- Memory Usage Guide for
#LATTICE MachXO02 Devices

July 2013 Technical Note TN1201

Introduction

This technical note discusses the memory usage for the Lattice MachXO2™ PLD family. It is intended to be used
by design engineers as a guide in integrating the EBR and PFU based memories for these devices in ispLEVER®.

The architecture of these devices provides resources for memory intensive applications. The sysMEM™ Embed-
ded Block RAM (EBR) complements the distributed PFU-based memory. Single-Port RAM, Dual-Port RAM,
Pseudo Dual-Port RAM, FIFO and ROM memories can be constructed using the EBR. LUTs and PFU can imple-
ment Distributed Single-Port RAM, Dual-Port RAM and ROM.

The capabilities of the EBR Block RAM and PFU RAM are referred to as primitives and are described later in this
document. Designers can utilize the memory primitives in two ways:

¢ Via IPexpress™ — The IPexpress GUI allows users to specify the memory type and size that is required. IPex-
press takes this specification and constructs a netlist to implement the desired memory by using one or more of
the memory primitives.

* Via the PMI (Parameterizable Module Instantiation) — PMI allows experienced users to skip the graphical inter-
face and utilize the configurable memory modules on the fly from the ispLEVER Project Navigator. The parame-
ters and the control signals needed either in Verilog or VHDL can be set. The top-level design will have the
parameters defined and signals declared so the interface can automatically generate the black box during syn-
thesis.

In addition to familiar Block RAM and PFU RAM primatives, MachX02-640 and higher density devices provide a
new User Flash Memory (UFM) block, which can be used for a variety of applications including storing a portion of
the configuration image, storing and initializing EBR data, storing PROM data or as a general purpose non-volatile
user Flash memory. The UFM block connects to the device core through the embedded function block WISHBONE
interface. Designers can also access the UFM block through the JTAG, I°C and SPI interfaces of the device. The
UFM block offers the following features:

* Non-volatile storage up to 256Kbits

* Byte addressable for read access. Write access is performed in 128-byte pages.
* Program, erase, and busy signals

* Auto-increment addressing

WISHBONE interface

 External access is provided through JTAG, I°C and SPI interfaces

For more information on the UFM, please refer to TN1205, Using User Flash Memory and Hardened Control Func-
tions in MachXO2 Devices.

The remainder of this document discusses these approaches, utilizing IPexpress, PMI inference, memory modules
and memory primitives.

Memories in MachXO2 Devices

All MachXO2 devices contain an array of logic blocks called PFUs surrounded by Programmable I/O Cells (PICs).
In addition, all but the smallest MachXO2 device (MachX02-256) contain sysMEM EBR blocks. This is shown in
Figures 12-1 and 12-2.

© 2013 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

www.latticesemi.com 12-1 tn1201_01.3

www.latticesemi.com/dynamic/view_document.cfm?document_id=39086
www.latticesemi.com/dynamic/view_document.cfm?document_id=39086

= LATTICE

Memory Usage Guide
for MachXO02 Devices

Figure 12-1. Top View of the MachX02-1200 Device

sysCLOCK PLL

On-chip Configuration

Flash Memory

PIOs Arranged into
syslO Banks

Figure 12-2. Top View of the MachX02-4000 Device

sysCLOCK PLL—

On-chip Configuration
Flash Memory

PIOs Arranged int%

syslO Banks

Embedded Function
Block (EFB)

| —— User Flash Memory

(UFM)

sysMEM Embedded
Block RAM (EBR)

Programmable Function Units
with Distributed RAM (PFUs)

/

Embedded
Function Block(EFB)

—— User Flash
Memory (UFM)

sysMEM Embedded
Block RAM (EBR)

Programmable Function Units
with Distributed RAM (PFUs)

The PFU contains the building blocks for logic and Distributed RAM and ROM. Some PFUs provide the logic build-
ing blocks without the distributed RAM. This document describes the memory usage and implementation for both
Embedded Memory Blocks (EBRs) and Distributed RAM of the PFU. Refer to the MachXO2 Family Data Sheet for
details on the hardware implementation of the EBR and Distributed RAM.

Utilizing IPexpress

Designers can utilize IPexpress to easily specify a variety of memories in their designs. These modules will be con-
structed using one or more memory primitives along with general purpose routing and LUTs as required. The avail-

able primitives are:

12-2

o= LATTICE

Memory Usage Guide
for MachXO2 Devices

IPexpress Flow

For generating any of these memories, create (or open) a project for the MachXO2 devices.

From the Project Navigator, select Tools > IPexpress. Alternatively, users can also click on the IPexpress button in

Single Port RAM (RAM_DQ) — EBR based

Dual Port RAM (RAM_DP_TRUE) — EBR based

Pseudo Dual Port RAM (RAM_DP) — EBR based

Read Only Memory (ROM) — EBR based

First In First Out Memory (FIFO_DC) — EBR based

Distributed Single Port RAM (Distributed_SPRAM) — PFU based
Distributed Dual Port RAM (Distributed_DPRAM) — PFU based
Distributed ROM (Distributed_ROM) — PFU based

RAM-based Shift Register - PFU based

the toolbar when MachXO2 devices are targeted in the project.

This opens the IPexpress window as shown in Figure 12-3.

Figure 12-3. IPexpress — Main Window

The left pane of this window has the Module Tree. The EBR-based Memory Modules are under the
EBR_Components and the PFU-based Distributed Memory Modules are under Distributed_RAM as shown in

& IPexpress

File Tools Help

S8 B @ [

CEX

Marme Wersion

=4 Module
] Architecture_Modules

E Distributed SPRAM
EBR_Components

fnk RAM_DP 6.1

E RaM_DP_TRUE 71

...... I ReM_DO 71
...... ROM 5.0
..... % FIFO_DC 54
----- {nt RiAM_Based_Shift_Register 41

To generate the module or IP, enter the information in the
enabled fields (such as Project Path, File Name, etc.) and click
on the Custamize button. A dialog will open to allow
customization of the selected madule ar IP.

I []
| |

Cuztomize

_ispL

Local | g IP Server|

4 Configuration @ About|

Figure 12-3.

12-3

am Memory Usage Guide
(]] LATTI CE for MachX0O2 Devices

As an example, let us consider generating an EBR-based Pseudo Dual Port RAM of size 512x16. Select RAM_DP
under the EBR_Components. The right pane changes as shown in Figure 12-4.

Figure 12-4. Example Generating Pseudo Dual Port RAM (RAM_DP) Using IPexpress

i IPexpress |Z”E|r>—_<|
File Tools Help

S ® &% @ [

Marme Wersion

=4 Module To generate the module ar IP, enter the infarmation in the
@[] Architecture_Modules enahbled fields (such as Project Path, File Name, etc.) and click
-] Arithmetic_Modules on the Customize button. A dialog will open to allow

=4 Memory_Modules customization of the selected module or 1P
=4 Distributed_RAM

Madule Name: | RAM_DP |

Froject Path: | C:hizpTOOLSE_1hexampleshfpgatM ach=0 2vverilogh: | E]
File M ame: | ram_dp_512¢16 |
Diesign Entry: | SchematicAYHOL A |
Device Farily: | Machx02 N |
Part Mame: | LCM=02-6402E-1TG100C v |

isplLever”

~XGks

Local | 9 IP SEWET| % Configuration @ A|30Ut|

In this right pane, options like the Macro Type and Module_Name are device and selected module dependent.
These cannot be changed in IPexpress.

Users can change the directory where the generated modules will be placed by clicking the Browse button in the
Project Path.

The File Name text box allows users to specify an entity name for the module they are about to generate. Users
must provide this entity name.

Design entry, Verilog or VHDL, by default, is the same as the project type. If the project is a VHDL project, the
selected design entry option will be “VHDL”, and “Verilog-HDL” if the project type is Verilog-HDL. Schematic support
may also be selected with either HDL type.

When launched from within Project Navigator, the Device Family and Part Name pull-down menus are filled in by
default and cannot be changed by the user. However, when IPexpress is launched as a stand-alone application,
these menus allow users to select different devices within a device family, MachXO2 in this example.

When finished, click the Customize button.

This opens another window where users can customize the RAM (Figure 12-5).

12-4

am Memory Usage Guide
(]] LATTI CE for MachX0O2 Devices

Figure 12-5. Example Generating Pseudo Dual Port RAM (RAM_DP) Module Customization

I Lattice FPGA Module -- RAM_DP

Configuration l Generate Log]

RAM_DP Configuration |
= Widddress(8:0] Specify the size of the Rak_DP
e R & ddress[3:0] Fiead Port
| [15ta[15:0] Address Depth [512 [2-6553E) [rata ‘width 16 [1-25E)
= Bytekn{10] write Part
ress Dept d ata At =
WE Address Depth [512 [2-6553E) [rata ‘width 16 [1-25E)
— RdClock CI[15: 0] e
—3 RdClackEn v Provide Bpte Enables Bute Size |8 j
—» ORdClockEn [¥ Enable Output Register [¥ Enable Output ClockEn
—
Rieset Optirization " Area * Spesd
— "WiClock
e Fiezet Mode
—» WiClockEn .
Azzertion Release
E ztimated Rezource Uzage: fe Agpno £ Spno £ Agpno f¢ Spno
EBR: 1
Initialization
{* |nitialize to all 0's
" |nitialze to all 1's
" Memary File J
{+ i i
v fllow update of initialization file stored in UFK
I Enable ECC [not supported for Data “Width > £4]

Busz Ordering Style: 0 ﬂ

Big Endian [MSE:LSE] ﬂ

Generate Close ‘ Help

The left side of this window shows the block diagram of the module. The right side includes the Configuration tab
where users can choose options to customize the RAM_DP such as (e.g. specify the address port sizes and data
widths).

Users can specify the address depth and data width for the Read Port and the Write Port in the text boxes pro-
vided. In this example we are generating a Pseudo Dual Port RAM of size 512 x 16. Users can also create RAMs of
different port widths for Pseudo Dual Port and True Dual Port RAMSs.

The Input Data and the Address Control is always registered, as the hardware only supports the clocked write
operation for the EBR-based RAMs. The check box Enable Output Register inserts the output registers in the
Read Data Port, as the output registers are optional for EBR-based RAMs.

Clock Enable control is always provided for Input Data and Address signals. When Output Registers are enabled,
separate Output Clock Enables can be selected.

Users can specify the use of Byte Enables. Byte Enables can be used to mask the input data so that only specific
bytes of memory are overwritten. The unwritten bytes retain the previously written data.

12-5

am Memory Usage Guide
(]] LATTI CE for MachX0O2 Devices

The Reset Mode of the memory can be specified by the user for both assertion and release. For the synchronous
reset, the clock should be there and reset signal should satisfy setup/hold time requirements for both asserting and
deasserting edges. The write function is automatically disabled during a synchronous reset because the CS regis-
ters are reset, but the write is not disabled during an asynchronous reset operation.

The asynchronous reset can be programmed to be released (de-asserted) synchronously. As shown in Figure 12-
6, when de-asserted synchronously, the first clock edge after reset will release the internal reset to all registers that
have asynchronous reset, i.e. the data output registers, the FIFO counters and the FIFO flag registers.

