c2t/c2t.c

1708 lines
44 KiB
C
Raw Permalink Normal View History

2014-11-24 00:26:22 +00:00
/*
c2t, Code to Tape|Text, Version 0.995, Tue May 22 22:11:12 GMT 2012
Parts copyright (c) 2011, 2012 All Rights Reserved, Egan Ford (egan@sense.net)
THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
PARTICULAR PURPOSE.
Built on work by:
* Mike Willegal (http://www.willegal.net/appleii/toaiff.c)
* Paul Bourke (http://paulbourke.net/dataformats/audio/, AIFF and WAVE output code)
* Malcolm Slaney and Ken Turkowski (Integer to IEEE 80-bit float code)
* Lance Leventhal and Winthrop Saville (6502 Assembly Language Subroutines, CRC 6502 code)
* Piotr Fusik (http://atariarea.krap.pl/x-asm/inflate.html, inflate 6502 code)
* Rich Geldreich (http://code.google.com/p/miniz/, deflate C code)
* Mike Chambers (http://rubbermallet.org/fake6502.c, 6502 simulator)
License:
* Do what you like, remember to credit all sources when using.
Description:
This small utility will read Apple I/II binary and
monitor text files and output Apple I or II AIFF and WAV
audio files for use with the Apple I and II cassette
interface.
Features:
* Apple I, II, II+, IIe support.
* Big and little-endian machine support.
o Little-endian tested.
* AIFF and WAVE output (both tested).
* Platforms tested:
o 32-bit/64-bit x86 OS/X.
o 32-bit/64-bit x86 Linux.
o 32-bit x86 Windows/Cygwin.
o 32-bit x86 Windows/MinGW.
* Multi-segment tapes.
Compile:
OS/X:
gcc -Wall -O -o c2t c2t.c
Linux:
gcc -Wall -O -o c2t c2t.c -lm
Windows/Cygwin:
gcc -Wall -O -o c2t c2t.c
Windows/MinGW:
PATH=C:\MinGW\bin;%PATH%
gcc -Wall -O -static -o c2t c2t.c
Notes:
* Virtual ][ only supports .aif (or .cass)
* Dropbox only supports .wav and .aiff (do not use .wave or .aif)
Not yet done:
* Test big-endian.
* gnuindent
* Redo malloc code in appendtone
Thinking about:
* Check for existing file and abort, or warn, or prompt.
* -q quiet option for Makefiles
* autoload support for basic programs
Bugs:
* Probably
*/
#include "miniz.h"
#include "fake6502.h"
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <unistd.h>
#include <string.h>
#include <math.h>
#include "c2t.h"
#define ABS(x) (((x) < 0) ? -(x) : (x))
#define VERSION "Version 0.995"
#define OUTFILE argv[argc-1]
#define BINARY 0
#define MONITOR 1
#define AIFF 2
#define WAVE 3
#define DSK 4
#define WRITEBYTE(x) { \
unsigned char wb_j, wb_temp=(x); \
for(wb_j=0;wb_j<8;wb_j++) { \
if(wb_temp & 0x80) \
appendtone(&output,&outputlength,freq1,rate,0,1,&offset); \
else \
appendtone(&output,&outputlength,freq0,rate,0,1,&offset); \
wb_temp<<=1; \
} \
}
void usage();
char *getext(char *filename);
void appendtone(double **sound, long *length, int freq, int rate, double time, double cycles, int *offset);
void Write_AIFF(FILE * fptr, double *samples, long nsamples, int nfreq, int bits, double amp);
void Write_WAVE(FILE * fptr, double *samples, long nsamples, int nfreq, int bits, double amp);
void ConvertToIeeeExtended(double num, unsigned char *bytes);
uint8_t read6502(uint16_t address);
void write6502(uint16_t address, uint8_t value);
unsigned char ram[65536];
int square = 0;
typedef struct seg {
int start;
int length;
int codelength;
unsigned char *data;
char filename[256];
} segment;
int main(int argc, char **argv)
{
FILE *ofp;
double *output = NULL, amp=0.75;
long outputlength=0;
int i, c, model=0, outputtype, offset=0, fileoutput=1, warm=0, dsk=0, noformat=0, k8=0, qr=0;
