 is assembling 8 bit or 16 bit code. MX values are usually
modified by MX directive or SEP / REP opcode.
- Reloc : For relocatable code, you will find here the number of bytes to be relocated and the shift operation performed on the address (>> 8, >>16...). If the label is

EXTernal to the segment, the letter Eis added in the column.

- Size : Number of bytes used to encode this line.
- Address Object Code : Address (16 bit) of the line. If the ORG directive is used, the first address starts there. If the code is relocatable (REL directive), the first
address is $0000. The bytes used to encode this line follow the address. We don't put more than 4 bytes /line.

- Source Code : The source code of the line has been processed (since we got it from source file) : Macros have been expanded, Loops has been exploded, local

Labels have been replaced by unique names, Expressions have been resolved...

If you want to be sure that the source assembled with Merlin 32 on Windows create the same binary file than Merlin 16+ on GS/OS, you can compare the two result files

with OMF Analyzer. If you are assembling a fixed position object code, use the COMPAREBIN command, if you are assembling an OMF file, use the COMPARE command.

> Merlin 32 Syntax

Because Merlin 32 uses the same syntaxthan Merlin 16+, the easiest way to learn about Merlin 32 syntaxis probably to read documentation about Merlin 16+. You can

pick up the Merlin 16+ documentation or any assembly book using Merlin 16+ syntax like Apple ligs Machine Language for Beginners written by Roger Wagner.

The section provides information on writing assembly language programs with Merlin 32. You can skip this reminder if you are already familiar with Merlin 16+.

INDENTATION

An assembly source code is organized in 4 columns :

- LABEL :

- OPCODE:

- OPERAND :
- COMMENT :

Contains the identifier name for this line. It can be the label where to branch, the name of a new Macro, the name of a Variable...

Contains the action to be performed by the line. It can be a valid 65816 opcode, a Merlin 32 Directive, the name of a Macro to call...

Contains the parameter of the OPCODE. It can be the operand of the opcode, the Macro parameters, the value of the variable...

Starts with a ; character and contains a text explaining the Line purpose.

Merlin 32 is case sensitive for Labels, Macros, Operand values, Variables, Equates... You can write either LDA or Lda for opcode but PushLong and

pushlong are notthe same Macro !

We can use blank characters (SPACEs or TABs) to define the beginning / end of a column.

LABEL

proDOS

memERR

memERR1

OPCODE

mx
use

phk
plb

clc
xce
rep

bcs

rts

PushWord
PushLong
PushLong
PushLong
PushLong

http://mww.brutaldeluxe.fr/products/crossdevtools/merlin/index html

OPERAND

%00

4/Int.Macs

$e100a8

#$30

memERR1

#0

#memSTR1
#memSTR2
#proSTR3
#proSTR4

COMMENT

; Memory Error

6/29

25.6.2016

memERR2

prokill

Brutal Deluxe Software

_TLTextMount

pla

jmp initOFF

dw 1

adrl pTEMP ; Pathname

Do not bother with indentation when you write your code in a Windows Text editor. Just add few Spaces or Tabs to separate columns. Once the lines have

been written (or copy/ pasted from another location), use CADIUS to indent automatically your source code :

CADIUS.exe

INDENT

<source_file_path>

After processing, the code is easier to read :

SOURIS LDA BOUT ; ANCIEN BOUT=NOUVEAU BOUT SOURIS LDA
STA BOUT1 STA
SOURIS@ JSR SLECT ; LECTURE SOURIS SOURISO JSR
CPY #$FFFF CPY
BEQ SECR DONNEES NON DISPONIBLES BEQ
SOURIS1 LDA Al ; Al POSITION ACTUELLE SOURIS1 LDA
STA AP ; AP ANCIENNE POSITION STA
LDA POSX LDA
LSR LSR
STA SOURIS2+1 STA
LDA POSY LDA
ASL ASL
TAX TAX
LDA TABLE,X LDA
CLC CLC
SOURIS2 ADC #$0000 ; CALCUL DE Al (160*POSY+POSX) SOURIS2 ADC

BOUT
BOUT1

SLECT
#$FFFF
SECR

Al
AP
POSX
SOURIS2+1
POSY
TABLE, X

#$0000

Repeat the indent process as manytimes as you need.

COMMENT

Avalid comment line starts with a * ora ; character. Acommentline is never indented and does not have to enter into the LABEL / OPCODE / OPERAND /

COMMENT scheme. If the line contains only blank characters like SPACEs or TABs, the line is considered as empty. If the first valid (non blank) character of

the line is a ; with some blank characters before, the line is indented and the content s transferred in the COMMENT column.

; _FreeMem

okIT2

OPCODE

; Memory Allocation
PushLong #0 ; Ask for Shadowing
PushLong #$8000
PushWord myID

You can use all the 65¢816 opcodes, with the following standard mnemonics :

ADC AND
BCC BLT
CLC CLD
DEC DEX
EOR

INC INX
JMP JML
LDA LDX
MVN MVP
NOP

ORA

PEA PEI
REP ROL
SBC SEC
TAX TAY
WAI WDM
XBA XCE

ASL
BCS
CLI
DEY

INY
JSR
LDY

PER
ROR
SED
TCD

BGE
CLV

JSL
LSR

PHA
RTI
SEI
TCS

BEQ BIT BMI BNE BPL BRA BRK BRL BVC BVS
CMP COP CPX CPY

PHB PHD PHK PHP PHX PHY PLA PLB PLD PLP PLX PLY
RTL RTS

SEP STA STP STX STY STZ

TDC TRB TSB TSC TSX TXA TXS TXY TYA TYX

Opcodes modifying the Accumulator such as ASL, LSR, DEC and INC have no operand value. Write them ASL, notASL A.

For Long addressing modes (24 bits address), you can add a L character at the end of the mnemonic :

ADCL SBCL
ANDL EORL ORAL

CMPL

LDAL STAL

JMPL

http://mww.brutaldeluxe.fr/products/crossdevtools/merlin/index html

7129

Brutal Deluxe Software

If you want to use alternate opcodes such as BGE (=BCS) or BLT (=BCC), you can easily define them as Macros.

ADDRESSING MODE

Merlin 32 handles all the 65c816 addressing modes, with the following syntax :

ASL ; A Implicit

LDA #$2000 ; #const Immediate

LDA $C000 ; addr2 Absolute

LDA ($2000,X) ; (addr2,X) Absolute Indexed,X Indirect

LDA $2000, X ; addr2,X Absolute Indexed,X

LDA $2000,Y ; addr2,Y Absolute Indexed,Y

LDA ($2000) ; (addr2) Absolute Indirect

LDA [$2000] ;5 [addr2] Absolute Indirect Long

LDAL $E12000 ; addr3 Absolute Long

LDAL $E12000,X ; addr3,X Absolute Long Indexed,X

LDA $10 ; dp Direct Page

LDA $10,X ; dp,X Direct Page Indexed,X

LDA $10,Y ; dp,Y Direct Page Indexed,Y

LDA ($10) 5 (dp) Direct Page Indirect

LDA [$10] ;5 [dp] Direct Page Indirect Long

LDA (%$10,X) 5 (dp,X) Direct Page Indexed Indirect,X
LDA ($10),Y 5 (dp),Y Direct Page Indirect Indexed,Y
LDA [$10],Y ;5 [dpl,Y Direct Page Indirect Long Indexed,Y
BEQ LABEL ; relativel Program Counter Relative

BRL LABEL ; relative2 Program Counter Relative Long
LDA ($10,S),Y ; (sr,S),Y Stack Relative Indirect Indexed,Y
LDA $10,S ; sr,S Stack Relative

PEA $1010 ; #const Stack Immediate

PEI (%$10) ;5 (dp) Stack Direct Page Indirect

PER $2000 ; #const Stack Program Counter Relative Long

By convention, some Opcodes like PEA or PER receive addresses (starting with $) as Operand even if it should be constants (PEA $AQA® stores at the top
of the stack the constant value #$A0A®, not the value found at address $A0AR).

The purpose of the Merlin 32 syntaxis to remove any ambiguity regarding what the assembly process is supposed to build as output code.
For example, such code is not very clear :
LDA 0 HEEEEd

Do we want to load the constant Zero in the accumulator (8 or 16 bit ?) or do we want to load the value located at address 0 (but s it Page Direct $00,
Current Bank address $0000 or Long address $00/0000 ?).