Figure 12-6. Asynchronous Reset with Synchronous Release

RESET
Synchronous
Release
CLOCK / 1 —\—
L
S
L
Data Out - .
First Valid
Data
Registered %\
Data Out
Asynchronous First Valid
Assertion Data

Memory may be initialized at configuration to all 1’s or all 0’s. To maximize the number of UFM bits, initialize the
EBRs to an all 0's pattern. Initializing to an all 0’s pattern does not use up UFM bits. Users can also initialize their
memory with the contents specified in the Memory File. It is optional to provide this file for RAM; however for ROM,
the Memory File is required. These files can be of Binary, Hex or Addressed Hex format. The details of these for-
mats are discussed in the Initialization File section of this document.

Traditionally, the initialization Memory File is static and is stored in the device configuration bitstream. Alternatively,
the MachXO2 architecture allows the memory initialization data to be stored in UFM where it may be accessed
and/or dynamically modified by the user. To enable this feature, select Allow Update of initialization file stored in
UFM. For details of this feature, please refer to TN1205, Using User Flash Memory and Hardened Control Func-
tions in MachXO2 Devices.

At this point, users can click the Generate button to generate the module they have customized. A VHDL or Verilog
netlist is then generated and placed in the specified location. Users can incorporate this netlist in their designs. In
addition, an instantiation template file (*_tmpl.v or .vhd), a Lattice Parameter file (*.Ipc), a testbench template file
(tb_*_tmpl.v or .vhd), and two log files (*_generate.log, *.srp) are generated. Finally, a schematic symbol file
(*.sym) is created if Design Entry type is Schematic/VHDL or Schematic/Verilog.

Once the module is generated, user can either instantiate the *.Ipc or the Verilog-HDL/ VHDL file in top-level mod-
ule of their design.

ECC in Memory Modules

IPexpress allows users to implement Error Check Codes in the EBR-based memory modules. There is a checkbox
to enable ECC in the configuration tab for the module.

If you choose to use ECC, you will have a 2-bit error signal and the error codes are as below:

* Error[1:0] = “00” — Indicates there is no error.
e Error[1:0] = “01” — Indicates there was a 1-bit error which was fixed.

12-6

www.latticesemi.com/dynamic/view_document.cfm?document_id=39086
www.latticesemi.com/dynamic/view_document.cfm?document_id=39086

am Memory Usage Guide
(]] LATTI CE for MachX0O2 Devices

e Error[1:0] = “10” — Indicates there was a 2-bit error which cannot be corrected.
e Error[1:0] = “11” — Not used.

IP Regeneration/Modification

Sometimes it is useful to regenerate or modify a previously generated module. By regenerating a customized mod-
ule or IP you can modify any of its settings including: device type, design entry method, and any of the options spe-
cific to the module. You can also update older modules or IP to the latest version. From the IPexpress main window,
click the Regenerate button.

In the Select a Parameter File dialog box, choose the Lattice Parameter Configuration (.Ipc) file of the module or
IP you wish to regenerate, and click Open.

This opens a dialog box as shown in Figure 12-7.

Figure 12-7. Example Regenerating/Modifying IP

f5 Step 2 -- Select Target Core Version, Design Entry, and Device

Maodule Marne: | Rak_DP Macro Type: Maodule |
LPC Source File: | C:higpTOOLSE_1swexampleshfpgahb acki<0 2hvwerloghcounterhram_dp 512416 Ipc |
LPC Target File: | C:\ispTOOLS 8 1hexampleshfpoaiM achx02vernloghocounteryram_dp_512418.Ipc | E]
—Source Yalue: ~ T arget Walue:
Core Wersior; | .1 | Core Version: | .1 w |
Dresign Entry: | Yerilog HOL | Dezign Entry: |"-,-"eri||:|g HOL L¥S |
Device Farnily: | Mack=02 | Device Family: | M ack=02 “ |
Part Name: | LCMX02-5402E-1TG100C | Part Name: | LCM02-4000ZE -3B G 2560 v |
’ Mext »] ’ Cloze] ’ Help]

The Select Target Core Version, Design Entry, and Device dialog box shows the current settings for the module
or IP in the Source Value box. Make your new settings in the Target Value box.

If you want to generate a new set of files in a new location, set the location in the LPC Target File box. The base of
the .Ipc file name will be the base of all the new file names. The LPC Target File must end with a .Ipc extension.

Click Next, and proceed with module customization as before.

The various memory modules, both EBR and Distributed, are discussed in detail in the following sections.

12-7

am Memory Usage Guide
(]] LATTI CE for MachX0O2 Devices

Utilizing PMI
Parameterizable Module Instantiation (PMI) allows experienced users to skip the graphical interface and utilize the
configurable memory modules on-the-fly from the ispLEVER Project Navigator.

The necessary parameters and control signals can be set in either Verilog or VHDL. The top-level design includes
the defined memory parameters and declared signals. The interface can then automatically generate the black box
during synthesis and ispLEVER can generate the netlist on-the-fly. Lattice memories are the same as industry
standard memories, so you can get the parameters for each module from any memory-related guide, which is
available through the on-line help system.

PMI modules are instantiated the same way other modules are in your HDL. The process is similar to the process
for IPexpress with the addition of setting parameters to customize the module. The ispLEVER software provides a
template for the Verilog or VHDL instantiation command that specifies the customized module’s ports and parame-
ters. Refer to the ispLEVER online help section “Instantiating a PMI Module” for further information.

Memory Module Inference

Finally, memories may be instantiated within Verilog or VHDL modules through inference. The HDL constructs for
memory inferencing is synthesis vendor dependant. Refer to the documentation provided by the synthesis engine
vendor for correct inference constructs and attribute settings.

IPexpress Memory Modules

Single Port RAM (RAM_DQ) — EBR Based

The EBR blocks in the MachXO2 devices can be configured as Single Port RAM (RAM_DAQ). IPexpress allows
users to generate the Verilog-HDL or VHDL netlist for the memory size, as per design requirements.

IPexpress generates the memory module as shown in Figure 12-8.

Figure 12-8. Single Port Memory Module Generated by IPexpress

Clock ——»|
ClockEn ——»|
OClockEn ——»|

RAM_DQ
Reset ——»

EBR-Based Single Port —» Q
ByteEn — . Memory
WE ——»

Address ——»|

Data —»

Since the device has a number of EBR blocks, the generated module makes use of these EBR blocks, or primi-
tives, and cascades them to create the memory sizes specified by the user in the IPexpress GUI. For memory sizes
smaller than an EBR block, the module will be created in one EBR block. For memory sizes larger than one EBR
block, multiple EBR blocks can be cascaded in depth or width (as required to create these sizes).

In Single Port RAM mode, the input data and address for the ports are registered at the input of the memory array.
The output data of the memory is optionally registered at the output.

12-8

= LATTICE

Memory Usage Guide
for MachXO2 Devices

The various ports and their definitions for the Single Port Memory are listed in Table 12-1.

Table12-1. EBR-Based Single Port Memory Port Definitions

Port Name
in the Generated Module Description Active State
Clock Clock Rising Clock Edge
ClockEn' Clock Enable Active High
*OClockEn? Output Clock Enable Active High
Reset® Reset Active High
ByteEn Byte Enable Active High
WE Write Enable Active High
Address Address Bus —
Data Data In —
Q Data Out —
*ERROR Error Check Code Active High

*Denotes optional port
1. ClockEn is used as clock enab

le for all the input registers.

2. OClockEn can be used as clock enable for the optional output registers. This allows the full
pipeline of data to be output, including the last word.
3. Reset resets only the optional output registers of the RAM. It does not reset the input regis-

ters or the contents of memory.

4. ByteEn can be used to mask the input data so that only specific bytes of memory are over-

written.

The Single Port RAM (RAM_DQ) can be configured in NORMAL, READ BEFORE WRITE or WRITE THROUGH
modes. Each of these modes affects what data comes out of the port Q of the memory during the write operation

followed by the read operation at the same me

mory location.

IPexpress implements the MachXO2 Single Port RAM (RAM_DQ) using an appropriately configured DP8KC primi-

tive.

Figures 12-9 through 12-14 show the internal timing waveforms for the Single Port RAM (RAM_DQ).

Figure 12-9. Single Port RAM Timing Waveform — NORMAL Mode, Without Output Registers

Clock

R

R R R

ClockEn

tsuce_esr |7
WE /

tsuwren_esr

\\—/l/jj thwren_eBrR

j thce_esr

tSUADDRﬁEBR tHADDR’EBR
Address Add_0 ><Add_1 X ><Add_0 >< Add_1 >< ><Add_2 ><)
Data Data_0 ><Data_1 >< >< \< K >< ><)
lSUD/—\TAiEBR f t}-1DATA7EBR |
Q Invalid Data

12-9

o= LATTICE

Memory Usage Guide
for MachXO2 Devices

Figure 12-10. Single Port RAM Timing Waveform — NORMAL Mode, With Output Registers

Clock

ClockEn

WE

Address

Data

O

B

H

O

tice_esr

tsuce_esr ’

‘\—/l/j:\‘ thwRen_EsR

tsuwren_EBr

i

tHADDR_EBR

tsuabor_Esr

Add_0

Add_2

Data_0

CJ]

tsupaTa_EBR

—H

tHpATA EBR | |

Invalid Data

o)
B
]

Data_0 Data_1
tcoo_esr

Figure 12-11. Single Port RAM Timing Waveform — READ BEFORE WRITE Mode, Without Output Registers

Clock

ClockEn

WE

Address

Data

| T
s

R

R

tioe_esr

tsuwReN_EBR l/:

tsuappr_esr

il

:\‘ tHwREN_EBR

tHADDR_EBR

xwx CnECOENC
XDZ;W1X Lo X

1

L

tsubaTa_esr

tHDATA EBR

Invalid Data

Old_Data_1 >< New_Data_1 ><

1
Old_Data_0 New_Data_0 |_| _ |
| tco EBR | |

12-10

Memory Usage Guide
for MachXO2 Devices

o= LATTICE

Figure 12-12. Single Port RAM Timing Waveform — READ BEFORE WRITE Mode, With Output Registers

tsuce_een tice_esr
ClockEn
tsuwren_esr thwren_esr
WE / \
| tsuapor_esr tHADDR_EBR
Address Add_0 >< Add_0 >< >< Add_1 >< >< Add_1 >< >< Add_2 >< \
New New
Data Data_0 >< >< ><Data 1 X \< >< >< x
tsupata_eer f tHDATA_EBR | |
Q Invalid Data Old_Data_0 New_Data_0 Old_Data_1 >< o
| tcoo EBR

Figure 12-13. Single Port RAM Timing Waveform — WRITE THROUGH Mode, Without Output Registers

tsuce_esr thoe_esr

ClockEn
tsuwren_esr F——1 thHwren_esr
| tsuappr_esr thapoR_EBR
Address Add_0 K Add_1 >< >< Add_0 >< {
Data Data_0 \< Data_1 >< Data_2 >< >< Data_3 >< >< Data_4 ><)
tsubata_eeR + tHoATA EBR | |
Q Invalid Data Data_0 Data_1 Data_2 >< Data_3 >< Data_4
tco EBR

12-11

am Memory Usage Guide
(]] LATTI CE for MachX0O2 Devices

Figure 12-14. Single Port RAM Timing Waveform — WRITE THROUGH Mode, With Output Registers

B R R R

tsuce_esr tice_esr
ClockEn
T I
/ U ‘\SUWRENEBH MUU

tsuappr_esr tHADDR_EBR
Add_0 ><

el | |
S C T CO Y

Clock

WE

Address Add_0

CI

tsupaTa_esr f thpata_esR |

Q Invalid Data >< Data_0 > Data_1 >< Data_2 >< Data_3
| | | tcoo_esr | |

Dual Port RAM (RAM_DP_TRUE) — EBR Based

The EBR blocks in MachXO2 devices can be configured as True-Dual Port RAM (RAM_DP_TRUE). IPexpress
allows users to generate the Verilog-HDL or VHDL netlists for various memory sizes depending on design require-
ments.