int autoload=0, basicload=0, compress=0, fast=0, cd=0, tape=0, endpage=0, longmon=0, rate=11025, bits=8, freq0=2000, freq1=1000, freq_pre=770, freq_end=770;
char *filetypes[] = {"binary","monitor","aiff","wave","disk"};
char *modeltypes[] = {"\b","I","II"};
char *ext;
unsigned int numseg = 0;
segment *segments = NULL;
opterr = 1;
while((c = getopt(argc, argv, "12vabcftdpn8meh?lqr:")) != -1)
switch(c) {
case '1': // apple 1
rate = 8000;
model = 1;
break;
case '2': // apple 2
model = 2;
break;
case 'v': // version
fprintf(stderr,"\n%s\n\n",VERSION);
return 1;
break;
case 'a': // assembly autoloader
model = 2;
autoload = 1;
break;
case 'b': // basic autoloader
model = 2;
basicload = autoload = 1;
break;
case 'c': // compression
model = 2;
autoload = compress = 1;
break;
case 'f': // hifreq
rate = 48000;
model = 2;
autoload = fast = 1;
cd = k8 = 0;
break;
case 'd': // hifreq CD
rate = 44100;
bits = 16;
amp = 1.0;
model = 2;
cd = autoload = 1;
fast = k8 = 0;
break;
case 't': // 10 sec leader
tape = 6;
amp = 1.0;
break;
case 'm': // drop to monitor after load
warm = 1;
break;
case 'e': // end on page boundary
endpage = 1;
break;
case 'p': // stdout
fileoutput = 0;
break;
case 'n':
noformat = 1;
break;
case '8': // 8k
rate = 48000;
model = 2;
autoload = k8 = 1;
fast = cd = 0;
break;
case 'h': // help
case '?':
usage();
return 1;
case 'q': // qr code support
rate = 48000;
model = 2;
autoload = k8 = qr = 1;
fast = cd = 0;
break;
case 'l': // long mon lines
longmon = 1;
break;
case 'r': // override rate for -1/-2 only
rate = atoi(optarg);
autoload = basicload = k8 = qr = fast = cd = 0;
break;
}
if(argc - optind < 1 + fileoutput) {
usage();
return 1;
}
// read intput files
fprintf(stderr,"\n");
for(i=optind;i<argc-fileoutput;i++) {
char start[5];
unsigned char b, *data;
int j, k, inputtype=BINARY;
segment *tmp;
FILE *ifp;
if((tmp = realloc(segments, (numseg+1) * sizeof(segment))) == NULL) {
fprintf(stderr,"could not allocate segment %d\n",numseg+1);
abort();
}
segments = tmp;
k=0;
for(j=0;j<strlen(argv[i]);j++) {
if(argv[i][j] == ',')
break;
segments[numseg].filename[k++]=argv[i][j];
}
segments[numseg].filename[k] = '\0';
// TODO: store as basename, check for MINGW compat
k=0;j++;
for(;j<strlen(argv[i]);j++)
start[k++]=argv[i][j];
start[k] = '\0';
if(k == 0)
segments[numseg].start = -1;
else
segments[numseg].start = (int)strtol(start, (char **)NULL, 16);
if((ext = getext(segments[numseg].filename)) != NULL)
if(strcmp(ext,"mon") == 0)
inputtype = MONITOR;
if((ext = getext(segments[numseg].filename)) != NULL)
if(strcmp(ext,"dsk") == 0)
inputtype = DSK;
//TODO: Windows needs "rb", check UNIX/Linux
if ((ifp = fopen(segments[numseg].filename, "rb")) == NULL) {
fprintf(stderr,"Cannot read: %s\n\n",segments[numseg].filename);
return 1;
}
fprintf(stderr,"Reading %s, type %s, segment %d, start: ",segments[numseg].filename,filetypes[inputtype],numseg+1);
//hack to support dumping disks for testing, should be 48, not 140 (really should be dynamic)
if((data = malloc(140*1024*sizeof(char))) == NULL) {
fprintf(stderr,"could not allocate 140K data\n");
abort();
}
if(inputtype == DSK) {
dsk = 1;
segments[numseg].length = 0;
for(i=0;i<5;i++) {
//segments[numseg].start=i*(140 * 1024 / 5);
segments[numseg].start=0x1000;
while(fread(&b, 1, 1, ifp) == 1 && segments[numseg].length < (140 * 1024 / 5))
