/* c2vip, Code to VIP Tape|Text, Version 0.2, Wed Jun 25 06:02:49 GMT 2014 Parts copyright (c) 2014 All Rights Reserved, Egan Ford (egan@sense.net) THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A PARTICULAR PURPOSE. Built on work by: * Paul Bourke (http://paulbourke.net/dataformats/audio/, AIFF and WAVE output code) * Malcolm Slaney and Ken Turkowski (Integer to IEEE 80-bit float code) License: * Do what you like, remember to credit all sources when using. Description: This small utility will read COSMAC VIP binaries and output COSMAC VIP AIFF and WAV audio files for use with a cassette interface. Features: * Big and little-endian machine support. o Little-endian tested. * AIFF and WAVE output (both tested). * Platforms tested: o 32-bit/64-bit x86 OS/X. o 32-bit/64-bit x86 Linux. o 32-bit x86 Windows/Cygwin. o 32-bit x86 Windows/MinGW. Compile: OS/X: gcc -Wall -O -o c2vip c2vip.c Linux: gcc -Wall -O -o c2vip c2vip.c -lm Windows/Cygwin: gcc -Wall -O -o c2vip c2vip.c Windows/MinGW: PATH=C:\MinGW\bin;%PATH% gcc -Wall -O -static -o c2vip c2vip.c Notes: * Dropbox only supports .wav and .aiff (do not use .wave or .aif) Not yet done: * Test big-endian. * gnuindent * Redo malloc code in appendtone Thinking about: * Check for existing file and abort, or warn, or prompt. * -q quiet option for Makefiles Bugs: * Probably */ #include #include #include #include #include #include #include "c2vip.h" #define ABS(x) (((x) < 0) ? -(x) : (x)) #define VERSION "Version 0.2" #define OUTFILE argv[argc-1] #define BINARY 0 #define MONITOR 1 #define AIFF 2 #define WAVE 3 #define DSK 4 #define WRITERBYTE(x) { \ unsigned char wb_j, wb_temp=(x); \ for(wb_j=0;wb_j<8;wb_j++) { \ if(wb_temp & 1) \ appendtone(&output,&outputlength,freq1,rate,0,1,&offset); \ else \ appendtone(&output,&outputlength,freq0,rate,0,1,&offset); \ wb_temp>>=1; \ } \ } void usage(); char *getext(char *filename); void appendtone(double **sound, long *length, int freq, int rate, double time, double cycles, int *offset); void Write_AIFF(FILE * fptr, double *samples, long nsamples, int nfreq, int bits, double amp); void Write_WAVE(FILE * fptr, double *samples, long nsamples, int nfreq, int bits, double amp); void ConvertToIeeeExtended(double num, unsigned char *bytes); int square = 0; typedef struct seg { int start; int length; int codelength; unsigned char *data; char filename[256]; } segment; int main(int argc, char **argv) { FILE *ofp; double *output = NULL, amp=0.75; long outputlength=0; int i, j, c, outputtype, offset=0, fileoutput=1; int longmon=0, rate=48000, bits=8, freq0=2000, freq1=800; char *filetypes[] = {"binary","monitor","aiff","wave","disk"}; char *ext; unsigned char pop, parity; unsigned int numseg = 0; segment *segments = NULL; opterr = 1; while((c = getopt(argc, argv, "vph?r:")) != -1) switch(c) { case 'v': // version fprintf(stderr,"\n%s\n\n",VERSION); return 1; break; case 'p': // stdout fileoutput = 0; break; case 'h': // help case '?': usage(); return 1; case 'r': // override rate for -1/-2 only rate = atoi(optarg); break; } if(argc - optind < 1 + fileoutput) { usage(); return 1; } // read intput files fprintf(stderr,"\n"); for(i=optind;i grow) { grow = *length + n + 10000000; if((tmp = (double *)realloc(*sound, (grow) * sizeof(double))) == NULL) abort(); *sound = tmp; } //tmp -> (*sound) if(square) { int j; if(freq) for (i = 0; i < n; i++) { for(j = 0;j < rate / freq / 2;j++) (*sound)[*length + i++] = 1; for(j = 0;j < rate / freq / 2;j++) (*sound)[*length + i++] = -1; i--; } else for (i = 0; i < n; i++) (*sound)[*length + i] = 0; } else for(i=0;i=0;i--) { if(filename[i] == '.') break; stack[sp++] = filename[i]; } stack[sp] = '\0'; if(sp == strlen(filename) || sp == 0) return(NULL); if((rval = (char *)malloc(sp * sizeof(char))) == NULL) ; //do error code rval[sp] = '\0'; for(i=0;i> 24, fptr); fputc((totalsize & 0x00ff0000) >> 16, fptr); fputc((totalsize & 0x0000ff00) >> 8, fptr); fputc((totalsize & 0x000000ff), fptr); fprintf(fptr, "AIFF"); // Write the common chunk fprintf(fptr, "COMM"); fputc(0, fptr); // Size fputc(0, fptr); fputc(0, fptr); fputc(18, fptr); fputc(0, fptr); // Channels = 1 fputc(1, fptr); fputc((nsamples & 0xff000000) >> 24, fptr); // Samples fputc((nsamples & 0x00ff0000) >> 16, fptr); fputc((nsamples & 0x0000ff00) >> 8, fptr); fputc((nsamples & 0x000000ff), fptr); fputc(0, fptr); // Size = 16 fputc(bits, fptr); ConvertToIeeeExtended(nfreq, bit80); for (i = 0; i < 10; i++) fputc(bit80[i], fptr); // Write the sound data chunk fprintf(fptr, "SSND"); fputc((((bits / 8) * nsamples + 8) & 0xff000000) >> 24, fptr); // Size fputc((((bits / 8) * nsamples + 8) & 0x00ff0000) >> 16, fptr); fputc((((bits / 8) * nsamples + 8) & 0x0000ff00) >> 8, fptr); fputc((((bits / 8) * nsamples + 8) & 0x000000ff), fptr); fputc(0, fptr); // Offset fputc(0, fptr); fputc(0, fptr); fputc(0, fptr); fputc(0, fptr); // Block fputc(0, fptr); fputc(0, fptr); fputc(0, fptr); // Find the range themin = samples[0]; themax = themin; for (i = 1; i < nsamples; i++) { if (samples[i] > themax) themax = samples[i]; if (samples[i] < themin) themin = samples[i]; } if (themin >= themax) { themin -= 1; themax += 1; } themid = (themin + themax) / 2; themin -= themid; themax -= themid; if (ABS(themin) > ABS(themax)) themax = ABS(themin); // scale = amp * 32760 / (themax); scale = amp * ((bits == 16) ? 32760 : 124) / (themax); // Write the data for (i = 0; i < nsamples; i++) { if (bits == 16) { v = (unsigned short) (scale * (samples[i] - themid)); fputc((v & 0xff00) >> 8, fptr); fputc((v & 0x00ff), fptr); } else { v = (unsigned char) (scale * (samples[i] - themid)); fputc(v, fptr); } } } /* Write an WAVE sound file Only do one channel, only support 16 bit. Supports any (reasonable) sample frequency Little/big endian independent! */ // egan: changed code to support 8 bit. void Write_WAVE(FILE * fptr, double *samples, long nsamples, int nfreq, int bits, double amp) { unsigned short v; int i; unsigned long totalsize, bytespersec; double themin, themax, scale, themid; // Write the form chunk fprintf(fptr, "RIFF"); totalsize = (bits / 8) * nsamples + 36; fputc((totalsize & 0x000000ff), fptr); // File size fputc((totalsize & 0x0000ff00) >> 8, fptr); fputc((totalsize & 0x00ff0000) >> 16, fptr); fputc((totalsize & 0xff000000) >> 24, fptr); fprintf(fptr, "WAVE"); fprintf(fptr, "fmt "); // fmt_ chunk fputc(16, fptr); // Chunk size fputc(0, fptr); fputc(0, fptr); fputc(0, fptr); fputc(1, fptr); // Format tag - uncompressed fputc(0, fptr); fputc(1, fptr); // Channels fputc(0, fptr); fputc((nfreq & 0x000000ff), fptr); // Sample frequency (Hz) fputc((nfreq & 0x0000ff00) >> 8, fptr); fputc((nfreq & 0x00ff0000) >> 16, fptr); fputc((nfreq & 0xff000000) >> 24, fptr); bytespersec = (bits / 8) * nfreq; fputc((bytespersec & 0x000000ff), fptr); // Average bytes per second fputc((bytespersec & 0x0000ff00) >> 8, fptr); fputc((bytespersec & 