The first thing is to tell the difference between Data and Address. Data Operand starts with a # while Address is everything else (numeric value, Label...) :

LDA #0 ; Data (Decimal)

LDA #$2000 ; Data (Hexadecimal)

LDA #%11110000 ; Data (Binary)

LDA %] ; Address (Decimal)

LDA $2000 ; Address (Hexadecimal)

LDA %00100000 ; Address (Binary)

LDA LABEL ; Address (Label)

LDA LABEL+2 ; Address (Expression with Label)

The onlytimes where Operands could be Data without using the # as leading character is when we build expressions with an even number of Labels. For

example, we compute here the number of bytes between two Labels :

LDA END-BEGIN ; Data (Number of bytes between the two labels)
Forimmediate addressing modes (Operand is a Data), we have to figure out if the Operand is 8 bit or 16 bit. The following code :

LDA #1 ; Store 1 into the accumulator

could be assembled as :

| MX | Reloc | Size | Address Object Code| Source Code

e +------ R e T B e
| 11 | | 2 | 8000 : A9 01 | LDA #1 ; A is 8
bit (M=1)

or
e e F---m-- R B e e

| MX | Reloc | Size | Address Object Code| Source Code

http://mww.brutaldeluxe.fr/products/crossdevtools/merlin/index html

8/29

25.6.2016

| ee | I
bit (M=0)

Brutal Deluxe Software

3 | 8eoee A9 01 @0

Merlin 32 keeps the status of the M (Accumulator) and X (Xand Y registers) bits of the State Register for each line of the source code. In the Output text file,
you can see them in the MX column (0=16 bit, 1= 8 bit). The choice between 8 or 16 bit for Data Operand is based on the MX values. You can set the value of
the MXbits using the MX directive in the source code. The MX directive use as Operand a value between 0 and 3, usually display using Binary format (%00,

%01, %10 or %11) :

| MX | Reloc | Size | Address Object Code]

Source Code

Assemble next lines with M and X in 16 bit

| ee | I
bit (M=0)

3 | 8seee A9 01 @0

; Assemble next lines with M and X in 8 bit

| 11 | I
bit (M=1)

2 | 8ee3 A9 o1

LDA

MX

LDA

%00 H

#1 ; A is 16
%11

#1 ; A is 8

Merlin 32 , furthermore, analyzes the Source Code for SEP or REP Opcodes and change the MX values based on the Operand value :

| MX | Reloc | Size | Address Object Code]|

and X bits from Status Register in 16 bit

| ee | |
bit (M=0)

B R T T +
2 | sooe C2 30
3 | 8002 A9 01 o0
2 | 8sees E2 30

and X bits from Status Register in 8 bit

| 11 | |
bit (M=1)

2 | 8007 : A9 01

Source Code

SEP

LDA

#$30 ; Force M
#1 ; A is 16
#$30 ; Force M
#1 ; A is 8

Unlike the REP and SEP Opcodes, the MX directive doesn't change anything for code execution, it onlyimpacts the assembly process.Up to you to control

that 16 bitassembled code is called with 16 bitaccumulator & registers.

Some Operand expressions may represent values larger than the Accumulator (or Register) size. By using some operators (< > *)right after the #,

Merlin 32 lets you select the bytes(s) you wantto keep :

IMMEDIATE 8 BIT

We take only 1 byte from the Operand :

A9 00
A9 oo
A9 20
A9 E1

IMMEDIATE 16 BIT

LDA #LABEL ; with
LDA #<LABEL 5 with
LDA #>LABEL ; with
LDA #~LABEL ; with

We take 2 bytes from the Operand :

A9 00 20
A9 00 20
A9 20 E1
A9 E1 00

The PEA Opcode acts like an Immediate 16 bit Opcode, even if the Operand is seen as an address (no #) :

F4 00 20
F4 00 20
F4 20 E1
F4 E1 00

LDA #LABEL ; with
LDA #<LABEL ; with
LDA #>LABEL ; with
LDA #"LABEL 5 with

PEA LABEL ;5 with
PEA <LABEL ; with
PEA >LABEL ; with
PEA "LABEL ;5 with

LABEL
LABEL
LABEL
LABEL

LABEL
LABEL
LABEL
LABEL

LABEL
LABEL
LABEL
LABEL

= $00E12000
= $00E12000
= $00E12000
= $00E12000

= $00E12000
= $00E12000
= $00E12000
= $00E12000

= $00E12000
= $00E12000
= $00E12000
= $00E12000

When the Operand is an Address, Merlin 32 has to figure out how many bytes (between 1 and 3) is used for the address encoding :

| MX | Reloc | Size | Address Object Code]

R to-m-m- R LR +

| o0 | 2 | 80008 : A5 10 |

Page (1 byte)

| o0 | | 3 | 8002 : AD 00 (O |
(2 bytes)

| oo | | 4 | 8005 : AF 00 20 E1 |

http://mww.brutaldeluxe.fr/products/crossdevtools/merlin/index html

Source Code

$10 ; Direct
$Co00 ; Absolute

$E12000 ; Long

9/29

25.6.2016 Brutal Deluxe Software

(3 bytes)
Here is how Merlin 32 chooses among the 3 different addressing modes :

DIRECT PAGE
By default, Merlin 32 uses the Direct Page addressing mode for any Operand having a value in the range $00-$FF :

A5 10 LDA $10 ; Direct Page (1 byte)
A5 E1 LDA LABEL ; with LABEL = $E1
ABSOLUTE

The Absolute address mode is the default on for any Address other than the range $00- $FF. If the Operand is in the range $00-$FF, you can
force an Absolute addressing mode by adding any character (except L) at the end of the Opcode :

AD
AD
AD
AD
AD
AD

LONG

The Long addressing mode i

00
00
11
00
00
11

20
20
00
20
20
00

LDA
LDA
LDA:
LDA
LDA
LDA:

$E12000
$2000
$11
LABEL
LABEL
LABEL

; Use only the 2 low bytes of the address

E}
El
E}
El

E}

Force Absolute with

with LABEL
with LABEL
with LABEL

= $E12000
= $2000
= $11

s forced by adding a L character at the end of the Opcode or a > character at the beginning of the Operand :

AF 00 20 E1 LDAL $E12000 ;

AF 00 20 E1 LDAL LABEL ; with LABEL = $E12000

AF 00 20 AA LDAL LABEL ; with LABEL = $2000 ($AA is the LABEL Bank)
AF 00 00 AA LDAL LABEL 5 with LABEL = $00 ($AA is the LABEL Bank)
AF 00 20 E1 LDA >$E12000 ;

AF 00 20 E1 LDA >LABEL ; with LABEL = $E12000

AF 00 20 AA LDA >LABEL ; with LABEL = $2000 ($AA is the LABEL Bank)
AF 00 00 AA LDA >LABEL ; with LABEL = $00 ($AA is the LABEL Bank)

NUMBER

You can use decimal, hexadecimal or binary numerical data :
- Hexadecimal numbers start with a $: $£12000, $60A0, $BD
- Binary numbers start with a % and can use _ as visual separator : 401100101, %0000_1111_0000_1111
- Decimal numbers don't use any specific prefix: 15, 635, 32768

For opcodes accepting both data and addresses, you have to use the # as first character in the operand, in order to specify a data value :

A9 Ao 00
AD 00 20

LDA #$00A0
LDA $2000

; Load a 16 bit constant numeric data 160 ($A0) in the accumulator.

; Load value stored at address $2000 in the accumulator.

For opcodes accepting only one type of operand (data or address) such as REP, PEA, JSR, MVN, STA... you don't need to add the # but is it always a good
idea to insertitwhen data is involved (REP, SEP, PEA...).

STRING
The Apple ligs recognizes only the following characters (the first one is the Space character) :

xR
-h T

!
@ A B
T ab

0O
Q O w»
™ m
> I~
He -~
ooa x
~ = +
=

M N
m n

o O~
T U ®
Q O R
SN
nw unw
A -
cCcuw
< <o
= =
X X o0
< < v
N N .
A
— A

G
g
Astring is a set of ASCII characters enclosed by quotes (') or double quotes (") :

48 65 6C 6C 6F
C8 E5 EC EC EF

ASC
ASC

'Hello' ; Using simple quote, the high bit is setto 0 (standard ASCII)

"Hello" ; Using double quotes, the high bit is set to 1 (for Text Screen encoding)

You can encode any ASClI character in a string by inserting before /in the middle / after the Hexadecimal value of the character(s) :

ErrorMsgload ASC ‘'Can',27,'t load file !’ ; Can'tload file, $27 is the hexadecimal value for'

DATA STORAGE

There are many pseudo opcodes used to define Data Storage (tables...).

HEX define HEXadecimal data
00 01 02 03 HEX 00010203
00 01 02 03 HEX ©0,01,02,03
00 01 02 03 HEX ©0001,0203

The operand consists of hexadecimal numbers (0-F) having even number of Hex digits (so OF, not F). They may be separated by commas or may

be adjacent. The $ is notrequired here.

http://mww.brutaldeluxe.fr/products/crossdevtools/merlin/index html 10/29

25.6.2016 Brutal Deluxe Software

DFB or DB DeFine Byte

OA OB OF OF DFB $0A,$0B,14,%0000_1111
EE DFB LAB+2 ; LAB Address is $FDEC, so LAB+2=$FD EE
FD DFB >LAB ; LAB Address is $ FD EC

The operand consists of several bytes of data, separated by commas. It accepts all kinds of numeric formats (decimal, $hexadecimal and %binary)

and arithmetic expressions. The low byte of the expression is always taken, except if you use the > sign (get high byte).
DDB Define Double Byte

00 OA 00 OE DDB $000A,14
FD EC FD EE DDB LAB, LAB+2 ; LAB Address is $FDEC, so LAB+2=$FDEE

The operand consists of several two-byte of data, separated by commas. It accepts all kind of numeric formats (decimal, $hexadecimal and

%binary) and arithmetic expressions. The bytes are placed high-byte first.
DA or DW Define Address or Define Word

OA 00 OE 00 DA $000A, 14
EC FD EE FD DA LAB, LAB+2 ; LAB Address is $FDEC, so LAB+2=$FDEE

The operand consists of several two-byte of data, separated by commas. It accepts all kind of numeric formats (decimal, $hexadecimal and

%binary) and arithmetic expressions. The bytes are placed low-byte first.
ADR Define ADdRess - 3 bytes

OA 00 00 ADR $0A
00 20 E1 ADR SCREEN ; SCREEN Address is $E1/2000

The operand consists of several three-byte of data, separated by commas. It accepts all kind of numeric formats (decimal, $hexadecimal and

%binary) and arithmetic expressions. The bytes are placed low-byte first.
ADRL Define Long ADdRess - 4 bytes

OA 00 00 00 ADRL $0A
00 20 E1 00 ADRL SCREEN ; SCREEN Address is $E1/2000

The operand consists of several four-byte of data, separated by commas. It accepts all kind of numeric formats (decimal, $hexadecimal and

%binary) and arithmetic expressions. The bytes are placed low-byte first.