data[segments[numseg].length++]=b;
segments[numseg].data = data;
fprintf(stderr,"0x%04X, length: %d\n",segments[numseg].start,segments[numseg].length);
if(segments[numseg].length != (140 * 1024 / 5)) {
fprintf(stderr,"\n%s segment too short (< %d) for file type DISK\n\n",segments[numseg].filename,140*1024/5);
return 1;
}
if(i==4)
break;
numseg++;
if((tmp = realloc(segments, (numseg+1) * sizeof(segment))) == NULL) {
fprintf(stderr,"could not allocate segment %d\n",numseg+1);
abort();
}
segments = tmp;
strcpy(segments[numseg].filename,segments[numseg-1].filename);
segments[numseg].length = 0;
if((data = malloc(48*1024*sizeof(char))) == NULL) {
fprintf(stderr,"could not allocate 48K data\n");
abort();
}
data[segments[numseg].length++]=b;
fprintf(stderr,"Reading %s, type %s, segment %d, start: ",segments[numseg].filename,filetypes[inputtype],numseg+1);
}
}
if(inputtype == BINARY) {
if(segments[numseg].start == -1) {
fread(&b, 1, 1, ifp);
segments[numseg].start = b;
fread(&b, 1, 1, ifp);
segments[numseg].start |= b << 8;
fread(&b, 1, 1, ifp);
segments[numseg].length = b;
fread(&b, 1, 1, ifp);
segments[numseg].length |= b << 8;
}
segments[numseg].length=0;
while(fread(&b, 1, 1, ifp) == 1)
data[segments[numseg].length++]=b;
segments[numseg].data = data;
fprintf(stderr,"0x%04X, length: %d\n",segments[numseg].start,segments[numseg].length);
}
if(inputtype == MONITOR) {
int byte, naddr;
char addrs[8], s;
segments[numseg].start = -1;
segments[numseg].length = 0;
while(fscanf(ifp,"%s ",addrs) != EOF) {
naddr = (int)strtol(addrs, (char **)NULL, 16);
if(segments[numseg].start == -1)
segments[numseg].start = naddr;
if(naddr != segments[numseg].start + segments[numseg].length) { // multi segment
segments[numseg].data = data;
fprintf(stderr,"0x%04X, length: %d\n",segments[numseg].start,segments[numseg].length);
numseg++;
if((tmp = realloc(segments, (numseg+1) * sizeof(segment))) == NULL) {
fprintf(stderr,"could not allocate segment %d\n",numseg+1);
abort();
}
segments = tmp;
if((data = malloc(48*1024*sizeof(char))) == NULL) {
fprintf(stderr,"could not allocate 48K data\n");
abort();
}
segments[numseg].start = naddr;
segments[numseg].length = 0;
strcpy(segments[numseg].filename,segments[numseg-1].filename);
fprintf(stderr,"Reading %s, type %s, segment %d, start: ",segments[numseg].filename,filetypes[inputtype],numseg+1);
}
while (fscanf(ifp, "%x%c", &byte, &s) != EOF) {
data[segments[numseg].length++]=byte;
if (s == '\n' || s == '\r')
break;
}
}
segments[numseg].data = data;
fprintf(stderr,"0x%04X, length: %d\n",segments[numseg].start,segments[numseg].length);
}
fclose(ifp);
numseg++;
}
fprintf(stderr,"\n");
if(dsk) {
fast=autoload=cd=tape=0;
model=2;
if(numseg != 5) {
fprintf(stderr,"Number of segments != 5 and/or not of length %d\n\n",140*1024/5);
return 1;
}
else {
for(i=0;i<5;i++) {
if(segments[i].length != 140*1024/5) {
fprintf(stderr,"Number of segments != 5 and/or not of length %d\n\n",140*1024/5);
return 1;
}
}
}
}
if(endpage)
for(i=0;i<numseg;i++) {
int pad = (0xFF - ((segments[i].length + segments[i].start - 1) & 0xFF));
segments[i].length += pad;
while(pad--)
segments[i].data[segments[i].length - pad - 1] = 0;
}
if(numseg > 1 || model == 1) {
if(autoload)
fprintf(stderr,"WARNING: number of segments > 1 or model = 1: autoload and fast disabled.\n\n");
autoload = fast = 0;
}