IPexpress generates the memory module as shown in Figure 12-15.

Figure 12-15. True Dual Port Memory Module Generated by IPexpress

DatalnA ———»
DatalnB ——»
AddressA ——»
AddressB ———»|
ClockA ——»
ClockB ——»| RAM_DP_TRUE
ClockEnA ——»]
OClockEnA ——»
ClockEnB ——»
OClockEnB ——»
WrA ———»|

WrB ——»
ResetA ——»|
ResetB ——»

EBR-Based True Dual Port
Memory L » QB

Since the device has a number of EBR blocks, the generated module makes use of these EBR blocks, or primi-
tives, and cascades them to create the memory sizes specified by the user in the IPexpress GUI. For memory sizes
smaller than an EBR block, the module will be created in one EBR block. For memory sizes larger than one EBR
block, multiple EBR blocks can be cascaded in depth or width (as required to create these sizes).

In True Dual Port RAM mode, the input data and address for the ports are registered at the input of the memory
array. The output data of the memory is optionally registered at the output.

12-12

= LATTICE

Memory Usage Guide
for MachXO2 Devices

The various ports and their definitions for True Dual Port Memory are in Table 12-2.

Table12-2. EBR-Based True Dual Port Memory Port Definitions

Port Name
in the Generated Module

Description

Active State

DatalnA, DatalnB

Input Data port A and port B

AddressA, AddressB

Address Bus port A and port B

ClockA, ClockB

Clock for PortA and PortB

Rising Clock Edge

ClockEnA, ClockEnB' Clock Enables for Port CLKA and CLKB Active High
*OClockEnA, *OClockEnB? Output Clock Enables for PortA and PortB Active High
WrA, WrB Write enable port A and port B Active High
ResetA, ResetB?® Reset for PortA and PortB Active High

QA, QB Output Data port A and port B —
*ByteEnA, *ByteEnB* Byte Enable port A and port B Active High
*ERROR Error Check Code Active High

*Denotes optional port

1. ClockEnA/B are used as clock enable for all the input registers.
2. OClockENnA/B can be used as clock enable for the optional output registers. This allows the full pipeline of data to be output, includ-

ing the last word.

3. Reset resets only the optional output registers of the RAM. It does not reset the input registers or the contents of memory.
4. ByteEnA/B can be used to mask the input data so that only specific bytes of memory are overwritten.

The True Dual Port RAM (RAM_DP_TRUE) can be configured as NORMAL, READ BEFORE WRITE or WRITE
THROUGH modes. Each of these modes affects what data comes out of the port Q of the memory during the write
operation followed by the read operation at the same memory location.

IPexpress implements the MachXO2 True Dual Port RAM (RAM_DP_TRUE) using the DP8KC primitive.

Figures 12-16 through 12-21 show the internal timing waveforms for the True Dual Port RAM (RAM_DP_TRUE).

12-13

o= LATTICE

Memory Usage Guide
for MachXO2 Devices

Figure 12-16. True Dual Port RAM Timing Waveform — NORMAL Mode, without Output Registers

ClockA

ClockEnA

WrA

AddressA

DataA

QA

ClockB

ClockEnB

WrB

AddressB

DataB

QB

o

B

o

o

thoe_Esr

T
T

tsuwRen_esr

tsuappr_EBR

M

j tHwReN_eBR

Add_

A0

tHaDDR_EBR
>< Add

_A1

= x

o]

e

Data_.

A0

>< Data

A
“X X

)

i

1

)

A

tsupaTa_EBR 1

tHDATA_EBR

Invalid Data

Data_A2

<

L

tsuce_esr

—

L

B

Data_A0 >< Data_A1
too_esn

O

thee_EsR

—/\\T

thwren_esr

TH

tsuappR_EBR tHADDR EBR
Add_BO Add B1 >< >< Add_BO >< >< Add_B1 \< X Add_B2 X {
Data_BO ><Da(a B1 >< X \< X X (
SUDATA_EBR i tpaTA_EBR |
Invalid Data Data_B1 >< Data_B2

Data_BO |
tco_esr |

12-14

= LATTICE

Memory Usage Guide
for MachXO2 Devices

Figure 12-17. True Dual Port RAM Timing Waveform — NORMAL Mode with Output Registers

ClockA

ClockEnA

WrA

AddressA

DataA

QA

ClockB

ClockEnB

WrB

AddressB

DataB

QB

o

o

O

o

T
T

\\TF

tsuapDR_EBR

i

thee_Esr

:\1\1 HWREN_EBR

tHaDDR_EBR

Add_A0

Add_At1 ><

_

o]

Ea

Data_A0

A
)

Data_A1 ><

)

)

C1)

R

tsupaTa_EBR]

tHDATA_EBR |

Invalid Data

Data_A0

Data_A1

i

L

tsuce_esr

—

o

O

tcoo_esr

O

thee_Esr

-/

tsuwren_esr

R

:\‘ thwren_esr

i

tsuADDR_EBR

tHADDR_EBR

Add_B0

Add_B1 ><

Add_BO

3

=]

Add_|
|

Data_BO

Data

A
A

g

A

A

Enl

A

tsupata_esr

tHpATA_EBR

-

Invalid Data

Data_B0O

>< Data_B1

}J\‘ccossn |

12-15

Memory Usage Guide
for MachXO2 Devices

o= LATTICE

Figure 12-18. True Dual Port RAM Timing Waveform — READ BEFORE WRITE Mode, without Output Regis-

ters
Glocka 111111
tsuce_esr —] tice_esr
ClockEnA
tsuwren_esr thwren_esr
WrA /
tsuapor_esr tHADDR_EBR
AddressA Add_A0 ><Add A0 >< Add Al >< ><Add7A1 >< \<Add7A2 >< /Y
New New
DataA Data_A0 >< ><Data A1 >< >< >< \< >< /<
tsubaTa_esr f tHpATA_EBR | |
QA Invalid Data >< Old_Data_A0 > New_Data_A0 >< Old_Data_A1 >< New_Data_A1 ><
tco_esr
lock® 1 1 1 1 1
tsuce_esr F—— tice_eBr
ClockEnB
tsuwren_esr tHwReN_eBR
WrB / \
tsuabor_Eesr tHADDR_EBR
AddressB Add_B0 ><Add BO >< ><Add B1 >< ><Add751 >< KAdd752 \< /Y
New New
DataB - Data_B0 >< ><Data B1 >< >< >< K \< /<
tsubaTa_esr f tHDATA_EBR | |
QB Invalid Data Old_Data_B0 New_Data_B0 Old_Data_B1 >< New_Data_B1 ><
| tco EBR | |

12-16

Memory Usage Guide
for MachXO2 Devices

o= LATTICE

Figure 12-19. True Dual Port RAM Timing Waveform — READ BEFORE WRITE Mode, with Output Registers

ClockA 1 4\7 1 1 1 1
tsuce_esr thoe_esr
ClockEnA
tSUWF!EN,EBR HWREN,EEH
WrA / \
tsuabpr_esr tHADDR_EBR
AddressA Add_A0 ><Add A0 >< ><Add Al ><Add7A1 >< \<Add7A2 >< /Y
New New
DataA Data_A0 >< >< ><Data Al >< >< \< x
tSUDATA,EBR f lHDATA,EBR | |
8 New
QA Invalid Data Old_Data_A New_Data_A0 Old_Data_A1
Data_A1
tcoo_esr
ClockB 1 1 1 1 1
tsuce_esrf—— thce_esr
ClockEnB
tSUWHEN EBR tHWHEN EBR
WrB /
tsuabpR_esr tHADDR_EBR
AddressB Add_B0O ><Add BO >< ><Add B1 >< ><Add,B1 >< ><Add,Bz \< |
New New ><
DataB Data_B0 >< >< ><Data B1 >< \< \<
tsupata f tHDATA_EBR |
3 New
QB Invalid Data Old_Data_B0 New_Data_B0 Old_Data_B1
Data_B1

tv:oo EBR |

12-17

am Memory Usage Guide
[] LATTI CE for MachX0O2 Devices

Figure 12-20. True Dual Port RAM Timing Waveform — WRITE THROUGH Mode, without Output Registers

R R R

tsuce_esr thce_esr
ClockEnA
T |
/ U t\SUWHENEBR MU

ClockA

s

WrA
tsuappr_EBR tHADDR_EBR
AddressA Add_A0 ><Add Al >< >< Add_A0 ><)
DataA Data_AO ><Data A1 >< ><Data7A2 >< ><Data7A3 >< \<Data A4 ><)

1

tsupaa_esr tHpATA_EBR

f | |
QA Invalid Data >< Data_AO > Data_A1 >< Data_A2 >< Data_A3
tco_eer

Data_A4

>

tsuce_esr F—— thee_esr
ClockEnB
t {4
SUWREN_EBR HWREN_EBR
tsuappr_eBr tHADDR_EBR
AddressB Add_BO ><Add B1 >< >< Add_BO >< /Y
DataB Data_B0 ><Data B1 >< ><Data B2 >< ><Data_BS >< \<Data B4 \<)
tsubaTa_EBR £ tHpATA EBR

f |
QB Invalid Data Data_B0 Data_B1 >< Data_B2 >< Data_B3 >< Data_B4
| tco EBR |

12-18

am Memory Usage Guide
[] LATTI CE for MachX0O2 Devices

Figure 12-21. True Dual Port RAM Timing Waveform — WRITE THROUGH Mode, with Output Registers

Clocka 1 1 1 1

tsuce_esr fF—— thee_esr

ClockEnA

|
tsuwren_esr thwren_esr
e JUL MU
tsuappr_esr tHADDR_EBR
>< >< Add_A0

><Data_A2 >< ><Data_A3 >< \<Data A4 \<
tSUDAT}LEBR T ‘HDATA,EBR | |

QA Invalid Data >< Data_AO > Data_A1 >< Data_A2 Data_A3
tcoo_esr

s’

AddressA Add_A0

DataA Data_A0

Add_A1

Data_A1

ER

>

oloe® 1 1 1 1 1
tsuce_esr thce_esn
ClockEnB
tsuwren_esr [{ tHwRen_eBr
e JUL Ravahuws
tsuappr_esr thADDR_EBR

DataB Data_BO

AddressB Add_BO | Add_B1 >< Add_B0 ><

Data?B2 >< ><Data B3 >< ><DatafB4
tsubaTa_Esr f [|

QB Invalid Data Data_BO Data_B1 Data_B2 ><Data783
| | | tCOO EBR

Pseudo Dual Port RAM (RAM_DP) - EBR Based

The EBR blocks in the MachXO2 devices can be configured as Pseudo-Dual Port RAM (RAM_DP). IPexpress
allows users to generate the Verilog-HDL or VHDL netlists for various memory sizes depending on design require-
ments.

