c2t/c2vip.c
2014-11-23 18:32:12 -07:00

649 lines
16 KiB
C

/*
c2vip, Code to VIP Tape|Text, Version 0.2, Wed Jun 25 06:02:49 GMT 2014
Parts copyright (c) 2014 All Rights Reserved, Egan Ford (egan@sense.net)
THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
PARTICULAR PURPOSE.
Built on work by:
* Paul Bourke (http://paulbourke.net/dataformats/audio/, AIFF and WAVE output code)
* Malcolm Slaney and Ken Turkowski (Integer to IEEE 80-bit float code)
License:
* Do what you like, remember to credit all sources when using.
Description:
This small utility will read COSMAC VIP binaries and output COSMAC VIP AIFF
and WAV audio files for use with a cassette interface.
Features:
* Big and little-endian machine support.
o Little-endian tested.
* AIFF and WAVE output (both tested).
* Platforms tested:
o 32-bit/64-bit x86 OS/X.
o 32-bit/64-bit x86 Linux.
o 32-bit x86 Windows/Cygwin.
o 32-bit x86 Windows/MinGW.
Compile:
OS/X:
gcc -Wall -O -o c2vip c2vip.c
Linux:
gcc -Wall -O -o c2vip c2vip.c -lm
Windows/Cygwin:
gcc -Wall -O -o c2vip c2vip.c
Windows/MinGW:
PATH=C:\MinGW\bin;%PATH%
gcc -Wall -O -static -o c2vip c2vip.c
Notes:
* Dropbox only supports .wav and .aiff (do not use .wave or .aif)
Not yet done:
* Test big-endian.
* gnuindent
* Redo malloc code in appendtone
Thinking about:
* Check for existing file and abort, or warn, or prompt.
* -q quiet option for Makefiles
Bugs:
* Probably
*/
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <unistd.h>
#include <string.h>
#include <math.h>
#include "c2vip.h"
#define ABS(x) (((x) < 0) ? -(x) : (x))
#define VERSION "Version 0.2"
#define OUTFILE argv[argc-1]
#define BINARY 0
#define MONITOR 1
#define AIFF 2
#define WAVE 3
#define DSK 4
#define WRITERBYTE(x) { \
unsigned char wb_j, wb_temp=(x); \
for(wb_j=0;wb_j<8;wb_j++) { \
if(wb_temp & 1) \
appendtone(&output,&outputlength,freq1,rate,0,1,&offset); \
else \
appendtone(&output,&outputlength,freq0,rate,0,1,&offset); \
wb_temp>>=1; \
} \
}
void usage();
char *getext(char *filename);
void appendtone(double **sound, long *length, int freq, int rate, double time, double cycles, int *offset);
void Write_AIFF(FILE * fptr, double *samples, long nsamples, int nfreq, int bits, double amp);
void Write_WAVE(FILE * fptr, double *samples, long nsamples, int nfreq, int bits, double amp);
void ConvertToIeeeExtended(double num, unsigned char *bytes);
int square = 0;
typedef struct seg {
int start;
int length;
int codelength;
unsigned char *data;
char filename[256];
} segment;
int main(int argc, char **argv)
{
FILE *ofp;
double *output = NULL, amp=0.75;
long outputlength=0;
int i, j, c, outputtype, offset=0, fileoutput=1;
int longmon=0, rate=48000, bits=8, freq0=2000, freq1=800;
char *filetypes[] = {"binary","monitor","aiff","wave","disk"};
char *ext;
unsigned char pop, parity;
unsigned int numseg = 0;
segment *segments = NULL;
opterr = 1;
while((c = getopt(argc, argv, "vph?r:")) != -1)
switch(c) {
case 'v': // version
fprintf(stderr,"\n%s\n\n",VERSION);
return 1;
break;
case 'p': // stdout
fileoutput = 0;
break;
case 'h': // help
case '?':
usage();
return 1;
case 'r': // override rate for -1/-2 only
rate = atoi(optarg);
break;
}
if(argc - optind < 1 + fileoutput) {
usage();
return 1;
}
// read intput files
fprintf(stderr,"\n");
for(i=optind;i<argc-fileoutput;i++) {
unsigned char b, *data;
int j, k, inputtype=BINARY;
segment *tmp;
FILE *ifp;
if((tmp = realloc(segments, (numseg+1) * sizeof(segment))) == NULL) {