if(fileoutput) {
if((ext = getext(OUTFILE)) == NULL) {
usage();
return 1;
}
else {
if(strcmp(ext,"aiff") == 0 || strcmp(ext,"aif") == 0)
outputtype = AIFF;
else if(strcmp(ext,"wave") == 0 || strcmp(ext,"wav") == 0)
outputtype = WAVE;
else if(strcmp(ext,"mon") == 0)
outputtype = MONITOR;
else {
usage();
return 1;
}
}
}
else {
/*
if(!model)
outputtype = MONITOR;
else
outputtype = AIFF;
*/
outputtype = MONITOR;
}
if(outputtype != MONITOR && !model) {
fprintf(stderr,"\nYou must specify -1 or -2 for Apple I or II tape format, exiting.\n\n");
return 1;
}
// TODO: check for existing file and abort, or warn, or prompt
ofp=stdout;
if(fileoutput) {
if ((ofp = fopen(OUTFILE, "w")) == NULL) {
fprintf(stderr,"\nCannot write: %s\n\n",OUTFILE);
return 1;
}
fprintf(stderr,"Writing %s as Apple %s formatted %s.\n\n",OUTFILE,modeltypes[model],filetypes[outputtype]);
}
else
fprintf(stderr,"Writing %s as Apple %s formatted %s.\n\n","STDOUT",modeltypes[model],filetypes[outputtype]);
if(outputtype == MONITOR) {
int i, j, saddr;
unsigned long cmp_len;
unsigned char *cmp_data;
for(i=0;i<numseg;i++) {
if(compress) {
cmp_data = tdefl_compress_mem_to_heap(segments[i].data, segments[i].length, &cmp_len, TDEFL_MAX_PROBES_MASK);
free(segments[i].data);
segments[i].data = cmp_data;
segments[i].length = cmp_len;
}
saddr = segments[i].start;
fprintf(ofp,"%04X:", saddr);
for(j=0;j<segments[i].length;j++) {
fprintf(ofp," %02X", segments[i].data[j]);
if(++saddr % (8+(24*longmon)) == 0 && j < segments[i].length - 1)
fprintf(ofp,"\n%04X:",saddr);
}
fprintf(ofp,"\n");
}
fclose(ofp);
return 0;
}
// write out code
if(!autoload && !dsk) {
int i, j;
unsigned long cmp_len;
unsigned char *cmp_data;
char checksum;
for(i=0;i<numseg;i++) {
// header
if(model == 1) {
appendtone(&output,&outputlength,1000,rate,4.0+tape,0,&offset);
appendtone(&output,&outputlength,2000,rate,0,1,&offset);
}
else {
appendtone(&output,&outputlength,770,rate,4.0+tape,0,&offset);
appendtone(&output,&outputlength,2500,rate,0,0.5,&offset);
appendtone(&output,&outputlength,2000,rate,0,0.5,&offset);
}
checksum = 0xff;
if(compress) {
cmp_data = tdefl_compress_mem_to_heap(segments[i].data, segments[i].length, &cmp_len, TDEFL_MAX_PROBES_MASK);
free(segments[i].data);
segments[i].data = cmp_data;
segments[i].length = cmp_len;
}
for(j=0;j<segments[i].length;j++) {
WRITEBYTE(segments[i].data[j]);
checksum ^= segments[i].data[j];
}
// checksum/endbits
if(model == 2)
WRITEBYTE(checksum);
appendtone(&output,&outputlength,1000,rate,0,1,&offset);
}
// friendly help
fprintf(stderr,"To load up and run on your Apple %s, type:\n\n",modeltypes[model]);
if(model == 1)
fprintf(stderr,"\tC100R\n\t");
else
fprintf(stderr,"\tCALL -151\n\t");
for(i=0;i<numseg;i++)
fprintf(stderr,"%X.%XR ",segments[i].start,segments[i].start+segments[i].length-1);
fprintf(stderr,"\n");
if(numseg == 1) {
if(model == 1)
fprintf(stderr,"\t%XR\n",segments[0].start);
else
fprintf(stderr,"\t%XG\n",segments[0].start);
}
fprintf(stderr,"\n");
}
if(autoload) {
char eta[40], loading[]=" LOADING ";
unsigned char byte, checksum, *cmp_data, table[12];
unsigned long ones=0, zeros=0, cmp_len;
unsigned int length, move_len;
int i, j;
appendtone(&output,&outputlength,770,rate,4.0+tape,0,&offset);
appendtone(&output,&outputlength,2500,rate,0,0.5,&offset);
appendtone(&output,&outputlength,2000,rate,0,0.5,&offset);
// compute uncompressed ETA