(1

IPexpress generates the memory module as shown in Figure 12-22.

12-19

am Memory Usage Guide
(]] LATTI CE for MachX0O2 Devices

Figure 12-22. Pseudo Dual Port Memory Module Generated by IPexpress

WrAddress ———»
RdAddress ———»
Data ———»
ByteEn ——»

WE RAM_DP
RdClock ——» EBR-Based > Q
RdClockEn ——» Pseudo Dual
ORdClockEn ———»| Port Memory

Reset ——»
WrClock ——»
WrClockEn ——»|

Since the device has a number of EBR blocks, the generated module makes use of these EBR blocks, or primi-
tives, and cascades them to create the memory sizes specified by the user in the IPexpress GUI. For memory sizes
smaller than an EBR block, the module will be created in one EBR block. For memory sizes larger than one EBR
block, multiple EBR blocks can be cascaded in depth or width (as required to create these sizes).

In Pseudo Dual Port RAM mode, the input data and address for the ports are registered at the input of the memory
array. The output data of the memory is optionally registered at the output.

The various ports and their definitions for the Pseudo Dual Port Memory are listed in Table 12-3.

Table12-3. EBR-Based Pseudo-Dual Port Memory Port Definitions

Port Name
in the Generated Module Description Active State
WrAddress Write Address —
RdAddress Read Address —
Data Write Data —
*ByteEn' Byte Enable Active High
WE Write Enable Active High
RdClock Read Clock Rising Edge
RdClockEn? Read Clock Enable Active High
*ORdClockEn® Read Output Clock Enable Active High
Reset* Reset Active High
WrClock Write Clock Rising Edge
WrClockEn? Write Clock Enable Active High
Q Read Data —
*ERROR Error Check Code Active High

*Denotes optional port

1. ByteEn can be used to mask the input data so that only specific bytes of memory are overwritten.

2. RdClockEn/WrClockEn are used as clock enable for all the input registers.

3. ORdClockEn can be used as clock enable for the optional output registers. This allows the full pipeline of data to be
output, including the last word.

4. Reset resets only the optional output registers of the RAM. It does not reset the input registers or the contents of mem-
ory.

IPexpress implements the MachXO2 Pseudo Dual Port RAM (RAM_DP) using the PDPW8KC primitive, or the
DP8KC primitive in narrow data port (9 bits or less) configurations.

12-20

= LATTICE

Memory Usage Guide
for MachXO2 Devices

Figures 12-23 and 12-24 show the internal timing waveforms for the Pseudo Dual Port RAM (RAM_DP).

Figure 12-23. Pseudo-Dual Port RAM Timing Diagram — Without Output Registers

WrClock

WrClockEn

RdClock

RdClockEn

WrAddress

RdAddress

Data

b

Figure 12-24. Pseudo-Dual Port RAM Timing Diagram — With Output Registers

WrClock

WrClockEn

RdClock

RdClockEn

WrAddress

RdAddress

Data

|
: tsuce_esr I—
I
|
|
|

L)Y

T

T

tsuce_esr

|
‘}\: thoe_esr
I
|
I
|

—

tice_esr

AT

e

|

|

|

|

I

I

|

T

:tSUADDR EBR tHaDDR_EBR

: Add_0 X Add_1 X X X X X Add_2 X
|

| I I I I I
Itsuappr_esr ItHaDDR_EBR | | | | | | | |
|

|

| Add_0 \< \< Add_1 \< X Add_2 X
! L >< >< . >< X — N .
I | | | | | | | | |
: Data_0 X Data_1 X >< >< >< >< ><Data_2><
I

:tSUDATA EBR i itHDATA*EBH | i | i | i i

Invalid Data

Dat

Data_0 a2

8 [

tsuce_esr

| J = |

5

:

RV RN

R

tsuce_esR

thce esr

tsuaoor_esr tHADDR_EBR

A

A

I
ItHaDDR_EBR

tsuapor_esr

(=

Data_0

(1 L]

tsubaTa_esr

—t
£
E
3
E
m
@
3

12-21

Memory Usage Guide
for MachXO2 Devices

= LATTICE

Read Only Memory (ROM) — EBR Based

The EBR blocks in the MachXO2 devices can be configured as Read Only Memory (ROM). IPexpress allows users
to generate the Verilog-HDL or VHDL netlist for various memory sizes depending on design requirements. Users
are required to provide the ROM memory content in the form of an initialization file.

IPexpress generates the memory module as shown in Figure 12-25.

Figure 12-25. ROM - Read Only Memory Module Generated by IPexpress

Address ——»|

OutClock ——» ROM

EBR-Based Read Only
Memory

R Q
OutClockEn ——»

Reset ——»

Since the device has a number of EBR blocks, the generated module makes use of these EBR blocks, or primi-
tives, and cascades them to create the memory sizes specified by the user in the IPexpress GUI. For memory sizes
smaller than an EBR block, the module will be created in one EBR block. For memory sizes larger than one EBR
block, multiple EBR blocks can be cascaded in depth or width (as required to create these sizes).

The various ports and their definitions for the ROM are listed in Table 12-4.

Table12-4. EBR-Based ROM Port Definitions

Port Name in
Generated Module Description Active State
Address Read Address —
OutClock Clock Rising Clock Edge
OutClockEn' Clock Enable Active High
Reset? Reset Active High
Q Read Data —
*ERROR Error Check Code Active High

*Denotes optional port

1. OutClockEn can be used as clock enable for the optional output registers.

2. Reset resets only the optional output registers of the ROM. It does not reset the contents of the
memory.

While generating the ROM using IPexpress, the user must provide the initialization file to pre-initialize the contents
of the ROM. These files are the *.mem files and they can be of Binary, Hex or the Addressed Hex formats. The ini-
tialization files are discussed in detail in the Initializing Memory section of this document.

IPexpress implements the MachXO2 Read Only Memory (ROM) using an appropriately configured DP8KC primi-
tive with write-enables tied low.

Figures 12-26 and 12-27 show the internal timing waveforms for the Read Only Memory (ROM).

12-22

am Memory Usage Guide
(]] LATTI CE for MachX0O2 Devices

Figure 12-26. ROM Timing Waveform — Without Output Registers

OutClock 1 1 1 1 1

tsuce_esr f—— thce_esr

OutClockEn

Address Add_0 >< Add_1 \< X Add_2 >< >< Add_3 \< >< Add_4 ><
tHaDDR_EBR | |

tsuADDR_EBR | |

Q Invalid Data >< Data_0 >< Data_1 Data_2 >< Data_3 Data_4
| | | A | |

Figure 12-27. ROM Timing Waveform — With Output Registers

OutClock 1 1 1 1 1

tsuce_esr —] thce_esr

i

|/<|

OutClockEn

Address Add_0 X Add_1 >< >< Add_2 >< >< Add_3 >< >< Add_4
tHaDDR_EBR | | | |

tsuapor_esr

Q Invalid Data >< Data_0 Data_1 >< Data_2 >< Data_3
| }_‘) t

| | COO_EBR | |

First In First Out (FIFO_DC) — EBR Based

The EBR blocks in MachXO devices can be configured as Dual-Clock First-In First-Out Memory (FIFO_DC). IPex-
press allows users to generate the Verilog-HDL or VHDL netlist for various memory sizes depending on design
requirements.

i

‘><|

IPexpress generates the FIFO_DC memory module as shown in Figure 12-28.

Figure 12-28. FIFO Module Generated by IPexpress

Data ——»|

WrClock ———»|

H—» Q
RdClock ——|
FIFO_DC — Empty
WrEn ——»
EBR-Based —— Full
RAEn ——»| First In First Out
Memory ——» AlmostEmpty

ORdEn ——»

+— AlmostFull
Reset ——»

RPReset ——»

12-23

Memory Usage Guide
for MachXO2 Devices

= LATTICE

Since the device has a number of EBR blocks, the generated module makes use of these EBR blocks, or primi-
tives, and cascades them to create the memory sizes specified by the user in the IPexpress GUI. For memory sizes
smaller than an EBR block, the module will be created in one EBR block. For memory sizes larger than one EBR
block, multiple EBR blocks can be cascaded in depth or width (as required to create these sizes).

In FIFO_DC mode, the input data is registered at the input of the memory array. The output data of the memory is
optionally registered at the output.

The various ports and their definitions for the FIFO_DC are listed in Table 12-5.
Table12-5. EBR-Based FIFO_DC Memory Port Definitions

Port Name in
Generated Module Description Active State
WrClock Write Port Clock Rising Clock Edge
RdClock Read Port Clock Rising Clock Edge
WrEn Write Enable Active High
RdEn Read Enable Active High
*ORdEnN' Output Read Enable Active High
Reset? Reset Active High
RPReset® Read Pointer Reset Active High
Q Data Output —
Empty Empty Flag Active High
Full Full Flag Active High
AlmostEmpty Almost Empty Flag Active High
AlmostFull Almost Full Flag Active High
*ERROR Error Check Code Active High

*Denotes optional port

1. ORdEN can be used as clock enable for the optional output registers. This allows the full pipeline of
data to be output, including the last word.
2. Reset resets only the optional output registers, pointer circuitry and flags of the FIFO. It does not
reset the input registers or the contents of memory.

3. RPReset resets only the read pointer. See additional discussion below.

IPexpress implements the MachXO2 Dual-Clock First-In First-Out Memory (FIFO_DC) using the FIFO8KB primi-

tive.

FIFO_DC Flags

The FIFO_DC have four flags available: Empty, Aimost Empty, Aimost Full and Full. Almost Empty and Almost Full

flags have a programmable range.

The program ranges for the four FIFO_DC flags are specified in Table 6.
Table12-6. FIFO_DC Flag Settings

Module Flag Name Description Programming Range
Full Full flag setting 1to (2V-1)
AlmostFull Almost full setting 1 to (FULL -1)
AlmostEmpty Almost empty setting 1to (FULL -1)
Empty Empty setting 0

The value of Empty is fixed at 0. When coming out of reset, the active high flags Empty and Almost Empty are set

to high, since they are true.

12-24

am Memory Usage Guide
(]] LATTI CE for MachX0O2 Devices

The user should specify the absolute value of the address at which the Aimost Empty and Almost Full flags will go
true. For example, if the Almost Full flag is required to go true at the address location 500 for a FIFO of depth 512,
the user should specify a value of 500 in IPexpress.

The Empty and Almost Empty flags are always registered to the read clock and the Full and Almost Full flags are
always registered to the write clock.

At reset both the write and read counters are pointing to address zero. After reset is de-asserted data can be writ-
ten into the FIFO_DC to the address pointed to by the write counter at the positive edge of the write clock when the
write enable is asserted

Similarly, data can be read from the FIFO_DC from the address pointed to by the read counter at the positive edge
of the read clock when read enable is asserted.