fprintf(stderr,"could not allocate segment %d\n",numseg+1);
abort();
}
segments = tmp;
k=0;
for(j=0;j<strlen(argv[i]);j++) {
if(argv[i][j] == ',')
break;
segments[numseg].filename[k++]=argv[i][j];
}
segments[numseg].filename[k] = '\0';
// TODO: store as basename, check for MINGW compat
/*
if((ext = getext(segments[numseg].filename)) != NULL)
if(strcmp(ext,"mon") == 0)
inputtype = MONITOR;
*/
if ((ifp = fopen(segments[numseg].filename, "rb")) == NULL) {
fprintf(stderr,"Cannot read: %s\n\n",segments[numseg].filename);
return 1;
}
fprintf(stderr,"Reading %s, type %s, segment %d, start: ",segments[numseg].filename,filetypes[inputtype],numseg+1);
if((data = malloc(64*1024*sizeof(char))) == NULL) {
fprintf(stderr,"could not allocate 64K data\n");
abort();
}
if(inputtype == BINARY) {
segments[numseg].start = 0;
segments[numseg].length = 0;
while(fread(&b, 1, 1, ifp) == 1)
data[segments[numseg].length++]=b;
segments[numseg].data = data;
fprintf(stderr,"0x%04X, length: %d\n",segments[numseg].start,segments[numseg].length);
}
fclose(ifp);
numseg++;
}
fprintf(stderr,"\n");
if(fileoutput) {
if((ext = getext(OUTFILE)) == NULL) {
usage();
return 1;
}
else {
if(strcmp(ext,"aiff") == 0 || strcmp(ext,"aif") == 0)
outputtype = AIFF;
else if(strcmp(ext,"wave") == 0 || strcmp(ext,"wav") == 0)
outputtype = WAVE;
else if(strcmp(ext,"mon") == 0)
outputtype = MONITOR;
else {
usage();
return 1;
}
}
}
else {
outputtype = MONITOR;
}
ofp=stdout;
if(fileoutput) {
if ((ofp = fopen(OUTFILE, "w")) == NULL) {
fprintf(stderr,"\nCannot write: %s\n\n",OUTFILE);
return 1;
}
fprintf(stderr,"Writing %s as %s formatted %s.\n\n",OUTFILE,"COSMAC VIP",filetypes[outputtype]);
}
else
fprintf(stderr,"Writing %s as %s formatted %s.\n\n","STDOUT","COSMAC VIP",filetypes[outputtype]);
if(outputtype == MONITOR) {
int i, j, saddr;
for(i=0;i<numseg;i++) {
saddr = segments[i].start;
fprintf(ofp,"%04X:", saddr);
for(j=0;j<segments[i].length;j++) {
fprintf(ofp," %02X", segments[i].data[j]);
if(++saddr % (8+(24*longmon)) == 0 && j < segments[i].length - 1)
fprintf(ofp,"\n%04X:",saddr);
}
fprintf(ofp,"\n");
}
fclose(ofp);
return 0;
}
for(i=0;i<numseg;i++) {
appendtone(&output,&outputlength,2000,rate,4.0,0,&offset);
for(j=0;j<segments[i].length;j++) {
// start bit
appendtone(&output,&outputlength,freq1,rate,0,1,&offset);
// data bits
WRITERBYTE(segments[i].data[j]);
// even parity
pop = segments[i].data[j];
parity = 0;
for(;pop;parity=(parity==0))
pop &= pop - 1;
if(parity)
appendtone(&output,&outputlength,freq1,rate,0,1,&offset);
else
appendtone(&output,&outputlength,freq0,rate,0,1,&offset);
}
}
// append zero to zero out last wave
appendtone(&output,&outputlength,0,rate,0,1,&offset);
// 0.1 sec quiet to help some emulators
appendtone(&output,&outputlength,0,rate,0.1,0,&offset);
// 0.4 sec quiet to help some IIs
// appendtone(&output,&outputlength,0,rate,0.4,0,&offset);
// write it
if(outputtype == AIFF)
Write_AIFF(ofp,output,outputlength,rate,bits,amp);
else if(outputtype == WAVE)
Write_WAVE(ofp,output,outputlength,rate,bits,amp);
fclose(ofp);
return 0;
}
void appendtone(double **sound, long *length, int freq, int rate, double time, double cycles, int *offset)
{
long i, n=time*rate;
static long grow = 0;
double *tmp = NULL;
if(freq && cycles)
n=cycles*rate/freq;
if(n == 0)
n=cycles;
/*
if((tmp = (double *)realloc(*sound, (*length + n) * sizeof(double))) == NULL)
abort();
*sound = tmp;
*/
// new code for speed up Windows realloc
if(*length + n > grow) {
grow = *length + n + 10000000;