for(j=0;j<segments[0].length;j++) {
byte=segments[0].data[j];
for(i=0;i<8;i++) {
if(byte & 0x80)
ones++;
else
zeros++;
byte <<= 1;
}
}
if(fast) {
freq0 = 12000;
freq1 = 8000;
freq_pre = 6000;
freq_end = 2000;
}
if(k8) {
freq0 = 12000;
freq1 = 6000;
freq_pre = 2000;
freq_end = 770;
}
if(cd) {
freq0 = 11025;
freq1 = 7350;
freq_pre = 5512;
freq_end = 2000;
}
if(compress) {
unsigned long cmp_ones=0, cmp_zeros=0;
double inflate_time = 0;
unsigned int endj;
cmp_data = tdefl_compress_mem_to_heap(segments[0].data, segments[0].length, &cmp_len, TDEFL_MAX_PROBES_MASK);
for(j=0;j<cmp_len;j++) {
byte=cmp_data[j];
for(i=0;i<8;i++) {
if(byte & 0x80)
cmp_ones++;
else
cmp_zeros++;
byte <<= 1;
}
}
// we need to append inflate/decompress code to end of data
for(j=0;j<sizeof(inflatecode)/sizeof(char);j++) {
byte=inflatecode[j];
for(i=0;i<8;i++) {
if(byte & 0x80)
cmp_ones++;
else
cmp_zeros++;
byte <<= 1;
}
}
//compute inflate time
//load up inflate data
checksum = 0xff;
for(j=0;j<cmp_len;j++) {
ram[0xBA00 - cmp_len + j] = cmp_data[j];
checksum ^= cmp_data[j];
}
//load up inflate code
for(j=0;j<sizeof(inflatecode)/sizeof(char);j++) {
ram[0xBA00 + j] = inflatecode[j];
checksum ^= inflatecode[j];
}
ram[0xBA00 + j] = checksum;
endj = 0xBA00 + j + 1;
if(k8) {
for(j=(0x823 - 0x80C);j<sizeof(fastload8000)/sizeof(char);j++)
ram[0xBE80 - (0x823 - 0x80C) + j] = fastload8000[j];
ram[0xBE80 - (0x823 - 0x80C) + j++] = (0xBA00 - cmp_len) & 0xFF;
ram[0xBE80 - (0x823 - 0x80C) + j++] = (0xBA00 - cmp_len) >> 8;
ram[0xBE80 - (0x823 - 0x80C) + j++] = endj & 0xFF;
ram[0xBE80 - (0x823 - 0x80C) + j++] = endj >> 8;
ram[0x00] = 0xFF;
ram[0xBF09] = 0x00; //BRK
reset6502();
exec6502(0xBEE3);
if(ram[0x00] != 0)
fprintf(stderr,"WARNING: simulated checksum failed: %02X\n",ram[0x00]);
inflate_time += clockticks6502/1023000.0;
}
//zero page src
ram[0x0] = (0xBA00 - cmp_len) & 0xFF;
ram[0x1] = (0xBA00 - cmp_len) >> 8;
//zero page dst
ram[0x2] = (segments[0].start) & 0xFF;
ram[0x3] = (segments[0].start) >> 8;
//setup JSR
ram[0xBF00] = 0x20; // JSR $9B00
ram[0xBF01] = 0x00;
ram[0xBF02] = 0xBA;
ram[0xBF03] = 0x00; //BRK to stop simulation
//run it
reset6502();
exec6502(0xBF00);
//compare (just to be safe)
for(j=0;j<segments[0].length;j++)
if(ram[segments[0].start + j] != segments[0].data[j]) {
fprintf(stderr,"WARNING: simulated inflate failed at %04X\n",j+0x1000);
break;
}
inflate_time += clockticks6502/1023000.0;
fprintf(stderr,"start: 0x%04X, length: %5d, deflated: %.02f%%, data time:%.02f, inflate time:%.02f\n",(unsigned int)(0xB9FF - cmp_len),(unsigned int)cmp_len,100.0*(1-cmp_len/(float)segments[0].length),cmp_ones/(float)freq1 + cmp_zeros/(float)freq0,inflate_time);
if((ones/(float)freq1 + zeros/(float)freq0) < inflate_time + (cmp_ones/(float)freq1 + cmp_zeros/(float)freq0)) {
fprintf(stderr,"WARNING: compression disabled: no significant gain (%.02f)\n",ones/(float)freq1 + zeros/(float)freq0);
compress = 0;
}
else {
free(segments[0].data);
segments[0].data = cmp_data;
segments[0].codelength = segments[0].length;
segments[0].length = cmp_len;
ones=cmp_ones;
zeros=cmp_zeros;
}
fprintf(stderr,"\n");
}
sprintf(eta,", ETA %d SEC. ",(int) (ones/(float)freq1 + zeros/(float)freq0 + 0.5 + 0.25 + (3.75 * ((k8|cd|fast) == 0))) );
length = sizeof(basic)/sizeof(char) + sizeof(table)/sizeof(char) + strlen(loading) + strlen(segments[0].filename) + strlen(eta) + 1;