Read Pointer Reset (RPReset) is used to facilitate a retransmit operation and is more commonly used in “pack-
etized” communications. Asserting RPReset causes the internal read pointer to be reset to zero. It is typically used
in conjunction with the assertion of Reset prior to each new ‘packet’ which resets both read and write pointers to
zero. In this application, the user must keep careful track of when a packet is written into or read from the
FIFO_DC. To avoid the possible corruption of memory, RPReset should not be asserted until the prior read cycle is
complete (i.e. RAEn deasserted for one clock period). Upon the deassertion of RPReset, the Empty and Almost
Empty flags assume their correct state after one read clock cycle — this is a regular condition known as boundary
cycle latency.

The data output of the FIFO_DC can be registered or non-registered through a selection in IPexpress. The output
registers are enabled by read enable.

FIFO_DC Dual and Dynamic Threshold Options

The optional Almost Full and Almost Empty flag thresholds may be individually set for single (default) or dual
threshold operation. In addition, the thresholds may be static at configuration (default) or dynamically set through
optional ports. The implementation of Dual or Dynamic thresholds automatically creates supporting LUT-based
logic.

Table12-7. EBR-Based FIFO_DC Optional Dynamic Threshold Port Definitions

Port Name in

Generated Module Description
AmEmptyThresh Almost Empty Single Threshold
AmFullThresh Almost Full Single Threshold
AmEmptySetThresh Almost Empty Set Threshold
AmEmptyCIrThresh Almost Empty Clear Threshold
AmFullSetThresh Almost Full Set Threshold
AmFullCIrThresh Almost Full Clear Threshold

FIFO_DC Operation

If the output registers are not enabled it will take two clock cycles to read the first word out. The register for the flag
logic causes this extra clock latency. In the architecture of the emulated FIFO_DC, the internal read enables for
reading the data out is controlled not only by the read enable provided by the user but also the empty flag. When
the data is written into the FIFO, an internal empty flag is registered using write clock that is enabled by write
enable (WrEn). Another clock latency is added due to the clock domain transfer from write clock to read clock using
another register which is clocked by read clock that is enabled by read enable.

Internally, the output of this register is inverted and then ANDed with the user-provided read enable that becomes
the internal read enable to the RAM_DP which is at the core of the FIFO_DC.

12-25

am Memory Usage Guide
(]] LATTI CE for MachX0O2 Devices

Thus, the first read data takes two clock cycles to propagate through. During the first data out, read enable goes
high for one clock cycle, empty flag is de-asserted and is not propagated through the second register enabled by
the read enable. The first clock cycle brings the Empty Low and the second clock cycle brings the internal read
enable high (RdEn and !EF) and then the data is read out by the second clock cycle. Similarly, the first write data
after the full flag has a similar latency.

If the user has enabled the output registers, the output registers will cause an extra clock delay during the first data
out as they are clocked by the read clock and enabled by the read enable.

1. First RdEn and Clock Cycle to propagate the EF internally.
2. Second RdEn and Clock Cycle to generate internal Read Enable into the DPRAM.
3. Third RdAEn and Clock Cycle to get the data out of the output registers.

Figures 12-29 and 12-30 show the internal timing waveforms for the Dual Clock FIFO (FIFO_DC).
Figure 12-29. FIFO_DC Without Output Registers (Non-Pipelined)

Reset \ :
TN
RPReset \ |

L/l\

WrClock

_ n
~[=T J
i o

[S A R A

RdEn

Data_0 Data_1 Data_2 Data_3 Data_4
tsuoara_esn tonra con

Q Invalid Data Data_0 X Data_1 X Data_2 X Data_3 X Data_4 |

Data

Full

AlmostFull

Empty

AlmostEmpty

- -

12-26

am Memory Usage Guide
(]] LATTI CE for MachX0O2 Devices

Figure 12-30. FIFO_DC With Output Registers (Pipelined)

Reset \ :
TN
RPReset \ |

WrClock

T
B SN
ﬂ

\

WrEn

I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
I I
} I
RdClock A

il

U

Data_0 Data_1 Data_2 Data_3 Data_4
tsupata esal toata esR

Q Invalid Data * Data_1 X Data_2 X Data_3 Data_4 |

teoesn |

RdEn

Tl
s

Data

=<

Full

AlmostFull

I
I
I
I
I
I
I
Empty \ |
I
I
I
I
I
I

AlmostEmpty

B 7=l I AP AP

Distributed Single Port RAM (Distributed_ SPRAM) — PFU Based

PFU-based Distributed Single Port RAM is created using the 4-input LUT (Look-Up Table) available in the PFU.
These LUTs can be cascaded to create a larger Distributed Memory sizes.

Figure 12-31 shows the Distributed Single Port RAM module as generated by IPexpress.
Figure 12-31. Distributed Single Port RAM Module Generated by IPexpress

Address ——»

Data ——»|

Clock > PFU-Based
Distributed Single Port —— Q
WE —» Memory

ClockEn ——»

Reset ——»]

The generated module makes use of the 4-input LUTs available in the PFU. Additional decode logic is generated
by utilizing the resources available in the PFU.

The various ports and their definitions for the Memory are as per Table 12-8.

12-27

am Memory Usage Guide
[] LATTI CE for MachX0O2 Devices

Table12-8. PFU-Based Distributed Single Port RAM Port Definitions

Port Name in
Generated Module Description Active State
Address Address —
Data Data In —
Clock Clock Rising Clock Edge

WE Write Enable Active High
ClockEn Clock Enable Active High
Reset' Reset Active High

Q Data Out —

1. Reset is available only when Output Registers are enabled.

Figures 12-32 and 12-33 show the internal timing waveforms for the Distributed Single Port RAM
(Distributed_SPRAM).

Figure 12-32. PFU-Based Distributed Single Port RAM Timing Waveform — Without Output Registers

Clock 11111

H

ClockEn
tsuwren_pru f—— tHwRen_pFU
WE
| tsuappr_pFu tHADDR_PFU
Address Add_0 KAdd_1 >< ><Add 0 >< ><Add_1 >< ><Add_2 >< t
Data Data_0 >< Data_1 >< >< >< >< >< >< i
tsubaTA PFU f tHpATA_PFU |

Q Invalid Data Data_0 >< Data_1 >< Data_2
| | tcoram_pru |

12-28

am Memory Usage Guide
[] LATTI CE for MachX0O2 Devices

Figure 12-33. PFU- Based Distributed Single Port RAM Timing Waveform — With Output Registers

Clock 111111

ClockEn
tsuwren_pru —] tHwren_pFu
WE
| tsuappR_PFU tHADDR_PFU
Address Add_0 Add_1 Add_0 Add_2

Add1><

Fﬁ?ﬁ

Data Data_0 ><Data71 >< >< ><
tsupata_pru thpaTA_PFU |

Q Invalid Data Data_0 Dataj
| | | |

Distributed Dual Port RAM (Distributed_DPRAM) — PFU Based

PFU-based Distributed Dual Port RAM is created using the 4-input LUT (Look-Up Table) available in the PFU.
These LUTs can be cascaded to create larger Distributed Memory sizes.

—

Figure 12-34 shows the Distributed Dual Port RAM module as generated by IPexpress.
Figure 12-34. Distributed Dual Port RAM Module Generated by IPexpress

WrAddress ——»
Data ——»
WrClock ——»
WE —»
PFU-Based
WrClockEn —— Distributed Dual Port ——» Q
Memory
RdAddress ——»|
RdClock ——»

RdClockEn ——»

Reset ——»

The generated module makes use of the 4-input LUTs available in the PFU. Additional decode logic is generated
by utilizing the resources available in the PFU.

The various ports and their definitions are listed in Table 12-9.

12-29

o= LATTICE

Memory Usage Guide
for MachXO2 Devices

Table12-9. PFU-Based Distributed Dual Port RAM Port Definitions

Port Name in
Generated Module Description Active State
WrAddress Write Address —
Data Data Input —
WrClock Write Clock Rising Clock Edge
WE Write Enable Active High
WrClockEn Write Clock Enable Active High
RdAddress Read Address —
*RdClock Read Clock Rising Clock Edge
*RdClockEn Read Clock Enable Active High
Reset* Reset Active High
Q Data Out —

*Denotes optional port.

The optional ports Read Clock (RdClock) and Read Clock Enable (RdClockEn) are not available in the hardware
primitive. These are generated by |IPexpress when the user wants to enable the output registers in the IPexpress

configuration.

Figures 12-35 and 12-36 show the
(Distributed_DPRAM).

internal timing waveforms for the Distributed Dual

Port RAM

Figure 12-35. PFU-Based Distributed Dual Port RAM Timing Waveform — Without Output Registers

thoe_pru

£

4__7_:[:

tice_pru

AT

Lj

BN

e

A

\

I

a7

:X f

Xoata QX

o

|

I

I I |
WrClock 1 1 1
| | |
: touce_rru ! !
| | |
WrClockEn : : :
- | |
| | |
| | |
i | |
WE i i i
| | |
N T | |
| | |
| | |
I I I
- | | |
I I I t
| | | SUCE_PFU|
| | |
RdClockEn : : :
I I I
I SUADDR_PFU !‘HADDR,PFU !
|
WrAddress | Add_0 Add_1
|
ItSUADDH PFU tHADDF\ _PFU
|
RdAddress | \ >< >< K ><Add 0 ><
|
|
| I
|
Data ; Data_0 >< Data_1 \<
|
I tSUDATA_PFU i ItHpaTA_PFU | |
Q Invalid Data

Data_1

1 1 1
i Data_0 ><
: | : | b tCOHAMlPFU :

Dat

12-30

am Memory Usage Guide
(]] LATTI CE for MachX0O2 Devices

Figure 12-36. PFU-Based Distributed Dual Port RAM Timing Waveform — With Output Registers

|
Fius
|
|
1IHCE,EBH
|
|
I

WrClock

1 |
| |
| |
| |
: tsuce_esr :

WrClockEn | |
| |

| i

T

|

I

|

|

|

|
|
WE l
|
T
|

thoe_esr

lj/
JCEE
AT

|
|
i
RdClockEn I
|
i‘suADDR,EBR ItADDR_EBR
WrAddress : Add_0 >< Add_1 X >< Add_2 >< \< >< >< K \
|
| I I I I I
: tsuapor_esr ItHaDDR_EBR | | | | | | | |
RdAddress : >< \< >< >< Add_0 K >< Add_1 >< >< Add_2 ><
: \ T / T T / T T
! I | | I | I |
Data : Data_0 >< Data_1 \< >< Data_2 >< >< >< >< \<)
|
: tsupaa_esn f itHDATA,EBn i | i | i | i
D
Q Invalid Data Data_0 X ait
1
| [[[| 'J i

Distributed ROM (Distributed_ROM) — PFU-Based

PFU-based Distributed ROM is created using the 4-input LUT (Look-Up Table) available in the PFU. These LUTs
can be cascaded to create a larger Distributed Memory sizes.

Figure 12-37 shows the Distributed ROM module as generated by IPexpress.
Figure 12-37. Distributed ROM Generated by IPexpress

Address ———»|

QOutClock ——»
PFU-Based

Distributed ROM Q

OutClockEn ———»

Reset ———»|

The generated module makes use of the 4-input LUTs available in the PFU. Additional decode logic is generated
by utilizing the resources available in the PFU.