0x00ff0000) >> 16, fptr); fputc((bytespersec & 0xff000000) >> 24, fptr); fputc((bits / 8), fptr); // Block alignment fputc(0, fptr); fputc(bits, fptr); // Bits per sample fputc(0, fptr); fprintf(fptr, "data"); totalsize = (bits / 8) * nsamples; fputc((totalsize & 0x000000ff), fptr); // Data size fputc((totalsize & 0x0000ff00) >> 8, fptr); fputc((totalsize & 0x00ff0000) >> 16, fptr); fputc((totalsize & 0xff000000) >> 24, fptr); // Find the range themin = samples[0]; themax = themin; for (i = 1; i < nsamples; i++) { if (samples[i] > themax) themax = samples[i]; if (samples[i] < themin) themin = samples[i]; } if (themin >= themax) { themin -= 1; themax += 1; } themid = (themin + themax) / 2; themin -= themid; themax -= themid; if (ABS(themin) > ABS(themax)) themax = ABS(themin); // scale = amp * 32760 / (themax); scale = amp * ((bits == 16) ? 32760 : 124) / (themax); // Write the data for (i = 0; i < nsamples; i++) { if (bits == 16) { v = (unsigned short) (scale * (samples[i] - themid)); fputc((v & 0x00ff), fptr); fputc((v & 0xff00) >> 8, fptr); } else { v = (unsigned char) (scale * (samples[i] - themid)); fputc(v + 0x80, fptr); } } } /* * C O N V E R T T O I E E E E X T E N D E D */ /* Copyright (C) 1988-1991 Apple Computer, Inc. * All rights reserved. * * Machine-independent I/O routines for IEEE floating-point numbers. * * NaN's and infinities are converted to HUGE_VAL or HUGE, which * happens to be infinity on IEEE machines. Unfortunately, it is * impossible to preserve NaN's in a machine-independent way. * Infinities are, however, preserved on IEEE machines. * * These routines have been tested on the following machines: * Apple Macintosh, MPW 3.1 C compiler * Apple Macintosh, THINK C compiler * Silicon Graphics IRIS, MIPS compiler * Cray X/MP and Y/MP * Digital Equipment VAX * * * Implemented by Malcolm Slaney and Ken Turkowski. * * Malcolm Slaney contributions during 1988-1990 include big- and little- * endian file I/O, conversion to and from Motorola's extended 80-bit * floating-point format, and conversions to and from IEEE single- * precision floating-point format. * * In 1991, Ken Turkowski implemented the conversions to and from * IEEE double-precision format, added more precision to the extended * conversions, and accommodated conversions involving +/- infinity, * NaN's, and denormalized numbers. */ #ifndef HUGE_VAL #define HUGE_VAL HUGE #endif /*HUGE_VAL */ #define FloatToUnsigned(f) ((unsigned long)(((long)(f - 2147483648.0)) + 2147483647L) + 1) void ConvertToIeeeExtended(double num, unsigned char *bytes) { int sign; int expon; double fMant, fsMant; unsigned long hiMant, loMant; if (num < 0) { sign = 0x8000; num *= -1; } else { sign = 0; } if (num == 0) { expon = 0; hiMant = 0; loMant = 0; } else { fMant = frexp(num, &expon); if ((expon > 16384) || !(fMant < 1)) { /* Infinity or NaN */ expon = sign | 0x7FFF; hiMant = 0; loMant = 0; /* infinity */ } else { /* Finite */ expon += 16382; if (expon < 0) { /* denormalized */ fMant = ldexp(fMant, expon); expon = 0; } expon |= sign; fMant = ldexp(fMant, 32); fsMant = floor(fMant); hiMant = FloatToUnsigned(fsMant); fMant = ldexp(fMant - fsMant, 32); fsMant = floor(fMant); loMant = FloatToUnsigned(fsMant); } } bytes[0] = expon >> 8; bytes[1] = expon; bytes[2] = hiMant >> 24; bytes[3] = hiMant >> 16; bytes[4] = hiMant >> 8; bytes[5] = hiMant; bytes[6] = loMant >> 24; bytes[7] = loMant >> 16; bytes[8] = loMant >> 8; bytes[9] = loMant; }