move_len = (0x823 - 0x80C);
if(fast)
length += sizeof(fastload9600)/sizeof(char);
else
if(k8)
length += sizeof(fastload8000)/sizeof(char);
else
if(cd)
length += sizeof(fastloadcd)/sizeof(char);
else {
length += sizeof(autoloadcode)/sizeof(char);
move_len = (0x81A - 0x80C);
}
if(fast | k8 | cd) {
if(length - sizeof(basic)/sizeof(char) - move_len > 384) {
segments[0].filename[strlen(segments[0].filename) - (length - sizeof(basic)/sizeof(char) - move_len - 384)] = '\0';
fprintf(stderr,"WARNING: BF00 page overflow: truncating display filename to %s\n\n",segments[0].filename);
length = 384 + sizeof(basic)/sizeof(char) + move_len;
}
}
else {
if(length - sizeof(basic)/sizeof(char) - move_len > 256) {
segments[0].filename[strlen(segments[0].filename) - (length - sizeof(basic)/sizeof(char) - move_len - 256)] = '\0';
fprintf(stderr,"WARNING: BF00 page overflow: truncating display filename to %s\n\n",segments[0].filename);
length = 256 + sizeof(basic)/sizeof(char) + move_len;
}
}
freq0 = 2000;
freq1 = 1000;
checksum = 0xff;
if(basicload) { // write basic stub
header[0] = length & 0xFF;
header[1] = length >> 8;
for(i=0;i<3;i++) {
WRITEBYTE(header[i]);
checksum ^= header[i];
}
WRITEBYTE(checksum);
appendtone(&output,&outputlength,1000,rate,0,1,&offset);
appendtone(&output,&outputlength,770,rate,4.0,0,&offset);
appendtone(&output,&outputlength,2500,rate,0,0.5,&offset);
appendtone(&output,&outputlength,2000,rate,0,0.5,&offset);
// write out basic program
checksum = 0xff;
for(i=0;i<sizeof(basic)/sizeof(char);i++) {
WRITEBYTE(basic[i]);
checksum ^= basic[i];
}
}
else { // write out JMP 80C NOP NOP ...
unsigned char patch[] = {0x4C,0x0C,0x08,0xEA,0xEA,0xEA,0xEA,0xEA,0xEA,0xEA,0xEA,0xEA};
for(i=0;i<sizeof(patch)/sizeof(char);i++) {
WRITEBYTE(patch[i]);
checksum ^= patch[i];
}
}
// write out move and load code
if(compress) {
unsigned int cmp_start = 0xBA00 - segments[0].length;
//load start
table[0] = cmp_start & 0xff;
table[1] = cmp_start >> 8;
//load end
table[2] = (cmp_start + segments[0].length + sizeof(inflatecode)/sizeof(char) + 1) & 0xff;
table[3] = (cmp_start + segments[0].length + sizeof(inflatecode)/sizeof(char) + 1) >> 8;
//inflate src
table[4] = cmp_start & 0xff;
table[5] = cmp_start >> 8;
//inflate end
table[8] = (segments[0].start + segments[0].codelength) & 0xff;
table[9] = (segments[0].start + segments[0].codelength) >> 8;
}
else {
//load start
table[0] = segments[0].start & 0xff;
table[1] = segments[0].start >> 8;
//load end
table[2] = (segments[0].start + segments[0].length + 1) & 0xff;
table[3] = (segments[0].start + segments[0].length + 1) >> 8;
}
//JMP to code, inflate dst
table[6] = segments[0].start & 0xff;
table[7] = segments[0].start >> 8;
table[10] = compress;
table[11] = warm;
if(fast)
for(i=0;i<sizeof(fastload9600)/sizeof(char);i++) {
WRITEBYTE(fastload9600[i]);
checksum ^= fastload9600[i];
}
else
if(k8)
for(i=0;i<sizeof(fastload8000)/sizeof(char);i++) {
WRITEBYTE(fastload8000[i]);
checksum ^= fastload8000[i];
}
else
if(cd)
for(i=0;i<sizeof(fastloadcd)/sizeof(char);i++) {
WRITEBYTE(fastloadcd[i]);
checksum ^= fastloadcd[i];
}
else
for(i=0;i<sizeof(autoloadcode)/sizeof(char);i++) {
WRITEBYTE(autoloadcode[i]);
checksum ^= autoloadcode[i];
}
// append table
for(i=0;i<sizeof(table)/sizeof(char);i++) {
WRITEBYTE(table[i]);
checksum ^= table[i];
}
// append LOADING...