DS Define Storage

00 00 00 00 00 00 00 00 DS 8 ; Reserve 8 byte of data, filled with oxee
EE EE EE EE EE EE EE EE DS 8, $EE ; Reserve 8 byte of data, filled with OxFF
Ao AQ A0 ... DS \,$A0 ; Fill memory with O0xA@ values until the next memory page

Reserve space for Operand bytes of data (set to 0x00). You can choose to fill the reserved space with values other than 0x00 by providing a value

(or an expression) as second operand. If you use the keyword \ as first operand, the memory s filled until the next page boundary. On relocatable

code, the DS \ should only be used at the end of the file.

ASC define ASCii text

48 65 6C 6C 6F ASC 'Hello' ; Using simple quote, the high bit 1is
set to o
C8 E5 EC EC EF ASC "Hello" ; Using double quotes, the high bit is
set to 1

This puts a delimited ASCII string in the object code. The simple quote is standard Ascii, used in Text files, GS/OS calls, file paths....

The double quotes (high bitsetto 1) is used to display Text on Apple ligs Text Mode screen (Page 1 or 2). The valid characters for Screen display

are :

I " #¢$%& " ()*+,-./0123456789:;<=>2?
@ABCDEFGHIIJKLMNOPQRSTUVWXYZI[\NT]"_
abcdefghijklmnopgrstuvwxyzd{]|73}~1

The encoding goes from $A@ (Space)to $FF (.).
DCI Dextral Character Inverter
48 65 6C 6C EF DCI 'Hello' ; The high bit is set to 0, except for
the last character
C8 E5 EC EC 6F DCI "Hello" ; The high bit is set to 1, except for

http://mww.brutaldeluxe.fr/products/crossdevtools/merlin/index html

11/29

25.6.2016 Brutal Deluxe Software

the last character

This puts a delimited ASCII string in the object code, with the last character having the opposite high bit to the others.

INV define INVerse text

08 05 OC oC OoF INV 'HELLO' ; Inverse works only with Uppercase
characters + Special characters
08 05 OC oC OoF INV "HELLO"

This puts a delimited ASCII string in the object code, in Inverse video format. The valid characters for Inverse Video are :

@ A CDEFGHIIJKLMNOPQRSTUVRWXYZT[\N]"™_
I " #¢$%& " ()*+,-./0123456789:;<=>2?
The encoding goes from $00 (@)to $3F (?).
FLS define FLaShing text
48 65 6C 6C 6F FLS 'HELLO' ; Flashing works only with Uppercase
characters + Special characters
48 65 6C 6C 6F FLS "HELLO"

This puts a delimited ASCII string in the object code, in Flashing video format. The valid characters for Flashing Video are :

@ A CDEFGHIIJKLMNOPQRSTUVNWXYZTI[\N]"_
" # s & () *F+, - / 123456789 :;<=>27?
The encoding goes from $40 (@)to $7F (?).
REV define REVerse text
6F 6C 6C 65 48 REV ~ 'Hello' ; The high bit is set to ©
EF EC EC E5 C8 REV ~ "Hello" ; The high bit is set to 1
This puts a delimited ASCII string in the object code, in backward order.
STR define STRing with leading length byte
05 6F 6C 6C 65 48 STR 'Hello' ; The high bit is set to ©
05 EF EC EC E5 C8 STR "Hello" ; The high bit is set to 1

This puts a delimited ASCII string in the object code with leading length byte. Following hex values, if any, are not counted in the length.
STRL define Long STRing with leading length word

05 00 6F 6C 6C 65 48 STRL ‘'Hello' ; The high bit is set to ©
05 00 EF EC EC E5 C8 STRL "Hello" ; The high bit is set to 1

This puts a delimited ASCII string in the object code with leading length word. Following hex values, if any, are not counted in the length. This is

intended for use with GS/OS for Class 1 strings

LABEL
AlLabel is case sensitive and it has to be unique. Backward and forward references are allowed :

JSR GET_KEY

GET_KEY LDA $C000 ; Wait for a key
BPL GET_KEY
BIT $Co10
RTS
Alabel can't contain any characters less (in ASClI value) than the Zero (Space, !, ", #,$,%,& ', (,),* + ', -, ., /). tmustbegin with a character other

than @ to 9. If you want to keep your source code compatible with Merlin 16+, the label length can't exceed 26 characters.
Alabel can be used without any Opcode on the line. In this case it has the same address value than the nextline :

GET_KEY ; Wait for a key
LDA $C000

Labels starting with] or : characters are defined as Local Labels. Unlike Global Labels, they can be found at numerous places in the source code. Local
Labels can'tbe used inside Macros or with ENT / EXT directives. The first Label in a program can'tbe a Local Label.

Local Labels starting with] can only be used for backward branching. They always refers the closest backward local label with the same name :

LDX #$00

http://mww.brutaldeluxe.fr/products/crossdevtools/merlin/index html 12/29

25.6.2016

Brutal Deluxe Software

jLoop LDA TABLE1,X ; Line 1

BEQ NEXT

INX

BRA JLoop ; Branch to Line 1
NEXT LDY #%00
jLoop LDA TABLE2,Y ; Line 2

BEQ END

INY

BRA JLoop ; Branch to Line 2
END RTS

Local Labels starting with : can be used for backward and forward branching but their scope is limited by the two embracing Global Labels :

BEGIN CPX #$A0 ; :LOOP is defined between BEGIN and END
BEQ :LOOP
LDX #$00
:LOOP LDA TABLE1,X
BEQ END
INX
BRA :LOOP
END RTS

In the output text file created during assembling process, the Local Labels are replaced by Global Labels (using unique ids ozunid_*) to show how the
assembler has resolved the references :

LDX #$00 LDX #$00
jLoop LDA TABLE1,X ; Line 1 ozunid_1 LDA TABLE1,X

BEQ NEXT BEQ NEXT

INX INX

BRA JLoopP ; Branch to Line 1 BRA ozunid_1
NEXT LDY #$00 NEXT LDY #$00
jLoop LDA TABLE2,Y ; Line 2 ozunid_2 LDA TABLE2,Y

BEQ END BEQ END

INY INY

BRA jLoop ; Branch to Line 2 BRA ozunid_2
END RTS END RTS

E}

B}

Line

Bre

Line

Bre

EXPRESSION

Expressions are build using Data (number, label, ASCII character or current address *) combined with following Comparison / Arithmetic / Logical

Operators (lowest priority comes first) :

= > # Less_Than Equal More_Than Not_Equal
Addition Subtraction
Multiplication Integer_Division

! AND OR Exclusive_OR

- Unary_Negation

0 % + A
~

Beware about the usage of character * because itis both Data (current line address) and Operator (Multiplication).
By default, Expressions are evaluated from left to right, without caring about the operators priority :
142%*3 is evaluated as 9, not 7 (1+42*3 = 3*3 = 9)

If you want to evaluate the expression using operators priority (=algebraically), you have to enclose the expression with braces { } (parenthesis are reserved
for indirect addressing modes) :

{1+2*3} is evaluated as 7 (1+2*3 = 1+6 = 7)
Comparison operators (< = > #) return 1 for True and 0 for False.

Here are few examples of common Expressions in Merlin 32 :

1024+$FF ; 1024 plus 255 = 1279

"KM-"A"+1 ; Ascii K minus Ascii A plus 1 = $CB - $C1 + 1 = 11
LABEL+2 ; LABEL plus 2

LABEL2-LABEL1 ; LABEL2 minus LABEL1 = number of bytes between two
labels

*-2 ; Current address minus 2

#$OF&"A" ; $9F AND $C1 = $81 (Control-A)

LABEL1/LABEL2 ; © if LABEL1 < LABEL2, 1 if LABEL1 >= LABEL2

EQUIVALENCE

The EQU (EQUivalence) directive is used to define constant values for which a meaningful name is desired. Aconstantname is case sensitive and can't
startwith a] character (reserved for Variables, see below). Forward references are not allowed so define your constants before using them (most of the
time at the beginning of the program). You can either use EQU or = to define them :

HOME EQU $FC58 ; Clear Screen routine address
KDB EQU $Coo0 ; Keyboard Softswitch

http://mww.brutaldeluxe.fr/products/crossdevtools/merlin/index html

13/29

25.6.2016 Brutal Deluxe Software

PTR = * ; Current address in the assembled source
PIXEL_SIZE = 160*%200 ; (160 bytes / line) * 200 lines

SCB_SIZE = 256 ; 256 bytes (even if we only use the first 200)
PAL_SIZE = 16*16*2 ; 16 palettes of 16 colors with 2 bytes / color
SHR_SIZE = PIXEL_SIZE+PAL_SIZE+PAL_SIZE ; Total SHR Page size

The evaluation of a constant value is done at the definition time. So SHR_SIZE is properly evaluated as 32000+256+512 (=32768)and notas
160*200+256+16*16*2 (=1032704 because of left-to-right evaluation).

Constants can be used anywhere in the Operand field :

JSR HOME ; Clear Screen
WaitKey LDA KDB ; Wait for a key
BPL WaitKey

VARIABLE
AVariable name is case sensitive and always beginning with a]. Variables are mostly used in Macros and Loops. The first declaration of a Variable is used

for its initialization :
JLINE = $2000 ; First line address is $E1/2000
Itcan be redefined (=modified) as often as you need :

JLINE = JLINE+160 ; Next line
DA]LINE

Forward reference to a Variable is not allowed, so define your variables before using them.

LOOP
The LUP directive is used to repeat portions of the source code between the pseudo Opcode LUP and the --~. The number of iterations is defined by the

Operand value :

JLINE = $2000 ; Build the Table of the 200 SHR lines

LUP 200

DA JLINE ; Assembled as DA $2000,$20A0,%$2140,%$21E0...
JLINE = JLINE+$A0

A

The maximum number of iterations is $8000. The above use of incrementing variables in order to build a table will not work if used within a Macro.