The various ports and their definitions are listed in Table 12-10.

12-31

= LATTICE

Memory Usage Guide
for MachXO2 Devices

Table12-10. PFU-Based Distributed ROM Port Definitions

Port Name in
Generated Module Description Active State
Address Address —
OutClock* Out Clock Rising Clock Edge
OutClockEn* Out Clock Enable Active High
Reset* Reset Active High
Q Data Out —

*Denotes optional port.

The optional ports Out Clock (OutClock) and Out Clock Enable (OutClockEn) are not available in the hardware
primitive. These are generated by the IPexpress when the user wants to enable the output registers in the IPex-
press configuration.

Figures 12-38 and 12-39 show the internal timing waveforms for the Distributed ROM.
Figure 12-38. PFU-Based ROM Timing Waveform — Without Output Registers

OutClock —L —L —_ —L
OutClockEn / \
| tsuabor_pFu ‘ tHADDR_PFU
Address Add_0 * >< Add_1 >< >< Add_2 K \
Q Invalid Data Data_0 >< Data_1 >< Data_2

tcoram_pru ‘ ‘

Figure 12-39. PFU-Based ROM Timing Waveform — With Output Registers

OutClock —L —L —L —L
OutClockEn / \
| tsuabor_pFu ‘ tHADDR_PFU
Address Add_0 * >< Add_1 >< >< Add_2 K §
Q Invalid Data Data_0 >< Data_1

| | |

RAM-Based Shift Register

The Distributed SPRAM blocks in the MachXO2 devices, in combination with LUT-based logic, can be configured
as a RAM-based Shift Register. IPexpress allows users to generate the Verilog-HDL or VHDL netlist for the Shift
Register length, as per design requirements.

12-32

Memory Usage Guide
for MachXO2 Devices

= LATTICE

IPexpress generates the Shift Register module as shown in Figure 12-40.

Figure 12-40. RAM-Based Shift Register Generated by IPexpress

Din ——»
Addr ———»

RAM-Based

Clock ———»| Shift Register

ClockEn ——»

Reset ———»»|

The generated module makes use of the 4-input LUTs available in the PFU. Additional logic is generated by utiliz-
ing the resources available in the PFU.

The various ports and their definitions are listed in Table 12-11.

Table12-11. RAM-Based Shift Register Port Definitions

Port Name in

Generated Module Description Active State

Din Data In —

*Addr Address —

Clock Clock Rising Clock Edge

ClockEn Clock Enable Active High
Reset Reset Active High

Q Data Out —

*Denotes optional port.

The optional Addr port is available only when Variable Length type is selected. It is generated by IPexpress when
the user wants to enable the Variable Length operation in the |IPexpress configuration. Figures 12-41 and 12-42
show the internal timing waveforms for the RAM-Based Shift Register.

Figure 12-41. RAM-Based Shift Register Timing Waveform — Without Output Registers (Shift = 2)

tsuce_pruf——] thoe_Pru
ClockEn
Din Data_0 Data 1 >< Data_2 >< Data 3 >< Data_4 ><)
tSUDATA_PFU tHDAT,Lp;u |
Q Invalid Data Data_1 Data_2 ><Data_3

T

(SHIFT-1) Clock Periods
Delay

tco RAM |

12-33

=) ATTICE Memory Usage Gl:lide

for MachX0O2 Devices

Figure 12-42. RAM-Based Shift Register Timing Waveform — With Output Registers (Shift = 2)

lock 1 4\7 1 4\7 4\7
tsuce_pruf—— thce_pru
ClockEn

Din Data_0 \< Data_1 >< >< Data_2 >< X Data_3 K >< Data_4 ><
tHl)}\T)LPFU | | |

tSUDATA_PFU

Q Invalid Data \K Data_0 >< Data_1 >< Data_2

| [I L

i i 1 { tcorea |

(SHIFT) Clock Periods Delay

MachXO2 Primitives

Single Port RAM (SP8KC) — EBR Based
The Single Port RAM primitive is shown below.

Figure 12-43. Single Port RAM (SP8KC)

AD[12:0]
DI[8:0]

vy

CLK
CE
OCE

1 4

Yy

EBR »| DO[8:0]

RST
WE
CS[2:0]

\ 4

Yy

Table12-12. EBR-Based Single Port Memory Port Definitions

Port Name in the EBR
Block Primitive (SP8KC) Description Active State
AD Address Bus —
DI Data In —
CLK Clock Rising Clock Edge
CE Clock Enable Active High
OCE Output Clock Enable Active High
RST Reset Active High
WE Write Enable Active High
CS[2:0] Chip Select —
DO Data Out —

Each SP8KC primitive consists of 9,216 bits of RAM. The possible values for address depth and data width for the
SP8KC primitive are listed in Table 12-13.

12-34

= LATTICE

Memory Usage Guide
for MachXO2 Devices

Table12-13. Single Port Memory Sizes for 9K Memories in MachX02

Single Port
Memory Size Input Data Output Data Address [MSB:LSB]
8K x 1 DI DO AD[12:0]
4K x 2 DI[1:0] DO[1:0] AD[12:1]
2K x 4 DI[3:0] DO[3:0] AD[12:2]
1K x 9 DI[8:0] DO[8:0] AD[12:3]

Table 12-14 shows the various attributes available for the SP8KC. Some of these attributes are user selectable
through the IPexpress GUI. For detailed attribute definitions, refer to Appendix A.

Table12-14. Single Port RAM Attributes for MachXO2 (SP8KC)

Default User Selectable
Attribute Description Values Value through IPexpress
DATA_WIDTH Data Word Width 1,2,4,9 9 Yes
REGMODE Register Mode (Pipelining) INOREG, OUTREG NOREG Yes
RESETMODE Selects Reset Type ASYNC, SYNC SYNC Yes
CSDECODE Chip Select Decode 0b000, 0b001, 0b010, Ob011, |{Ob00OO No
0b100, 0b101, Ob110, Ob111
0b000
WRITEMODE Read/Write Behavior NORMAL, WRITE- NORMAL Yes
THROUGH, READBEFORE-
WRITE
GSR Enable Global Set Reset |ENABLED, DISABLED DISABLED No
INITVAL_O0O .. INITVAL_1F |Initialization Value 0x0000000000000000000000 |0x00000000000 No
000000000000000000000000 {0000000000000
000000000000000000000000 {0000000000000
0000000000 0000000000000
0000000000000
0000000000000
OxFFFFFFFFFFFFFFFFFFFF |0000
FFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFF
(80- character hex strings)
ASYNC_RESET_RELEASE |Reset Release ASYNC, SYNC SYNC Yes
INIT_DATA Init Values Status STATIC, DYNAMIC STATIC Yes

12-35

Memory Usage Guide
for MachXO2 Devices

= LATTICE

True Dual Port RAM (DP8KC) — EBR-Based
The True Dual Port RAM primitive is shown below.

Figure 12-44. True Dual-Port RAM (DP8KC)

DIA[8:0] - = DIB[8:0]
ADA[12:0] |l | @——{ ADBI[12:0]
CLKA > < CLKB
CEA » - CEB
EBR
RSTA > < RSTB
WEA > < WEB
CSA[2:0] £ < CSB[2:0]
OCEA > - OCEB
DOA[8:0] |- > DOB[8:0]

Table12-15. EBR-Based True Dual Port Memory Port Definitions

Port Name in the EBR Block

Primitive (DP8KC) Description Active State
DIA, DIB Input Data port A and port B —
ADA, ADB Address Bus port A and port B —
CLKA, CLKB Clock for PortA and PortB Rising Clock Edge
CEA, CEB Clock Enables for Port CLKA and CLKB Active High
RSTA, RSTB Reset for PortA and PortB Active High
WEA, WEB Write enable port A and port B Active High
CSA[2:0], CSB[2:0] Chip Selects for each port —
OCEA, OCEB Output Clock Enables for PortA and PortB Active High
DOA, DOB Output Data port A and port B —

Each DP8KC primitive consists of 9,216 bits of RAM. The possible values for address depth and data width for the
DP8KC primitive are listed in Table 12-16.

Table12-16. Dual Port Memory Sizes for 9K Memory in MachX02

Dual Port Input Data Input Data Output Data Output Data | Address Port A | Address Port B
Memory Size Port A Port B Port A Port B [MSB:LSB] [MSB:LSB]
8K x 1 DIA DIB DOA DOB ADA[12:0] ADB[12:0]
4K x 2 DIA[1:0] DIB[1:0] DOA[1:0] DOBJ[1:0] ADA[12:1] ADB[12:1]
2K x 4 DIA[3:0] DIB[3:0] DOA[3:0] DOBJ[3:0] ADA[12:2] ADB[12:2]
1K x 9 DIA[8:0] DIB[8:0] DOA[8:0] DOBI8:0] ADA[12:3] ADB[12:3]

Table 12-17 shows the various attributes available for the True Dual Port Memory (RAM_DP_TRUE). Some of
these attributes are user-selectable through the IPexpress GUI. For detailed attribute definitions, refer to the
Appendix A.

12-36

= LATTICE

Memory Usage Guide
for MachXO2 Devices

Table12-17. Dual Port RAM Attributes for MachXO2 (DP8KC)

Default User Selectable
Attribute Description Values Value through IPexpress
DATA_WIDTH_A Data Word Width Port A |1,2,4,9 9 Yes
DATA_WIDTH_B Data Word Width PortB |1,2, 4,9 9 Yes
REGMODE_A Register Mode (Pipelining) |[NOREG, OUTREG NOREG Yes
for Port A
REGMODE_B Register Mode (Pipelining) |NOREG, OUTREG NOREG Yes
for Port B
RESETMODE Selects the Reset type ASYNC, SYNC SYNC Yes
CSDECODE_A Chip Select Decode 0b000, 0b001, 0b010, Ob0O11, |{Ob0O0O No
for Port A 0b100, Ob101, Ob110, Ob111
CSDECODE_B Chip Select Decode 0b000, 0b001, 0b010, Ob011, |{Ob0O0O No
for Port B 0b100, 0b101, Ob110, Ob111
WRITEMODE_A Read / Write Mode NORMAL, WRITE- NORMAL Yes
for Port A THROUGH, READBEFORE-
WRITE
WRITEMODE_B Read / Write Mode NORMAL, WRITE- NORMAL Yes
for Port B THROUGH, READBEFORE-
WRITE
GSR Enables Global Set Reset |ENABLE, DISABLE DISABLED No
INITVAL_O0O .. INITVAL_1F |Initialization Value 0x0000000000000000000000 |0x00000000000 No
000000000000000000000000 {0000000000000
000000000000000000000000 {0000000000000
0000000000 0000000000000
0000000000000
0000000000000
OxFFFFFFFFFFFFFFFFFFFF [0000
FFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFF
(80-character hex strings)
ASYNC_RESET_RELEASE |Reset Release ASYNC, SYNC SYNC Yes
INIT_DATA Init Values Status STATIC, DYNAMIC STATIC Yes

12-37

= LATTICE

Memory Usage Guide
for MachXO2 Devices

Pseudo Dual Port RAM (PDPW8KC) — EBR-Based
The Pseudo Dual Port RAM primitive is shown below.