loading[0] = 0x0D;
for(i=0;i<strlen(loading);i++) {
byte = toupper(loading[i]) + 0x80;
if(loading[i] == '_')
byte = toupper(' ') + 0x80;
WRITEBYTE(byte);
checksum ^= byte;
}
// append to loader the name of the file
for(i=0;i<strlen(segments[0].filename);i++) {
byte = toupper(segments[0].filename[i]) + 0x80;
if(segments[0].filename[i] == '_')
byte = toupper(' ') + 0x80;
WRITEBYTE(byte);
checksum ^= byte;
}
// append to loader the ETA
for(i=0;i<strlen(eta);i++) {
byte = toupper(eta[i]) + 0x80;
WRITEBYTE(byte);
checksum ^= byte;
}
// append to NULL to LOADING string
WRITEBYTE(0x00);
checksum ^= 0x00;
// it's a wrap!
WRITEBYTE(0xff);
checksum ^= 0xff;
if(!basicload) {
int pad = (0xFF - (length & 0xFF));
if(!(fast|cd|k8))
pad += 0x100;
length += pad;
while(pad--)
WRITEBYTE(0x00);
}
WRITEBYTE(checksum);
appendtone(&output,&outputlength,1000,rate,0,1,&offset);
if(fast || cd || k8)
appendtone(&output,&outputlength,freq_pre,rate,0.25,0,&offset);
else {
appendtone(&output,&outputlength,770,rate,4.0,0,&offset);
appendtone(&output,&outputlength,2500,rate,0,0.5,&offset);
appendtone(&output,&outputlength,2000,rate,0,0.5,&offset);
}
// now the code
if(fast) {
freq0 = 12000;
freq1 = 8000;
}
if(cd) {
freq0 = 11025;
freq1 = 7350;
}
if(k8) {
freq0 = 12000;
freq1 = 6000;
}
if(qr) {
char loading[]="LOADING ";
outputlength = 0;
// 0.25 sec
appendtone(&output,&outputlength,freq_pre,rate,0.25,0,&offset);
checksum = 0xff;
// parameters, 12 bytes
for(i=0;i<sizeof(table)/sizeof(char);i++) {
WRITEBYTE(table[i]);
checksum ^= table[i];
}
// LOADING
for(i=0;i<strlen(loading);i++) {
byte = loading[i] + 0x80;
WRITEBYTE(byte);
checksum ^= byte;
}
// append to loader the name of the file
for(i=0;i<strlen(segments[0].filename);i++) {
byte = toupper(segments[0].filename[i]) + 0x80;
if(segments[0].filename[i] == '_')
byte = toupper(' ') + 0x80;
WRITEBYTE(byte);
checksum ^= byte;
}
// append to loader the ETA
for(i=0;i<strlen(eta);i++) {
byte = toupper(eta[i]) + 0x80;
WRITEBYTE(byte);
checksum ^= byte;
}
for(i=0;i<60-strlen(segments[0].filename)-strlen(eta)-strlen(loading);i++) {
WRITEBYTE(0x00);
checksum ^= 0x00;
}
WRITEBYTE(checksum);
// end of parameters
appendtone(&output,&outputlength,freq_end,rate,0,2,&offset);
// time to processes
appendtone(&output,&outputlength,freq_pre,rate,0.25,0,&offset);
}
checksum = 0xff;
for(j=0;j<segments[0].length;j++) {
WRITEBYTE(segments[0].data[j]);
checksum ^= segments[0].data[j];
}
if(compress) {
for(j=0;j<sizeof(inflatecode)/sizeof(char);j++) {
WRITEBYTE(inflatecode[j]);
checksum ^= inflatecode[j];
}
}
if(fast + cd + k8 == 0) { // hack so that standard method matches others