If you want to use Labels in a loop, you have to use a @ character in the Label name in order build dynamic label names :

LUP 3
KBD_@ LDA $Co00
BPL KBD_@
BIT $Co10
is assembled as :
KBD_Z LDA $Co00 ; Each Label has a unique name
BPL KBD_Z
BIT $Co10
KBD_Y LDA $Co00
BPL KBD_Y
BIT $Cco10
KBD_X LDA $Co00
BPL KBD_X
BIT $Cco10

The @ is replaced by uppercase letters (Z,Y, X, ..., B ,A). The maximum iteration number is 26.

CONDITION
Conditions are used to build different code based on different situations (6502 / 65c02 processors, 8 bit/ 16 bit environments, ROM/ RAM context, Macro

inner code...). There are two ways to use conditional pseudo opcodes in Merlin 32 :

-DO ELSE FIN
-IF ELSE FIN

ELSE is optional but the FIN is mandatory. You can nest DO or IF:

DO 16_BIT ; 8 bit or 16 bit ?
A H 65c816 opcodes
ELSE

DO 6502 ; Apple IIe or IIc ?
A H 6502 opcodes
ELSE

H 65c02 opcodes
http://mww.brutaldeluxe.fr/products/crossdevtools/merlin/index html 14/29

25.6.2016

Brutal Deluxe Software

FIN
FIN

If you want to keep your source code compatible with Merlin 16+, the nest depth is limited to 8 levels.

If the expression following the DO/ IFis evaluated as True (everything but 0), the code between the DO/ IF and the ELSE (or between the DO/ IF and the FIN if

the ELSE is not there) is assembled :

DO 0 ; Turn assembly OFF

DO 1 ; Turn assembly ON

DO 16_BIT ; Turn assembly ON if 16_BIT != @
DO LABEL1/LABEL2 ; Turn assembly OFF if LABEL1<LABEL2
DO LABEL1-LABEL2 ; Turn assembly OFF if LABEL1=LABEL2

The IF ELSE FINis used to check the status of the M and X bit (size of Accumulator and X/ Y registers). Mand X bits maybe 0 (=16 bit) or 1 (=8 bit) so MX
can be 0 (%00), 1 (%01),2 (%10) or 3 (%11):

IF MX/2 ; Turn assembly ON if M is 8 bit (%00/2=0, %01/2=0, %10/2=1,
%11/2=1)

IF MX/2-1 ; Turn assembly ON if M is 16 bit (%00/2-1=-1 %01/2-1=-1
%10/2-1=0 %11/2-1=0)

IF MX&1 ; Turn assembly ON if X is 8 bit (%00&1=0 %01&1=1 %108&1=0
%1181=1)

IF MX&1-1 ; Turn assembly ON if X is 16 bit (%00&1-1=-1 %01&1-1=0
%1081-1=-1 %11&1-1=0)

IF MX/3 ; Turn assembly ON if M and X are 8 bit (%00/3=0, %01/3=0,
%10/3=0, %11/3=1)

IF MX!13/3 ; Turn assembly ON if M and X are 16 bit (%ee!3/3=1,

%01!3/3=0, %10!3/3=0, %11!3/3=0)

The IF ELSE FIN can also be used to check the value of the leading character of a variable (mostly used in Macros) :

IF "=]TEMP ; Turn assembly ON if the first character of variable]TEMP
is v
IF #, JVAR1 ; Turn assembly ON is the first character of variable]VAR1
is #

In the Operand of pseudo Opcode IF, you can use either = or , as separator between the value of the first character (comes firstin the Operand) and the

name of the Variable.

MACRO

AMacro is a user-named sequence of assemblylanguage statements. You start the definition of the Macro with a MAC pseudo Opcode and you end it with

EOM (End Of Macro) or <<< (alternate form). The name of the Macro takes place in the Label column :

WaitForKey MAC ; Define the WaitForKey Macro
WFK1 LDA $C000 ; Wait until a key is pressed
BPL WFK1
BIT $Co10
<<< ; End of Macro

In the source code, simply put the name of the Macro as Opcode to call it :

SEP #$30

WaitForKey ; Call WaitForKey Macro
REP #$30

JSR PlaySound

You can use alternate forms (PMC and >>>) to call a Macro from the source code :

PMC WaitForKey ; Call WaitForKey Macro using PMC (Put Macro Call)
>>> WaitForKey ; Call WaitForKey Macro using >>>

During assembly process, the Macro code will be inserted at the Macro call location :

SEP #$30
ozunid_1 LDA $Co00 ; Wait until a key is pressed
BPL ozunid_1
BIT $Co10
REP #$30
JSR PlaySound

Because the same Macro can be used several times in the source code, the Macro inner Labels will be replaced by unique names (ozunid_*).
In the Output text file, we let the Macro call visible in the Source Code column and we identifyitas Macroin the Line Type column:

| Line Type | MX | Reloc | Size | Address Object Code| Source
Code

http://mww.brutaldeluxe.fr/products/crossdevtools/merlin/index html

15/29

25.6.2016 Brutal Deluxe Software

Fommmm e B T to----- Fommmmm e - R R T TP
| Code | oo | | 2 | 8000 : E2 30 | SEP
#$30

| Macro | 11 | | 0 | 8000 |

WaitForKey

| Code | 11 | | 3 | 8002 : AD 00 (O | ozunid_1 LDA
$Co00 ; Wait until a key is pressed

| Code | 11 | | 2 | 8005 : 10 FB | BPL
ozunid_1

| Code | 11 | | 3 | 8007 : 2C 18 CO | BIT
$co1e

| Code | 11 | | 2 | 800A : C2 30 | REP
#$30

| Code | o0 | | 3 | 800C : 20 A2 80 | ISR
PlaySound

Forward reference to a Macro is not possible, so a Macro must be defined before itis called. Usually, you declare the Macros at the start of the source code.

You may also write the Macros in dedicated files and include such files using a USE directive :

USE Locator.Macs ; Use Macros defined in the Locator.Macs.s file
located in the Macro folder
USE 4/Mem.Macs ; Use Macros defined in the Mem.Macs.s file

located in the Macro folder

The Operand indicates the names of the Macro definition file (without the .s extension). By convention, the file name ends with . Macs butitis not mandatory.
In Merlin 16+, the Macro definition files are stored in dedicated sub-folders, so you have to enter the relative file path (4/Mem .Macs). In Merlin 32, all the
Macro definition files are stored in the Macro Folder (second parameter of the command line), so we don't need anymore the subfolder part, we just

look at the file name (for Merlin 16+ compatibility, you can let the subfolder path without anyissue, it will be ignored).

Macros can receive parameters (up to 8) referenced as Macro variables]1to]8:

WaitForKey MAC ; Define the WaitForKey Macro
WFK1 LDA $Co00 ; Wait until a key is pressed
BPL WFK1
BIT $co10
CMP 11 ; Check if the Key is the expected one
BNE WFK1
<<< ; End of Macro

In the source code, add the parameter value after the Macro name, as Operand value :

SEP #$30
WaitForKey #$95 ; Wait for -> key (right arrow)
REP #$30

If you are using PMC or >>> form, you have to group the Macro name and the parameters together in the Operand column :

SEP #$30
PMC WaitForKey,#$95 ; Wait for -> key (right arrow)
REP #$30

You can use the following characters to separate the Macro name from the parameters: . / , - (Space

If your Macro receives several parameters, you have to use the ; as separator in the call :

Move MAC ; Define the Move Macro
LDA 11
STA 12
<<< ; End of Macro
Move $00;%$02 ; Call the Move Macro with two addresses
Move #$00;%$02 ; Call the Move Macro with one constant and

one address
Move #"A"; (STRING),Y ; Call the Move Macro with one constant and an
indexed address

There is no control of the parameters value. You can put there what you want (constant, address, label, expression...). The check will be done, by the
assembly process, after the substitution.

The Macro variable]0 returns the number of variables in the parameter list of the Macro call. This lets you create Macros with flexible input using conditional
pseudo Opcodes DO, ELSEand FIN :

Pull MAC ; Define the Pull Macro
PLA
DO 10 5 If a parameter is given (]o0 != 0)

http://mww.brutaldeluxe.fr/products/crossdevtools/merlin/index html 16/29

25.6.2016 Brutal Deluxe Software

STA 11 5 Use it as target address to store the data
FIN ; End of Condition

<<< ; End of Macro

Pull ; Pull a value off the stack

Pull LABEL ; Pull a value off the stack and store it in location
LABEL

The conditional pseudo Opcodes IF, ELSE and FIN can be used to distinguish address (or Label) from constant :

PushWord MAC ; Define the PushWord Macro
IF #=]1 ; If a the first character of parameter]1 is #
(=constant)
PEA 11 5 Push the constant value on the stack with a PEA
ELSE ; Else
LDA 11 5 Load the value in the accumulator
PHA H Push the accumulator on the stack with a PHA
FIN ; End of Condition
<<< ; End of Macro

PushWord #$000 ; Push a constant value on the stack
PushWord LABEL ; Push a value stored at LABEL address on the stack

AMacro code can call another Macro. If you want to keep compatibility with Merlin 16+, the nest depth is limited to 15 levels :

MoveWord MAC ; Define the MoveWord Macro (Accumulator is 16 bit)
LDA 11
STA 12
<<< ; End of Macro

MovelLong MAC ; Define the MovelLong Macro (Accumulator is 16 bit)
MoveWord]1+2;]2+2
MoveWord]1;]2

<<< ; End of Macro

You can also nest the definition of the inner Macro (MoveWord) within the code of the calling Macro (MoveLong). The final <<< closes the two Macros

together.
MovelLong MAC ; Define the MovelLong Macro
MoveWord]1+42;]2+2
MoveWord MAC H Define the MoveWord Macro inside the MovelLong Macro
definition
LDA 11
STA 12
<<< ; End of both Macros

The MovelLong Macro is assembled as follows :

LDA 11+2 ; From MoveWord call

STA 12+2

LDA 11 ; From MoveWord definition
STA 12

ORIGIN

If your program is supposed to run from a fixed memory address, you have to use the ORG directive at the start of the source code to define the start
address. The operand may be 16 bit (for bank $00) or 24 bit :

ORG $2000 ; The program will run from bank $00, at address $2000
ORG $038000 ; The program will run from bank $03, at address $8000

If ORG directive is missing, the default start address will be $8000 in bank $00.