Figure 12-45. Pseudo Dual-Port RAM (PDPW8KC)

ADWI8:0]

BE[1:0]
CLKW

CEW

EBR

RST

#
DI[17:0] el
—_—

nul A A T

CSWw[2:0]

Table12-18. EBR-Based Pseudo-Dual Port Memory Port Definitions

ADR[12:0]
CLKR

CER

DO[17:0]
OCER
CSR[2:0]

Port Name in the EBR Block
Primitive (PDPW8KC) Description Active State
ADW Write Address —
DI Write Data —
BE Byte Enable Active High
CLKW Write Clock Rising Edge
CEW Write Clock Enable Active High
RST Reset Active High
CSw Write Chip Select —
ADR Read Address —
CLKR Read Clock Rising Edge
CER Read Clock Enable Active High
DO Read Data —
OCER Read Output Clock Enable Active High
CSR Read Chip Select —

Each PDPWS8KC primitive consists of 9,216 bits of RAM. The possible values for address depth and data width for
the PDPWB8KC primitive are listed in Table 12-19.

12-38

Memory Usage Guide
for MachXO2 Devices

= LATTICE

Table12-19. Pseudo-Dual Port Memory Sizes for 9K Memory in MachX02

Pseudo-Dual Read Read Address Port Write Address Port
Port Memory Size Write Data Port Read Data Port [MSB:LSB] [MSB:LSB]
8K x 1 DI[17:0] DO ADR[12:0] ADWI[8:0]
4K x 2 DI[17:0] DOI[1:0] ADR[12:1] ADWI[8:0]
2K x 4 DI[17:0] DO[3:0] ADR[12:2] ADWI[8:0]
1K x 9 DI[17:0] DO[8:0] ADR[12:3] ADWI[8:0]
512x 18 DI[17:0] DO[17:0]* ADR[12:4] ADWI[8:0]

Note: High and low bytes are swapped with regard to DI word.

Table 12-20 shows the various attributes available for the Pseudo Dual Port Memory (RAM_DP). Some of these
attributes are user selectable through the IPexpress GUI. For detailed attribute definitions, refer to Appendix A.

Table12-20. Pseudo-Dual Port RAM Attributes for MachX0O2 (PDPW8KC)

User Selectable
Attribute Description Values Default Value |through IPexpress
DATA_WIDTH_W Write Data Word Width 18 18 Yes
DATA_WIDTH_R Read Data Word Width 1,2,4,9,18 9 Yes
REGMODE Register Mode (Pipelining)[NOREG, OUTREG NOREG Yes
RESETMODE Selects the Reset type ASYNC, SYNC SYNC Yes
CSDECODE_W Chip Select Decode for 0b000, 0b001, 0b010, 0b011, [0b0O0O No
Write 0b100, 0b101, Ob110, Ob111
CSDECODE_R Chip Select Decode for 0b000, 0b001, 0b010, 0b011, [0b0O0O No
Read 0b100, 0b101, Ob110, Ob111
GSR Enables Global Set Reset |ENABLE, DISABLE DISABLED No
INITVAL_O0O .. INITVAL_1F |Initialization Value 0x0000000000000000000000 |0x00000000000
000000000000000000000000 |{0000000000000
000000000000000000000000 0000000000000
0000000000 0000000000000
0000000000000
0000000000000 No
OxFFFFFFFFFFFFFFFFFFFF {0000
FFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFFFFFFFFFFFFFFF
FFFFFFFFF FFFFFFF
(80- character hex strings)
ASYNC_RESET_RELEASE |Reset Release ASYNC, SYNC SYNC Yes
INIT_DATA Init Values Status STATIC, DYNAMIC STATIC Yes

12-39

= LATTICE

Memory Usage Guide
for MachXO2 Devices

Dual-Clock FIFO (FIFO8KB) — EBR Based
The Dual-Clock FIFO RAM primitive is shown below.

Figure 12-46. FIFO_DC Primitive (FIFO8KB)

DI[17:0]
CLKW

WE

RST
FULLI
CSWI1:0

>
>
>
£>
>
£
»
> >
£
» >
Ly <l
<
EBR <
> -t
£
<
> <
-
<
» <
£>
<
-
<
-t

Table12-21. EBR-Based FIFO_DC Memory Port Definitions

AFF
FF
AEF
EF

DO[17:0]

ORE
CLKR

RE

EMPTY!I
CSR[1:0]
RPRST

Port Name in Primitive
(FIFO8KB) Description Active State
DI Data Input —
CLKW Write Port Clock Rising Clock Edge
WE Write Enable Active High
FULLI Write inhibit Active High
Csw Write Chip Select Active High
AFF Almost Full Flag Active High
FF Full Flag Active High
AEF Almost Empty Active High
EF Empty Flag Active High
DO Data Output —
ORE Output Read Enable Active High
CLKR Read Port Clock Rising Clock Edge
RE Read Enable Active High
EMPTYI Read inhibit Active High
CSR Read Chip Select Active High
RPRST Read Pointer Reset Active High

Each FIFO8KB primitive consists of 9,216 bits of RAM. The possible values for address depth and data width for
the FIFO8KB primitive are listed in Table 12-22.

12-40

= LATTICE

Memory Usage Guide
for MachXO2 Devices

Table12-22. MachXO2 FIFO_DC Data Widths Sizes

FIFO Size Input Data Output Data
8K x 1 DI DO
4K x 2 DI[1:0] DOI[1:0]
2Kx 4 DI[3:0] DOI[3:0]
1K x 9 DI[8:0] DO[8:0]
512x 18 DI[17:0] DO[17:0]

Table 12-23 shows the various attributes available for the FIFO_DC. Some of these attributes are user-selectable
through the IPexpress GUI. For detailed attribute definitions, refer to Appendix A.

Table12-23. FIFO_DC Attributes for MachXO2 (FIFO8KB)

User Selectable
Attribute Description Values Default Value |through IPexpress

DATA_WIDTH_W Data Width Write Mode 1,2,4,9,18 18 YES

DATA_WIDTH_R Data Width Read Mode 1,2,4,9,18 18 YES

REGMODE Register Mode NOREG, OUTREG NOREG YES

RESETMODE Select Reset Type ASYNC, SYNC ASYNC YES

CSDECODE_W Chip Select Decode for Write |0b00, 0b01, Ob10, Ob11 |0b00 NO

Mode
CSDECODE_R Chip Select Decode for Read |0b00, 0b0O1, 0b10, Ob11 |0b00 NO
Mode

GSR Enable Global Set Reset ENABLED, DISABLED DISABLED NO

AEPOINTER Almost Empty Pointer 0b00000000000000,, |— YES
0b0O1111111111111

AFPOINTER Almost Full Pointer 0b00000000000000,, |— YES
0b01111111111111

FULLPOINTER Full Pointer 0b00000000000000,, |— YES
0b10000000000000

FULLPOINTERH1 Full Pointer minus 1 0b00000000000000,, |— NO
0b0O1111111111111

AFPOINTERT1 Almost Full Pointer minus 1 0b00000000000000,, |— NO
0b01111111111110

AEPOINTERT1 Almost Empty Pointer plus 1 0b00000000000000,, |— NO
0b10000000000000

ASYNC_RESET_RELEASE |Reset Release ASYNC, SYNC SYNC Yes

FIFO_DC Flags

The FIFO_DC have four flags available: Empty, Almost Empty, Aimost Full and Full. Aimost Empty, Almost Full and
Full flags have a programmable range.

The program ranges for the four FIFO_DC flags are specified in Table 12-24.

12-41

= LATTICE

Memory Usage Guide
for MachXO2 Devices

Table12-24. FIFO_DC Flag Settings

Module Flag Name FIFO Attribute Name Description Programming Range Program Bits
Eull FULLPOINTER Full setting 1to (2N -1) 14
FULLPOINTER1 Full -1 1 to (FULL-1) 14
AFPOINTER Almost full setting 1 to (FULL -1) 14
AlmostFull AFPOINTER1 Almost full — 1 1 to (FULL -1) 14
AEPOINTERT Almost empty + 1 1 to (FULL -1) 14
AlmostEmpty AEPOINTER Almost empty setting 1 to (FULL -1) 14
Empty — Empty setting 0 —

The value of Empty is fixed at 0. When coming out of reset, the active high flags Empty and Aimost Empty are set

to high, since they are true.

Careful attention is required to set the Pointer attributes to match the desired behavior. Refer to Appendix B, Set-

ting FIFO_DC Pointer Attributes.

The Empty and Almost Empty flags are always registered to the read clock and the Full and Almost Full flags are

always registered to the write clock.

Distributed SPRAM (SPR16X4C) — PFU Based

The PFU based distributed single port RAM primitive is shown below.

Figure 12-47. Distributed_SPRAM Primitive (SPR16X4C)

AD[3:0]
DI[3:0]
CK
WRE

Y

vy Y

PFU

\i

DO[3:0]

Table12-25. PFU based Distributed Single Port RAM Port Definitions

Port Name in the PFU
Primitive Description Active State
ADI[3:0] Address —
DI[3:0] Data In —
CK Clock Rising Clock Edge
WRE Write Enable Active High
DOI[3:0] Data Out —

12-42

= LATTICE

Memory Usage Guide
for MachXO2 Devices

Distributed DPRAM (DPR16X4C) - PFU Based
The PFU based distributed Pseudo Dual-port RAM primitive is below.

Figure 12-48. Distributed DPRAM Primitive (DPR16X4C)

WADI[3:0]

> <— RAD[3:0]
DI[3:0] i
WeK . PFU »- DO[3:0]
WRE ~

Table12-26. PFU based Distributed Dual-Port RAM Port Definitions

Port Name in the EBR
Block Primitive

Description Active State
WAD[3:0] Write Address —
DI[3:0] Data Input —
WCK Write Clock Rising Clock Edge
WRE Write Enable Active High
RADI[3:0] Read Address —
DO[3:0] Data Out —

Distributed ROM (ROMnnnX1A) — PFU Based
The PFU based distributed ROM primitives are shown below.

Figure 12-49. Distributed_ROM Primitive (ROM16X1A)

AD[3:0] £ PFU » DO
Figure 12-50. Distributed_ROM Primitive (ROM32X1A)
AD[4:0] > PFU - DO

12-43

= LATTICE

Memory Usage Guide
for MachXO2 Devices

Figure 12-51. Distributed_ROM Primitive (ROM64X1A)

ADI[5:0] & PFU » DO

Figure 12-52. Distributed_ROM Primitive (ROM128X1A)
AD[6:0] > PFU » DO

Figure 12-53. Distributed_ROM Primitive (ROM256X1A)
AD[7:0] o PFU » DO

Table12-27. PFU-Based Distributed ROM Port Definitions
Port Name in the PFU
Block Primitive Description

ADI[n:0] Address
DO Data Out

Initializing Memory

In the EBR based ROM or RAM memory modes and the PFU-based ROM memory mode, it is possible to specify
the power-on state of each bit in the memory array. Each bit in the memory array can have one of two values: 0 or

1.

Initialization File Format

The initialization file is an ASCII file, which can be created or edited using any ASCII editor. IPexpress supports

three different types of memory file formats:

1. Binary file
2. Hex File
3. Addressed Hex

12-44

am Memory Usage Guide
(]] LATTI CE for MachX0O2 Devices

The file name for the memory initialization file is *.mem (<file_name>.mem). Each row depicts the value to be
stored in a particular memory location and the number of characters (or the number of columns) represents the
number of bits for each address (or the width of the memory module).