if((tmp = (double *)realloc(*sound, (grow) * sizeof(double))) == NULL)
abort();
*sound = tmp;
}
//tmp -> (*sound)
if(square) {
int j;
if(freq)
for (i = 0; i < n; i++) {
for(j = 0;j < rate / freq / 2;j++)
(*sound)[*length + i++] = 1;
for(j = 0;j < rate / freq / 2;j++)
(*sound)[*length + i++] = -1;
i--;
}
else
for (i = 0; i < n; i++)
(*sound)[*length + i] = 0;
}
else
for(i=0;i<n;i++)
(*sound)[*length+i] = sin(2*M_PI*i*freq/rate + *offset*M_PI);
if(cycles - (int)cycles == 0.5)
*offset = (*offset == 0);
*length += n;
}
char *getext(char *filename)
{
char stack[256], *rval;
int i, sp = 0;
for(i=strlen(filename)-1;i>=0;i--) {
if(filename[i] == '.')
break;
stack[sp++] = filename[i];
}
stack[sp] = '\0';
if(sp == strlen(filename) || sp == 0)
return(NULL);
if((rval = (char *)malloc(sp * sizeof(char))) == NULL)
; //do error code
rval[sp] = '\0';
for(i=0;i<sp+i;i++)
rval[i] = stack[--sp];
return(rval);
}
void usage()
{
fprintf(stderr,"%s",usagetext);
}
// Code below from http://paulbourke.net/dataformats/audio/
/*
Write an AIFF sound file
Only do one channel, only support 16 bit.
Supports sample frequencies of 11, 22, 44KHz (default).
Little/big endian independent!
*/
// egan: changed code to support any Hz and 8 bit.
void Write_AIFF(FILE * fptr, double *samples, long nsamples, int nfreq, int bits, double amp)
{
unsigned short v;
int i;
unsigned long totalsize;
double themin, themax, scale, themid;
unsigned char bit80[10];
// Write the form chunk
fprintf(fptr, "FORM");
totalsize = 4 + 8 + 18 + 8 + (bits / 8) * nsamples + 8;
fputc((totalsize & 0xff000000) >> 24, fptr);
fputc((totalsize & 0x00ff0000) >> 16, fptr);
fputc((totalsize & 0x0000ff00) >> 8, fptr);
fputc((totalsize & 0x000000ff), fptr);
fprintf(fptr, "AIFF");
// Write the common chunk
fprintf(fptr, "COMM");
fputc(0, fptr); // Size
fputc(0, fptr);
fputc(0, fptr);
fputc(18, fptr);
fputc(0, fptr); // Channels = 1
fputc(1, fptr);
fputc((nsamples & 0xff000000) >> 24, fptr); // Samples
fputc((nsamples & 0x00ff0000) >> 16, fptr);
fputc((nsamples & 0x0000ff00) >> 8, fptr);
fputc((nsamples & 0x000000ff), fptr);
fputc(0, fptr); // Size = 16
fputc(bits, fptr);
ConvertToIeeeExtended(nfreq, bit80);
for (i = 0; i < 10; i++)
fputc(bit80[i], fptr);
// Write the sound data chunk
fprintf(fptr, "SSND");
fputc((((bits / 8) * nsamples + 8) & 0xff000000) >> 24, fptr); // Size
fputc((((bits / 8) * nsamples + 8) & 0x00ff0000) >> 16, fptr);
fputc((((bits / 8) * nsamples + 8) & 0x0000ff00) >> 8, fptr);
fputc((((bits / 8) * nsamples + 8) & 0x000000ff), fptr);
fputc(0, fptr); // Offset
fputc(0, fptr);
fputc(0, fptr);
fputc(0, fptr);
fputc(0, fptr); // Block
fputc(0, fptr);
fputc(0, fptr);
fputc(0, fptr);
// Find the range
themin = samples[0];
themax = themin;
for (i = 1; i < nsamples; i++) {
if (samples[i] > themax)
themax = samples[i];
if (samples[i] < themin)
themin = samples[i];
}
if (themin >= themax) {
themin -= 1;
themax += 1;
}
themid = (themin + themax) / 2;
themin -= themid;
themax -= themid;
if (ABS(themin) > ABS(themax))
themax = ABS(themin);
// scale = amp * 32760 / (themax);
scale = amp * ((bits == 16) ? 32760 : 124) / (themax);
// Write the data
for (i = 0; i < nsamples; i++) {
if (bits == 16) {
v = (unsigned short) (scale * (samples[i] - themid));
fputc((v & 0xff00) >> 8, fptr);
fputc((v & 0x00ff), fptr);
} else {
v = (unsigned char) (scale * (samples[i] - themid));
fputc(v, fptr);
}
}
}
/*
Write an WAVE sound file
Only do one channel, only support 16 bit.