If your ORG operand is inferior to $0100 or inferior to $800108, the code start address will match with Direct Page (former Page Zero) and all references
from $0000 to $00FF will use Direct Page addressing mode :

ORG $0000 ; The program will run from
bank $00, at address $0000
$00/0000 : A5 03 LDA SCORE ; Beware, the Direct addressing
mode has been used here
$00/0002 : 60 RTS
$00/0003 : 00 20 SCORE HEX 0020

http://mww.brutaldeluxe.fr/products/crossdevtools/merlin/index html 17/29

25.6.2016

DISK

Brutal Deluxe Software

If your code is suppose to run from $0000 in a bank which is not bank $@0, think about giving a 24 bitaddress as Operand (ex: ORG $030000).

You can use ORG directive without Operand when several ORG are used in the source code, as a RE-ORG to re-establish the correct address pointer after a
segment of code which has a different ORG :

ORG $8000 ; This code is assembled to run
from $00/8000
$00/8000 : A9 00 20 LDA #$2000
$00/8003 : 20 AC 80 JSR SCREEN
$00/8006 : 4C oD 80 JMP NEXT
ORG $0400 ; This code is assembled to run
from $00/0400
$00/0400 : AD 00 CO LDA $Ce00
$00/0403 : 60 RTS
ORG ; RE-ORG in $00/800D
$00/800D : 8D AE 80 NEXT STA VBL

If you want to write 16 bit relocatable code, you have to use the directive REL at the start of your program :

REL ; Relocatable code for Apple
IIgs S16 executable (OMF 2.1 format)
DSK Cogito.L

$00/0000 : A9 00 20 LDA #$2000
$00/0003 : 20 AC 80 JSR SCREEN

Merlin 32 will assemble the source code from a virtual $00/0000 address (without Direct Page addressing mode usage) and the object code will be
embedded into an OMF file (release 2.1). The outputis a $16 program running under Prodos 16 or GS/OS.
The following directives are used to include external files into your project or to define the properties of the output files created by the assembly process.

The USE and PUT directives are used to insert the content of a Text file (Source or Macro) at the location of the Directive :

USE 4/Int.Macs ; Use Int.Macs.s Macro file definitions
USE 4/Locator.Macs ; Use Locator.Macs.s Macro file definitions
PUT Cogito.Main ; Insert Cogito.Main.s Source file

PUT Cogito.Bout ; Insert Cogito.Bout.s Source file

By convention, the USE directive is used to include Macros (*.Macs.s) and Equivalence files and the PUT directive is used to include Source Code files.
Because Merlin 16+ source files were limited to 64 KB, there was a need to cut a large source file into smaller ones. Such restriction doesn't exist anymore
in Merlin 32 butitis always a good idea to split your project into small independent files (Music, Graphic, Data Compression, I/O, Mouse, Joystick;

Keyboard...) so you can re-use some of the files among several projects. If you want to use your source files in Merlin 16+, keep them < 64 KB.
The PUTBIN directive is used to insert the content of a Binary file at the location of the Directive :

Logo PUTBIN Cogito.Logo ; Insert Cogito.Logo Binary file
Sound PUTBIN Cogito.Sound ; Insert Cogito.Sound Binary file

The content of the Binaryfile is transfered in the source code as Hexadecimal data :

Logo HEX 00,12,59,AE,00,11,FE,8C,A9,D4,14,87,CD,DE,9A, 6E
Sound HEX 87,E6,4A,26,41,6E,FF,AE,31,58,2A,F9,6C,D7,28,9B
End

The size of the Binary file can be computed inside the source code byusing the labels :

LogoSize EQU #Sound-#Logo
SoundSize EQU #End-#Sound

Beware, the PUTBIN directive does not existin Merlin 16+. Merlin 16+ lets you include Binaryfiles during the Link process (you have to use the LNK directive
in the Linker file).

The usage of USE and PUT / PUTBIN directives are limited to ONE source file (named Master source file) : you can'tuse PUT/PUTBIN directives within a
PUT file (same for USE directive). The Master source file contains all the USE and PUT / PUTBIN directives and this is the one we put as source file

parameter of the Merlin 32 command line.

The DSK, SAV and LNK directives are used to define the name of the output file created by the assembly process. The DSK directive is used to define the
name of the output binaryfile for the code following the DSK directive :

http://mww.brutaldeluxe.fr/products/crossdevtools/merlin/index html

18/29

25.6.2016 Brutal Deluxe Software

DSK Cogito ; Assemble the following code as 'Cogito' file
ORG $8000
LDA #$0000

while the SAV directive is used to define the name of the output binary file for the code located before the SAV directive :

ORG $8000
LDA #$0000

SAV Cogito ; Assemble the previous code as 'Cogito' file
You may encounter several DSK or SAV directives in the same source code. In this case, the assembly process will generate several output files :

DSK CogitoMain ; Assemble the following code as 'CogitoMain' file
ORG $030000
LDA #$0002

DSK CogitoAux ; Assemble the following code as 'CogitoAux' file
ORG $038000
LDX #$00A0

The LNK directive is often used for relocatable code, in association with the REL directive. In Merlin 32, it has the same behavior than the DSK directive. It is

located at the beginning of the source file :

REL ; Relocatable Code

LNK Cogito.1l ; Assemble and Link the file as a S16 program named
'Cogito’

LDA #$0002

The TYP directive is used to set the output file type (one byte : $00-$FF). It is usually associated with DSK or SAV directives :

TYP $06 ; Binary File Type
DSK Filel

Because Merlin 32 creates the output binary file on a Windows file system, there is no way to set the Prodos file type. The TYP directive will be ignored by
Merlin 32 (you can letitin the source code for Merlin 16+ compatibility purpose). If you want to set the Prodos file type, you have to set it during the transfer of
file into a Prodos disk image. If you are using CADIUS for this job, you can define the file type and the file attributes in the _FileInformation.txt file (see
CADIUS documentation for more details).

MISC
The following miscellaneous directives are not often used in Source code so we only provide here basic explanations for them. Please refer to the Merlin

16+ manual for more details.

DUM DUMmy section
DEND Dummy END

This defines a section of code that will be examined for the values of the labels but will produce no object code. The DUM directive uses as

Operand the ORG value of this section :

DUM $E12000 ; SHR Page is located in $E12000
PIXEL DFB 160*200 5 200 lines
SCB DFB 256 H 200 SCB used
PALO DFB 32 H Palette ©
PAL1 DFB 32 H Palette 1
PAL2 DFB 32 H Palette 2
DEND

LDX #$0000
LDAL PIXEL,X

DUM and DEND are often used to create a set of labels that will exist outside your program; but that your program needs to reference. Thus, the

labels and their values need to be available, but you don't want any code actually assembled for that particular part of the listing.

The DUM and DEND can be efficiently used to describe the organization of the Direct Page (list of variables) :

DUM $000000 ; Direct Page is located at $000000
UpP HEX 0000 H $00
DOWN HEX 0000 5 $02
LEFT HEX 0000 H $04
RIGHT HEX 0000 H $06
BUTTON HEX 0000 H $08

http://mww.brutaldeluxe.fr/products/crossdevtools/merlin/index html 19/29

25.6.2016

Brutal Deluxe Software

DEND

LDA LEFT ; = LDA %04
cmp #$0001

END END of source file

Tells the assembler to ignore the rest of the source code (including Labels).

CHK place a CHecKsum in object code

This places a checksum byte into object code at the location of the CHK directive. This is usually placed at the end of the program and can be used
by the program at runtime to verify the existence of an accurate image of the program in memory. The checksum is calculated with Exclusive-ORing
each successive byte with the running result. Of course, such directive can't be used with relocatable program, because the loader is patching the

program's addresses in memory at runtime.

DAT place the current DATe in object code

This places the current Date/Time (date of the build) in the object code, as a Text string (High bit Clear or Set). The Operand value (1 to 8) is used

to control the Date/Time format and the encoding :

DAT 1 ; Date Only, High Bit Set Ascii "31-
DEC-14"

DAT 2 ; Date Only, High Bit Set Ascii
"12/31/14"

DAT 3 ; Date/Time, High Bit Set Ascii : "31-
DEC-14 5:46:12 PM"

DAT 4 ; Date/Time, High Bit Set Ascii
"12/31/14 5:46:12 PM"

DAT 5 ; Date Only, High Bit Clear Ascii '31-
DEC-14"

DAT 6 ; Date Only, High Bit Clear Ascii
'12/31/14°

DAT 7 ; Date/Time, High Bit Clear Ascii : '31-
DEC-14 5:46:12 PM'

DAT 8 ; Date/Time, High Bit Clear Ascii
'12/31/14 5:46:12 PM'

ERR force ERRor

ERR will force an error during the assembly process if the expression has a non-zero value :
ERR *-1/$9600 ; Error if PC > $9600

This maybe used to ensure your program does not exceed a specific length.

> Building Multi-Segments Fixed-Address Files

Fixed-Address Binary files are used in 65¢816 based systems that do not have an Operating System providing dynamic relocation : Apple ligs running Prodos 8
or Custom OS (No Tools...), the SNES, various 65¢816 CPU boards... These binaryfiles are loaded in memory and executed at a fixed address (defined during the
assembly process). The binaryfiles contain the object code, nothing else (no header, no checksum, no padding...). If you are using an Apple ligs running GS/OS, itis more

convenient to create relocatable OMF programs (see next section).