WRITEBYTE(0x00);
WRITEBYTE(0x00);
}
WRITEBYTE(checksum);
if(fast || cd || k8)
//appendtone(&output,&outputlength,freq_end,rate,0,1,&offset);
appendtone(&output,&outputlength,freq_end,rate,0,10,&offset);
else
//appendtone(&output,&outputlength,1000,rate,0,1,&offset);
appendtone(&output,&outputlength,1000,rate,0,10,&offset);
if(!qr) {
if(basicload) {
fprintf(stderr,"To load up and run on your Apple %s, type:\n\n\tLOAD\n",modeltypes[model]);
if(warm)
fprintf(stderr,"\t%XG\n",segments[0].start);
}
else {
fprintf(stderr,"To load up and run on your Apple %s, type:\n\n\t800.%XR 800G\n",modeltypes[model],0x800 + length + 1);
}
}
else {
fprintf(stderr,"To load up and run on your Apple %s, use the client disk.\n",modeltypes[model]);
}
fprintf(stderr,"\n");
}
if(dsk) {
char eta[40];
unsigned char byte, checksum=0xff, *cmp_data, start_table[21], *diskloadcode;
unsigned long ones=0, zeros=0, cmp_len, diskloadcode_len;
unsigned int length, start_table_len = 0;
int i, j;
double inflate_times[5];
if(k8) {
diskloadcode = diskload8000;
diskloadcode_len = sizeof(diskload8000)/sizeof(char);
}
else {
diskloadcode = diskload9600;
diskloadcode_len = sizeof(diskload9600)/sizeof(char);
}
rate = 48000;
appendtone(&output,&outputlength,770,rate,4.0+tape,0,&offset);
appendtone(&output,&outputlength,2500,rate,0,0.5,&offset);
appendtone(&output,&outputlength,2000,rate,0,0.5,&offset);
for(j=0;j<sizeof(diskloadcode2)/sizeof(char);j++) {
byte=diskloadcode2[j];
for(i=0;i<8;i++) {
if(byte & 0x80)
ones++;
else
zeros++;
byte <<= 1;
}
}
// compute pad length, assuming 4 pages max for code
zeros += 8*(4 * 256 - sizeof(diskloadcode2)/sizeof(char));
for(j=0;j<sizeof(diskloadcode3)/sizeof(char);j++) {
byte=diskloadcode3[j];
for(i=0;i<8;i++) {
if(byte & 0x80)
ones++;
else
zeros++;
byte <<= 1;
}
}
for(j=0;j<sizeof(dosboot1)/sizeof(char);j++) {
byte=dosboot1[j];
for(i=0;i<8;i++) {
if(byte & 0x80)
ones++;
else
zeros++;
byte <<= 1;
}
}
for(j=0;j<sizeof(dosboot2)/sizeof(char);j++) {
byte=dosboot2[j];
for(i=0;i<8;i++) {
if(byte & 0x80)
ones++;
else
zeros++;
byte <<= 1;
}
}
freq0 = 12000;
freq1 = 8000;
if(k8)
freq1 = 6000;
sprintf(eta,"%d SEC. ",(int) (ones/(float)freq1 + zeros/(float)freq0 + 0.5 + 0.25));
//length = sizeof(basic)/sizeof(char) + sizeof(diskloadcode)/sizeof(char);
length = sizeof(basic)/sizeof(char) + diskloadcode_len;
header[0] = length & 0xFF;
header[1] = length >> 8;
freq0 = 2000;
freq1 = 1000;
for(i=0;i<3;i++) {
WRITEBYTE(header[i]);
checksum ^= header[i];
}
WRITEBYTE(checksum);
appendtone(&output,&outputlength,1000,rate,0,1,&offset);
appendtone(&output,&outputlength,770