The initialization file is primarily used for configuring the ROMs. The EBR in RAM can also use the initialization file
to preload the memory contents.

Binary File
The file is a text file of 0’s and 1’s. The rows indicate the number of words and columns indicate the width of the
memory. In the example below, the memory size is 20x32; i.e. 20 addresses with each word of 32 bit length.

00100000010000000010000001000000
00000001000000010000000100000001
00000010000000100000001000000010
00000011000000110000001100000011
00000100000001000000010000000100
00000101000001010000010100000101
00000110000001100000011000000110
00000111000001110000011100000111
00001000010010000000100001001000
00001001010010010000100101001001
00001010010010100000101001001010
00001011010010110000101101001011
00001100000011000000110000001100
00001101001011010000110100101101
00001110001111100000111000111110
00001111001111110000111100111111
00010000000100000001000000010000
00010001000100010001000100010001
00010010000100100001001000010010
00010011000100110001001100010011

Hex File

The Hex file is a text file of hex characters arranged in a similar row-column arrangement. The number of rows in
the file is same as the number of address locations, with each row indicating the content of the memory location. In
the example below, the memory size is 8x16; i.e. 8 addresses with each word of 16 bit length.

A001
0B03
1004
CEO6
0007
040A
0017
02A4

Addressed Hex

Addressed Hex consists of lines of address and data. Each line starts with an address, followed by a colon, and
any number of data. The format of memfile is address: data data data data ... where address and data are hexa-
decimal numbers.

—A0Q : 03 F3 3E 4F
-B2:3B 9F

The first line puts 03 at address AO, F3 at address A1, 3E at address A2,and 4F at address A3. The second line
puts 3B at address B2 and 9F at address B3.

12-45

am Memory Usage Guide
(]] LATTI CE for MachX0O2 Devices

There is no limitation on the values of address and data. The value range is automatically checked based on the
values of addr_width and data_width. If there is an error in an address or data value, an error message is printed.
Users need not specify data at all address locations. If data is not specified at certain address, the data at that loca-
tion is initialized to 0. IPexpress makes memory initialization possible both through the synthesis and simulation
flows.

12-46

= LATTICE

Memory Usage Guide
for MachXO2 Devices

Technical Support Assistance

e-mail: techsupport@latticesemi.com
Internet: www.latticesemi.com

Revision History

Date Version Change Summary

November 2010 01.0 Initial release.

January 2011 01.1 Removed footnotes from the following figures: Top View of the
MachX02-1200 Device and Top View of the MachX02-4000 Device.

February 2011 01.2 Updated document with new corporate logo.
Document status changed from Advance to Final.

July 2013 01.3 Updated FIFO Timing Diagrams.

Updated Technical Support Assistance information.

12-47

mailto: techsupport@latticesemi.com
http://www.latticesemi.com

am Memory Usage Guide
(]] LATTI CE for MachX0O2 Devices

Appendix A. Attribute Definitions

DATA_WIDTH

Data width is associated with the RAM and FIFO elements. The DATA_WIDTH attribute defines the number of bits
in each word. It takes the values defined in the RAM size tables in each memory module.

REGMODE

REGMODE, or the Register mode attribute, is used to enable pipelining in the memory. This attribute is associated
with the RAM and FIFO elements. The REGMODE attribute takes the NOREG or OUTREG mode parameter that
disables and enables the output pipeline registers.

RESETMODE

The RESETMODE attribute allows users to select the mode of reset in the memory. This attribute is associated
with the block RAM elements. RESETMODE takes two parameters: SYNC and ASYNC. SYNC means that the
memory reset is synchronized with the clock. ASYNC means that the memory reset is asynchronous to clock.

CSDECODE

CSDECODE, or the Chip Select Decode attributes, are associated to block RAM elements. Chip Select (CS) is a
useful port when multiple cascaded EBR blocks are required by the memory. The CS signal forms the MSB for the
address when multiple EBR blocks are cascaded. CS is a 3-bit bus, so it can cascade eight memories easily.
CSDECODE takes the following parameters: “000”, “001”, “010”, “011”, “100”, “101”, “110”, and “111”. CSDECODE
values determine the decoding value of CS[2:0]. CSDECODE_W is chip select decode for write and
CSDECODE_R is chip select decode for read for Pseudo Dual Port RAM. CSDECODE_A and CSDECODE_B are
used for true dual port RAM elements and refer to the A and B ports.

WRITEMODE

The WRITEMODE attribute is associated with the block RAM elements. It takes the NORMAL, WRITETHROUGH,
and READBEFOREWRITE mode parameters.

In NORMAL mode, the output data does not change or get updated during the write operation. This mode is sup-
ported for all data widths.

In WRITETHROUGH mode, the output data is updated with the input data during the write cycle. This mode is sup-
ported for all data widths.

In READBEFOREWRITE mode, the output data port is updated with the existing data stored in the write address,
during a write cycle. This mode is supported for x9 and x18 data widths.

WRITEMODE_A and WRITEMODE_B are used for dual port RAM elements and refer to the A and B ports in case
of a True Dual Port RAM.

For all modes of the True Dual Port module, simultaneous read access from one port and write access from the
other port to the same memory address is not recommended. The read data may be unknown in this situation.
Also, simultaneous write access to the same address from both ports is not recommended. When this occurs, the
data stored in the address becomes undetermined when one port tries to write a 'H' and the other tries to write a
L.

It is recommended that users implement control logic to identify this situation if it occurs and then either:

1. Implement status signals to flag the read data as possibly invalid, or
2. Implement control logic to prevent the simultaneous access from both ports.

GSR
GSR, the Global Set/ Reset attribute, is used to enable or disable the global set/reset for the RAM element.

12-48

m; ATTICE Memory Usage Guide

for MachX0O2 Devices

ASYNC_RESET_RELEASE

When RESETMODE is set to ASYNC, the ASYNC_RESET_RELEASE attribute allows users to select how the
reset is de-asserted/released: When set to SYNC, the reset is de-asserted synchronously to the clock. When set to
ASYNC, the memory reset is released asynchronously (without relation to the clock).

INIT_DATA

The INIT_DATA attribute allows the user to specify how EBR initialization values are stored and accessed. When
set to STATIC, the EBR initialization values are compressed by the software and stored in a variable location in
UFM (User Flash Memory). When set to DYNAMIC, the initialization values are not compressed, and stored in a
user-accessible, fixed location in UFM.

12-49

am Memory Usage Guide
(]] LATTI CE for MachX0O2 Devices

Appendix B. Setting FIFO_DC Pointer Attributes
The FIFO_DC uses pointer attributes to control the Full, Aimost Full and Almost Empty flags.

The values for the pointer attributes are set according to the following table and equations:

Table12-28. Pointer Attribute Setting Equations

Flag Trip Value Attribute Port Width Equation
FULLPOINTER [(ff- 1) * wrw] + 1
Full ff wrw'
FULLPOINTER1 [(ff - 2) * wrw] + 1
AFPOINTER [(aff - 1) * wrw] + 1
Almost Full aff wrw!
AFPOINTER1 [(aff - 2) * wrw] + 1
AEPOINTER [(aef) * rdw] + rdw - 1
Almost Empty aef rdw’
AEFOINTERH1 [(aef + 1) * rdw] + rdw - 1

1. Set Write Port Width (wrw) and Read Port Width (rdw) per Table 12-29.

Table12-29. Port Width Values

Attribute:

Data_width_w,

Data_width_r Port Width: wrw, rdw
1 1
2 2
4 4
9 8
18 16

The user should specify the absolute value of the address at which the AlImost Empty and Almost Full flags will go
true. For example, if the Almost Full flag is required to go true at the address location 500 for a FIFO of depth 512,
the user should specify aff = 500.

Worked Example:
Write Data Width: 18 => use wrw=16

Read Data Width: 4 => use rdw =4

Full: ff =16 ((16) 18-bit words)
Almost Full: aff = 14
Almost Empty: aef = 8 ((8) 4-bit words, which corresponds to (2) 16-bit writes)

Empty: O (always)

12-50

am Memory Usage Guide
(]] LATTI CE for MachX0O2 Devices

Calculated Values:

FULLPOINTER = [(ff - 1) * wrw] + 1
=[(16=1) * 16] + 1

= (15* 16) + 1

= 241

=> 14’ b00_0000_1111_0001

FULLPOINTER1 = [(ff - 2) * wrw] + 1
=[(16-2) * 16] + 1

= (14*16) + 1

=225

=> 14’ b00_0000_1110_0001

AFPOINTER = [(aff - 1) * wrw] + 1
=[(14—1)* 16] + 1

= (13 16) + 1

=209

=> 14’ b00_0000_1101_0001

AFPOINTERT = [(aff - 2) * wrw] + 1
=[(14-2) " 16] + 1

= (12*16) + 1

=193

=> 14’ b00_0000_1100_0001

AEPOINTER = [(aef) * rdw] + rdw - 1
8*4)+4-1

(8*4)+3

=35

=> 14’ b00_0000_0010_0011

AEFOINTER1 = [(aef + 1) * rdw] + rdw - 1
=[(8+1)*4]+4-1

=(9*4)+3

=39

=> 14’ b00_0000_0010_0111

12-51

	Memory Usage Guide for MachXO2 Devices
	Introduction
	Memories in MachXO2 Devices
	Utilizing IPexpress
	IPexpress Flow
	ECC in Memory Modules
	IP Regeneration/Modification
	Utilizing PMI
	Memory Module Inference

	IPexpress Memory Modules
	Single Port RAM (RAM_DQ) – EBR Based
	Dual Port RAM (RAM_DP_TRUE) – EBR Based
	Pseudo Dual Port RAM (RAM_DP) – EBR Based
	Read Only Memory (ROM) – EBR Based
	First In First Out (FIFO_DC) – EBR Based

	FIFO_DC Flags
	FIFO_DC Dual and Dynamic Threshold Options
	FIFO_DC Operation
	Distributed Single Port RAM (Distributed_SPRAM) – PFU Based
	Distributed Dual Port RAM (Distributed_DPRAM) – PFU Based
	Distributed ROM (Distributed_ROM) – PFU-Based
	RAM-Based Shift Register

	MachXO2 Primitives
	Single Port RAM (SP8KC) – EBR Based
	True Dual Port RAM (DP8KC) – EBR-Based
	Pseudo Dual Port RAM (PDPW8KC) – EBR-Based
	Dual-Clock FIFO (FIFO8KB) – EBR Based
	FIFO_DC Flags
	Distributed SPRAM (SPR16X4C) – PFU Based
	Distributed DPRAM (DPR16X4C) – PFU Based
	Distributed ROM (ROMnnnX1A) – PFU Based

	Initializing Memory
	Initialization File Format

	Technical Support Assistance
	Revision History
	Appendix A. Attribute Definitions
	DATA_WIDTH
	REGMODE
	RESETMODE
	CSDECODE
	WRITEMODE
	GSR
	ASYNC_RESET_RELEASE
	INIT_DATA

	Appendix B. Setting FIFO_DC Pointer Attributes