For small projects, the programs can be smaller than 64 KB and fitin One Binaryfile. In this case, you don't need dedicated Merlin 32 syntax. Simply use the
directives ORG and DSK (or LNK) in your Master source file to build such programs. Merlin 32 takes the Master source file as parameter, loads the other source files

(inserted in the project using PUT directives) and assembles all these files as a One Fixed-Address Binary program :

Hoster

B —

fAscemble

o]

Binary
Source Files

If your target program is larger than 64 KB, it has to be splitinto several Binary Segments (each Segmentis < 64 KB) and assembled & linked together to build the Binary
files. This time, Merlin 32 takes a Link file as parameter. This Link file contains information about the several Segments (Master Source files path, Target Binary files

names...). Merlin 32 loads all the files involved in the project (Link file, Master files, extra Sources files...) and assembles all of them as Several Fixed-Address Binaryfiles :

http://mww.brutaldeluxe.fr/products/crossdevtools/merlin/index html

20/29

25.6.2016 Brutal Deluxe Software

Link File
B (]

— 5991
fissemble m
Seg?
Segment #1 Segment #2
Source Files Source Files Binary Files

The Link file formatis very close to the Source files. It uses the same Label / Opcode / Operand / Comment line structure and accept full Line Comments like in the Source

files (* and ;). The prefixis usually .S or . txt and the file is divided into several sections (one for the header + one per Binary Segment) :

K o e e e e e e m e, —r—,—,——, e, ———————— *

* COGITO *

* *

* Brutal Deluxe *

K o e e e e e e e e e e e mm e ———— - *
TYP $06 ; Binary File / Fixed Address

K o e e e e e e e m e e, e, —————— -

* Segment #1

K o e e e e e e e e e e e e e
ASM Cogito.Main.s ; Master Source File for Segment #1
SNA Main H Segment Name ('Main')

K o o e e e e e e e e e e e e

* Segment #2

K o e e e e e e e e e e e e m e — -
ASM Cogito.Aux.s ; Master Source File for Segment #2
SNA Aux ; Segment Name ('Aux')

K o e e e e e e e e e e e e e e -

The directives found in the Link file are used to define the Binary files names and the Master Source files paths.

The following directives should be found at the top of the Link file. They should not appear more than one time in the Link file (the TYP directive with value $06 is

mandatory) :
TYP : GS/OS File Type

The value mustbe $06 (Binaryfile). This one byte value specifies the Type of the file under a Prodos file system. Such value is stored in the

_FileInformation.txt file and can be used by Cadius during the transfer of the program to the disk image.
AUX : GS/OS File Auxiliary Type

This two bytes value specifies the Auxiliary Type of the file under a Prodos file system. Such value is stored in the _FileInformation.txt file and can be

used by Cadius during the transfer of the program to the disk image. The default value is $0000.

The following directives are used to define the Segments properties. They should not appear more than one time for each Segment of the Link file. The ASM directive is

mandatory, it defines the beginning of a new Segment and the end of the previous one :
ASM : Mastersource file path to be assembled
Defines the file name (or Path) of the Master source file for this Segment.
SNA : SegmentName = Binary File name

Specifies the name of the segment. If this directive is missing, the name of the segment s taken from the Operand of the DSK (or LNK) directive found in the

Master source file.

The type of the program (Binary file or other) is defined by the GS/OS file Type. Because the output of the assembly process goes to a Windows file system, there is no way
to set the file Type and AuxType. You have to set them manually while you are transferring the file back to a Prodos disk image (you can also take advantage of CADIUS
facilities with its _FileInformation.txt file).

The Source files of a Segmentin a Multi-Segment program look like the same than in Single-Segment program. They both have a ORG directive in the Master source file to
define the code as Fixed-Address. In Multi-Segments source files, you can use 2 new directives, all of them used to refer to addresses located in another Segment of the

program :
ENT: defines a label as an ENTrylabel in a REL Segment. Itis 'visible' from the other Segments of the program.
EXT: defines a label EXTernal to the current REL Segment. Itis located in another Segment of the program.

The following example shows how the source code from Segment#1 can call a sub-routine or read data located in Segment #2 :

http://mww.brutaldeluxe.fr/products/crossdevtools/merlin/index html 21/29

25.6.2016

K e e e e e e e e e, —r—,—————— - - -
ORG $030800
DSK Main.l
MX %00
WaitForKey EXT
SHRLineTab EXT
Segment
PHK
PLB
JSL WaitForKey
LDX #$0000
LOOP LDAL SHRLineTab, X
JSR ClearLine
INX
INX
CPX #400
BNE LOOP

Brutal Deluxe Software

; Fixed-Address code
; Binary File Name

; 16 bit

; Define EXTernal Labels
; located in another

; Wait for Key press

; Get Line Address

'Main'

ORG $052000
DSK Aux.1
MX %00

WaitForKey ENT

Subroutine
LDAL $00BFFF
BPL WaitForKey
STAL $00C010
RTL

SHRLineTab ENT

Table

JLINE = $2000
LUP 200
DA JLINE

$2000,$20A0,$2140,$21E0. ..
JLINE = JLINE+$A0
N

We define in the Segment #2 two global labels, WaitForKey and SHRLineTab, so they can be called from another segment of the same program. We simply add the

ENT (entry point for other segments) directive as Opcode of the Labels.

In Segment #1, where we need to refer to these Labels, we declare them as EXT (external to the current segment), at the beginning of the source code. So we can use

them anywhere in the source code of Segment #1, but always using Long addressing mode (the two segments may be located in different memory banks).

You can use EXTernal labels in expressions, but always using forward reference (EXT Label + Constant), never backward (EXT Label - Constant). You are not authorized to

build expression involving several labels, where atleast one is External (EXT Label - local Label + 2). You can use the Addressing Mode operators (< > ”)onthem :

LDAL SHRLineTab+2,X
PEA <WaitForKey
PEA "WaitForKey

Merlin 32 will assemble both segments separately and will search for EXTernal labels during the linkage (creation of several Binary files). If an EXTernal label can't be

found in the other segments of the program, an error message will be displayed and the whole assembly process will fail. You won't get the Binary files created but you will

get the output Text files (one per segment) created during the assembly step.

> Building Multi-Segments Fixed-Address Merged Files

This is about the same logic than the previous Multi-Segments Fixed-Address files except the fact than Several Segments may now be merged into One Binaryfile :

Segment #1
Source Files

Link File

File #1 File #2

Segment #3

Segment #2
Source Files Source Files

Segl EH

+
— Ceg?
fssemble HultiSeg
Segd

Binary Files

The Link file now defines the ORG Address of each Binary File and its Name (using the DSK directive) :

*

_________________________ *
COGITO
Brutal Deluxe
_________________________ *
TYP $06

http://mww.brutaldeluxe.fr/products/crossdevtools/merlin/index html

; Binary File / Fixed Address

22/29

25.6.2016 Brutal Deluxe Software

DSK MultiSeg ; File Name for File #1
ORG $000800 ; ORG Address for File #1
Foomooom- Segment #1
ASM Cogito.Main.s ; Master Source File for Segment #1
SNA Segmentl H Segment Name ('Segmentl')
e Segment #2
ASM Cogito.Aux.s ; Master Source File for Segment #2
SNA Segment2 H Segment Name ('Segment2')
K e e e e e e e e e e e e e e e
* File #2
K e e e e e e e e e, —,————— - — -
DSK Seg3 ; File Name for File #2
ORG $030300 ; ORG Address for File #2
et Segment #3
ASM Cogito.Util.s ; Master Source File for Segment #3
SNA Segment3 H Segment Name ('Segment3')
*

The directives found in the Source files (REL, ORG, DSK...) are ignored and the directives defined in the Link file take precedence. If several Segments are merged into one
binaryfiles, the ORG Address of the first segmentis defined by the ORG Directive of the Link file and the other Segments (of the same file) starts at the end of the previous
Segment (ORG Address of Segment#N = 1 + ORG Address of Segment#N-1). With one Link file, you can create as many Binary files as you want, using as many
Segments as you want (within the limit of 64 KB per Binaryfile).

The following directives should be found at the top of the Link file. They should not appear more than one time in the Link file (the TYP directive with value $06 is

mandatory) :
TYP : GS/OS File Type

The value mustbe $06 (Binary file). This one byte value specifies the Type of the file under a Prodos file system. Such value is stored in the
_FileInformation.txt file and can be used by Cadius during the transfer of the program to the disk image.

AUX : GS/OS File Auxiliary Type

This two bytes value specifies the Auxiliary Type of the file under a Prodos file system. Such value is stored in the _FileInformation.txt file and can be

used by Cadius during the transfer of the program to the disk image. The default value is $0000.

The following directives are used to define the Files properties. They should not appear more than one time for each File of the Link file. The DSK and the ORG directives
are mandatory (DSK before ORG), they define the beginning of a new File and the end of the previous one :

DSK : BinaryFile name
Defines the File Name of the Binaryfile to be created.
ORG : ORG Address of the Binaryfile

Set the ORG Address of the first Segment of the file.

The following directives are used to define the Segments properties. They should not appear more than one time for each Segment of the Link file. The ASM directive is
mandatory, it defines the beginning of a new Segment and the end of the previous one :

ASM : Master source file path to be assembled
Defines the file name (or Path) of the Master source file for this Segment.
SNA : SegmentName

Specifies the name of the segment. If this directive is missing, the name of the segment is taken from the Operand of the DSK (or LNK) directive found in the
Master source file.

In Multi-Segments source files, you can use 2 new directives, all of them used to refer to addresses located in another Segment of the program :

ENT: defines a label as an ENTrylabel in a REL Segment. Itis 'visible' from the other Segments of the program.
EXT: defines a label EXTernal to the current REL Segment. Itis located in another Segment of the program.

The following example shows how the source code from Segment #1 can call a sub-routine or read data located in Segment #2 (there is no ORG directives in the source
files because the ORG Address is set from the Link file):

http://mww.brutaldeluxe.fr/products/crossdevtools/merlin/index html

23/29

25.6.2016 Brutal Deluxe Software

K e e e e e e e e e e e e e e
* Segment #1 Master File
K e e e e e e e e e e e e e e e
MX %00 ; 16 bit
WaitForKey EXT ; Define EXTernal Labels
SHRLineTab EXT ; located in another
Segment
PHK
PLB
JSL WaitForKey ; Wait for Key press
LDX #$0000
LOOP LDAL SHRLineTab,X ; Get Line Address
JSR ClearLine
INX
INX
CPX #400
BNE LOOP

MX %00

WaitForKey ENT

Subroutine
LDAL $0OBFFF
BPL WaitForKey
STAL $00Co10
RTL

SHRLineTab ENT

Table
JLINE = $2000
LUP 200
DA JLINE
$2000,$20A0,$2140, $21E0. ..
JLINE = JLINE+$A0

A

We define in the Segment #2 two global labels, WaitForKey and SHRLineTab, so they can be called from another segment of the same program. We simply add the

ENT (entry point for other segments) directive as Opcode of the Labels.

In Segment #1, where we need to refer to these Labels, we declare them as EXT (external to the current segment), at the beginning of the source code. So we can use
them anywhere in the source code of Segment #1, but always using Long addressing mode if the two segments are not merged into the same Binaryfile (the two

segments may be located in different memory banks).

You can use EXTernal labels in expressions, but always using forward reference (EXT Label + Constant), never backward (EXT Label - Constant). You are not authorized to

build expression involving several labels, where atleastone is External (EXT Label - local Label + 2). You can use the Addressing Mode operators (< > “)on them :

LDAL SHRLineTab+2,X
PEA <WaitForKey
PEA ~WaitForKey

Merlin 32 will assemble both segments separately and will search for EXTernal labels during the linkage (creation of several Binaryfiles). If an EXTernal label can't be

found in the other segments of the program, an error message will be displayed and the whole assembly process will fail. You won't get the Binary files created but you will

get the output Text files (one per segment) created during the assembly step.

> Building Multi-Segments OMF Files

OMF files are the core of any executable code on the Apple ligs system (S16, Exe, CDA, NDA, FST, PIF, Library, Tool...). Each OMF file contains one or more segments. Each
segmentin an OMF file contains a set of records that provide relocation information and contain code or data. The System Loader loads the code parts in memory and

process the information found in the relocation dictionary to patch the addresses of the code. The code located in Segment#1 is executed. Other segments may contains

Code or Data.

For small projects, the executables can be smaller than 64 KB and fitin One-Segment OMF files. In this case, you don't need dedicated Merlin 32 syntax. Simply use the

directives REL and LNK in your Master source file to build such executables. Merlin 32 takes the Master source file as parameter, loads the other source files (inserted in

the project using PUT directives) and assembles all these files as a Single-Segment OMF program :

Hoster

B
3 Assemble Program

Source Files

If your target program is larger than 64 KB, it has to be splited into several OMF Segments (each OMF Segmentis < 64 KB) and assembled & linked together to build the

executable. This time, Merlin 32 takes a Link file as parameter. This Link file contains information about the several Segments (Master Source file path, Segment
properties, Target Program name...). Merlin 32 loads all the files involved in the project (Link file, Master files, extra Sources files...) and assembles all of them as a Multi-

Segments OMF program :

http://mww.brutaldeluxe.fr/products/crossdevtools/merlin/index html

24/29

25.6.2016 Brutal Deluxe Software

Link File
r, — %

@ Assemble Program

Segment #1 Segment #2
Source Files Source Files

The Link file formatis very close to the Source files. It uses the same Label / Opcode / Operand / Comment line structure and accept full Line Comments like in the Source

files (* and ;). The prefixis usually . S or . txt and the file is divided into several sections (one for the Program + one per OMF Segment) :

* COGITO *
* *
* Brutal Deluxe *
K o e e e e e e e e e e e e *
DSK Cogito ; Program File Name is 'Cogito’
TYP $B3 ; S16, GS/0S Application
XPL ; Add the ~ExpressLoad Segment
K o e e el e f e e e e e e e e e e e e e e e -
* Segment #1
K o e e e e e e e e e e e e e
ASM Cogito.Main.s ; Master Source File for Segment #1
DS 2] H Number of bytes of @'s to add at the end of the
Segment
KND #$1100 5 Type and Attributes ($11=Static+Bank
Relative,$00=Code)
ALI None H Boundary Alignment (None)
LNA Cogito.S16 H Load Name ('Cogito.S16')
SNA Main H Segment Name ('Main')
K o e e e e e e e e e e e e e e e e -
* Segment #2
K o e e e e e e e e e e m e — -
ASM Cogito.Aux.s ; Master Source File for Segment #2
DS 2] H Number of bytes of ©'s to add at the end of the
Segment
KND #$1100 ; Type and Attributes ($11=Static+Bank
Relative,$00=Code)
ALI None H Boundary Alignment (None)
LNA Cogito.S16 H Load Name ('Cogito.S16')
SNA Aux H Segment Name ('Aux')

The directives found in the Link file are used to define the Program file name and the OMF Segments properties. Some OMF Segment general information like NUMLEN
(length, in bytes, of a number field), VERSION (version number of the OMF), REVISION (revision number of the OMF) or NUMSEX (order of the bytes in a number field)
receive constant fixed values. There are no directive in Merlin 32 Link file to change their values. Refer to the Apple llgs GS/OS Reference book (Appendix F : Object

Module Format) for full details about data structure definitions and naming convention used in OMF Segments.

The following directives should be found at the top of the Link file. They should not appear more than one time in the Link file (the DSK directive is mandatory) :

DSK : Name of the Program file

Defines the name (or Path) of the output program file. Avalid Prodos File Name is 15 characters long (max), starts with a letter (A-Z or a-z), may contains

Numerics (0-9) or a period (.).

TYP : GS/OS File Type

This one byte value specifies the Type of the file under a Prodos file system. Such value is stored in the _FileInformation.txt file and can be used by

Cadius during the transfer of the program to the disk image. The default value is $B3 (GS/OS application).

Some common GS/OS file types related to program files are listed below :

$B2 LIB Library

$B3 S16 GS/0S or ProDOS 16 application
$B4 RTL Run-time library

$B5 EXE Shell application

$B6 PIF Permanent initialization

$B7 TIF Temporary Initialization

$B8 NDA New desk accessory

$B9 CDA Classic desk accessory

$BA TOL Tool set file

http://mww.brutaldeluxe.fr/products/crossdevtools/merlin/index html

25/29

25.6.2016

AUX

XPL

Brutal Deluxe Software

$BB DVR Apple IIgs Device Driver File
$BC LDF Generic load file
$BD FST GS/0S file system translator

: GS/OS File Auxiliary Type

This two bytes value specifies the Auxiliary Type of the file under a Prodos file system. Such value is stored in the _FileInformation.txt file and can be

used by Cadius during the transfer of the program to the disk image. The default value is $0000.

: Add ExpressLoad Segment

If set, itasks Merlin 32 to add a Segment named ~ExpressLoad atfirst position in the OMF file. This Segmentis a summary of all the following Segments
available in the OMF file. Itis used by GS/OS to speed up the load of the program.

The following directives are used to define the Segment properties. They should not appear more than one time for each Segment of the Link file. The ASM directive is

mandatory, it defines the beginning of a new Segment and the end of the previous one :

ASM

DS

KND

ALl

BSZ

ORG

. Master source file path to be assembled
Defines the file name (or Path) of the Master source file for this Segment.
:Number of zero bytes to reserve at the end of the file
Specifies the number of bytes of 0's to add to the end of the Segment. This can be used in an object Segmentinstead of a large block of zeros at the end of
a Segment.
The default value is ©.
: Type and Attributes

This two bytes value specifies the type and the attributes of the Segment. ASegment can have only one type byte but any combination of attributes.

The low byte defines the type :

$00 Code

$01 Data

$02 Jump-Table segment

$04 Pathname segment

$08 Library dictionary segment
$10 Initialization segment

$12 Direct-page/stack segment

The high byte defines the attributes list:

%0000_0001 Bit © : If 1 = Bank-relative segment

%0000 _0010 Bit 1 : If 1 = Skip segment

%0000_0100 Bit 2 : If 1 = Reload segment

%0000_1000 Bit 3 : If 1 = Absolute-bank segment
%0001_0000 Bit 4 : If @ = Can be loaded in special memory
%0010_0000 Bit 5 : If 1 = Position independent

%0100_0000 Bit 6 : If 1 = Private

%1000_0000 Bit 7 : If @ = Static, If 1 = Dynamic

The default value is #$1100 (Static+Bank Relative,Code). You can'thave more than one Jump-Table or Direct-page/stack segment per program
file.

: Boundary Alignment
Indicates the boundary on which the segment must be aligned.
The possible values are :
BANK : The segment is to be aligned on a Bank boundary ($10000)

PAGE : The segment is to be aligned on a Page boundary ($100)
NONE : No alignment is needed ($0)

The default value is NONE.
: Bank Size

Number indicating the maximum memory-bank size for then segment.

For Code segments, the value is $10000 (64 KB). For Data segments, the value is between $00 and $10000 (64 KB). Avalue of 0 indicates that the segment

can cross bank boundaries.

The default value is $10000 (64 KB) .

: Origin

Indicates the absolute address at which the segmentis to be loaded in memory.

http://mww.brutaldeluxe.fr/products/crossdevtools/merlin/index html

26/29

25.6.2016 Brutal Deluxe Software

Avalue of 0 indicates that the segmentis relocatable and can be loaded anywhere in memory.

The defaultvalue is 0.

LNA : Load Name

Specifies the name of the load segment that will contain the code generated by the linker for this segment. This is usually left empty. The maximum length is
10 bytes.

SNA : SegmentName

Specifies the name of the segment. If this directive is missing, the name of the segment s taken from the Operand of the DSK (or LNK) directive found in the

Master source file.

The type of the program (GS/OS application, Shell application, Permanent Init file, New desk accessory, Classic desk accessory, Tool setfile...) is defined by the GS/OS file
Type. Because the output of the assembly process goes to a Windows file system, there is no way to set the file Type and AuxType. You have to set them manually while
you are transfering the file back to a Prodos disk image (you can also take advantage of CADIUS facilities with its _FileInformation.txt file).

The Source files of a Segmentin a Multi-Segment program look like the same than in Single-Segment program. They both have a REL directive in the Master source file to
define the code as relocatable. In Multi-Segments source files, you can use 2 new directives, all of them used to refer to addresses located in another Segment of the

program :

ENT: defines a label as an ENTrylabel in a REL Segment. Itis 'visible' from the other Segments of the program.
EXT: defines a label EXTernal to the current REL Segment. Itis located in another Segment of the program.

The following example shows how the source code from Segment#1 can call a sub-routine or read data located in Segment #2 :

K e e e e e e r e, —,—,———————— - K o e e e e e e m e e, e, —, e, —————
* Segment #1 Master File * Segment #2 Master File
K e e e e e e e e e e e e e — - = S
REL ; The code is relocatable REL
DSK Main.1 ; Segment Name 'Main' relocatable
DSK Aux.1
MX %00 ; 16 bit
MX %00
WaitForKey EXT ; Define EXTernal Labels
SHRLineTab EXT ; located in another WaitForKey ENT
Segment Subroutine
LDAL $0OBFFF
PHK BPL WaitForKey
PLB STAL $00C010
RTL
JSL WaitForKey ; Wait for Key press
SHRLineTab ENT
LDX #$0000 Table
LOOP LDAL SHRLineTab,X ; Get Line Address JLINE = $2000
JSR ClearlLine LUP 200
INX DA JLINE
INX $2000,$20A0,$2140,$21E0. ..
CPX #400 JLINE = JLINE+$A0O
BNE LoOP --n

We define in the Segment #2 two global labels, WaitForKey and SHRLineTab, so they can be called from another segment of the same program. We simply add the

ENT (entry point for oher segments) directive as Opcode of the Labels.

In Segment #1, where we need to refer to these Labels, we declare them as EXT (external to the current segment), at the beginning of the source code. So we can use

them anywhere in the source code of Segment #1, but always using Long addressing mode (the two segments may be located in different memory banks).

You can use EXTernal labels in expressions, but always using forward reference (EXT Label + Constant), never backward (EXT Label - Constant). You are not authorized to

build expression involving several labels, where atleastone is External (EXT Label - local Label + 2). You can use the Adressing Mode operators (< > ”)on them :

LDAL SHRLineTab+2,X
PEA <WaitForKey
PEA ~WaitForKey

Merlin 32 will assemble both segments separately and will search for EXTernal labels during the linkage (creation of the multi-segments OMF file). If an EXTernal label
can't be found in the other segments of the program, an error message will be displayed and the whole assembly process will fail. You won't get the program file created

but you will get the output Text files (one per segment) created during the assembly step.

> Unsupported Merlin 16+ Commands
Even if we have tried to be as accurate as possible with Merlin 16+ syntax, there are a few commands or directives not supported (=ignored) in Merlin 32. The first set of

http://mww.brutaldeluxe.fr/products/crossdevtools/merlin/index html 27/29

25.6.2016

>F.AQ

Brutal Deluxe Software

commands which are not supported are the ones linked to the Merlin 16+ editor, the interaction during assembly or the formatting of the listing :

AST: send a line of ASTerisks

CYC: calcule and print CYCle times for the code
DAT : DATe stamp assemblylisting

EXP : macro EXPand control

KBD : define label from KeyBoarD

LST: LiSTing control

LSTDO: LiSTDO OFF areas of code
PAG: new PAGe
PAU : PAUse

SW: SWeet 16 opcodes
TTL: define TiTLe heading
SKP : SKiP lines

TR: TRuncate control

EXD: define a label as Direct Page EXternal to the current REL Segment. You can use EXT instead of EXD.

The other thing we have decided not to support are the way the string may be delimited in Merlin 16+. In Merlin 32, the two different delimiters for a string are ' (simple
quote = high bitclear) and " (double quotes = high bit set). In Merlin 16+, you can use virtually any character as delimiter. Here are few examples of valid Hello World

strings in Merlin 16+ :

-"Hello World"
- 'Hello World'
-#Hello World#
-@Hello World@
- IHello World!
- (Hello World(
-ZHello Worldz

Depending on the delimiters, the result string had the high bitclear (', (,), + and ?)orset (", #,@, !, ...). In order to simplify the reading of the source code, we have

decided to support only simple quote and double quotes as valid strings delimiters.

The last part where Merlin 32 is different from Merlin 16+ is in the format of the intermediate object files. Merlin 16+ assembles source code files (*.S) into object files
(*.L)and link them to build the final program file. Merlin 32 does everything in one operation (assemble + link), so there is no intermediate file available. Merlin 32 can't
use existing object files coming from Merlin 16+.You need to provide all the Source files to build a program file. For Multi-Segments OMF file, you will have to write a
dedicated Link file. The one previously used with LINKER.XL in Merlin 16+ can't be used with Merlin 32. Most of the Linker directives of Merlin 16+ (LKV, VER, SAV, TYP,
LIB, END, OVR...) are not supported by Merlin 32 which uses its own syntax.

The same source files are assembled without any error with Merlin 16+ but raise errors with Merlin 32. Is Merlin 32 not supposed to be fully compatible with Merlin
16+ syntax ?

Merlin 32 syntax is strict and you can face situations where Merlin 16+ lets you assemble invalid source files without displaying errors. For example, Merlin 16+
truncates the Opcodes to 3 characters. So LDAL, LDAd, LDAp end up as LDA and Merlin 16+ accept them. If you try to use invalid Opcodes such as LDAd with
Merlin 32, you get immediately an error. You can easily fix such issues by using only valid Opcodes. Other problems can occur with local Labels starting with].
Forward references to Local Labels are not authorized. A local Label starting with] has to be defined before beeing used. But Merlin 16+ won't complain if you
make a forward branching to a local label starting with] if the label is the only one of the source file. Merlin 32 is more strict and enforce the 'no forward reference'
rule, so you get an error. You can fix this issue by replacing your local label by a global Label. The same source code may be assembled in adifferent ways by
Merlin 16+ and Merlin 32 if EQU values are involved :

BIRD EQU #7
LDA BIRD
- Merlin 16+ assembles the previous source code as : LDA $7 ; Page Direct Address $07
- Merlin 32 assembles the previous source code as: LDA #7 ; Constant

Merlin 16+ evaluates the EQU very early in the assembling process and replace the value (BIRD) in the Operand with its value (7). The # is lost, so the LDA 7 is

interpreted as a LDA $7 = Direct Page. Merlin 32 evaluates the expressions at the end so the # is kept and the LDAbecomes a LDA #7 = Constant value.

As we have seen with previous examples, there are some differences that may raise errors with Merlin 32, but with light modifications (LDA #BIRD instead of LDA
BIRD), you can have a source code valid for both environments. Check also the unsupported commands list and think about the String delimiters which are more

restrictive on Merlin 32. Always use the Output file to check the object code generated by Merlin 32 from your source file.

Is the Source code of Merlin 32 available somewhere ?

The Source code is freely available in the Zip file (see download section).

Itis currently packaged as a Visual Studio 2010 Project set of files. The tool is only using C Language, so you can recompile it with any other C ANSI compiler
(gcc...).

http://mww.brutaldeluxe.fr/products/crossdevtools/merlin/index html

28/29

25.6.2016 Brutal Deluxe Software
What about a Macintosh or Linux release ?
Everything has be done to make Merlin 32 as independent as possible from the Operating System (command line utility, no Ul). The source code is written in C

Ansi and the only Operating Systems calls have been isolated in a specific file. The first release is available on Windows environment because itis the one used

to create the software.

The Macintosh and Linux ports are available as Binaryfiles (make sure to apply the chmod 755 command to tun the file as executable). If the binaryfile is not
working on your configuration, simply download gcc for Linux or Mac OS X and re-compile the project (make -f linux_makefile). The source files are available
in the Zip file and itis the same for the 3 operating systems supported (Windows / Linux/Mac OS X). The current surce files are Intel only. The PowerPC support

will be added soon.

> References

Merlin 16+ documentation by Glen Bredon, Roger Wagner Publishing

Apple ligs GS/OS Reference, Appendix F : Object Module Format version 2.1

Programming the 65816 - Including the 6502, 65C02 and 65802 by Western Design Center
Le ligs Epluché written by D.BAR, D. DELAY, Y. DURANT, J.L SCHMITT and E. WEYLAND
ORCA/M 2.0 documentation by Mike Westerfield and Phil Montoya, Byte Works Inc

> Download

Merlin 32 v1.0 for Windows 32 & 64 bits / Linux 64 bits / MacOS X 10.5 + Source Code E

© 2007-2015, Brutal Deluxe Software Contact us

http://mww.brutaldeluxe.fr/products/crossdevtools/merlin/index html 29/29

http://www.brutaldeluxe.fr/products/crossdevtools/merlin/Merlin32_v1.0.zip
mailto:info@brutaldeluxe.fr