Supports any (reasonable) sample frequency
Little/big endian independent!
*/
// egan: changed code to support 8 bit.
void Write_WAVE(FILE * fptr, double *samples, long nsamples, int nfreq, int bits, double amp)
{
unsigned short v;
int i;
unsigned long totalsize, bytespersec;
double themin, themax, scale, themid;
// Write the form chunk
fprintf(fptr, "RIFF");
totalsize = (bits / 8) * nsamples + 36;
fputc((totalsize & 0x000000ff), fptr); // File size
fputc((totalsize & 0x0000ff00) >> 8, fptr);
fputc((totalsize & 0x00ff0000) >> 16, fptr);
fputc((totalsize & 0xff000000) >> 24, fptr);
fprintf(fptr, "WAVE");
fprintf(fptr, "fmt "); // fmt_ chunk
fputc(16, fptr); // Chunk size
fputc(0, fptr);
fputc(0, fptr);
fputc(0, fptr);
fputc(1, fptr); // Format tag - uncompressed
fputc(0, fptr);
fputc(1, fptr); // Channels
fputc(0, fptr);
fputc((nfreq & 0x000000ff), fptr); // Sample frequency (Hz)
fputc((nfreq & 0x0000ff00) >> 8, fptr);
fputc((nfreq & 0x00ff0000) >> 16, fptr);
fputc((nfreq & 0xff000000) >> 24, fptr);
bytespersec = (bits / 8) * nfreq;
fputc((bytespersec & 0x000000ff), fptr); // Average bytes per second
fputc((bytespersec & 0x0000ff00) >> 8, fptr);
fputc((bytespersec & 0x00ff0000) >> 16, fptr);
fputc((bytespersec & 0xff000000) >> 24, fptr);
fputc((bits / 8), fptr); // Block alignment
fputc(0, fptr);
fputc(bits, fptr); // Bits per sample
fputc(0, fptr);
fprintf(fptr, "data");
totalsize = (bits / 8) * nsamples;
fputc((totalsize & 0x000000ff), fptr); // Data size
fputc((totalsize & 0x0000ff00) >> 8, fptr);
fputc((totalsize & 0x00ff0000) >> 16, fptr);
fputc((totalsize & 0xff000000) >> 24, fptr);
// Find the range
themin = samples[0];
themax = themin;
for (i = 1; i < nsamples; i++) {
if (samples[i] > themax)
themax = samples[i];
if (samples[i] < themin)
themin = samples[i];
}
if (themin >= themax) {
themin -= 1;
themax += 1;
}
themid = (themin + themax) / 2;
themin -= themid;
themax -= themid;
if (ABS(themin) > ABS(themax))
themax = ABS(themin);
// scale = amp * 32760 / (themax);
scale = amp * ((bits == 16) ? 32760 : 124) / (themax);
// Write the data
for (i = 0; i < nsamples; i++) {
if (bits == 16) {
v = (unsigned short) (scale * (samples[i] - themid));
fputc((v & 0x00ff), fptr);
fputc((v & 0xff00) >> 8, fptr);
} else {
v = (unsigned char) (scale * (samples[i] - themid));
fputc(v + 0x80, fptr);
}
}
}
/*
* C O N V E R T T O I E E E E X T E N D E D
*/
/* Copyright (C) 1988-1991 Apple Computer, Inc.
* All rights reserved.
*
* Machine-independent I/O routines for IEEE floating-point numbers.
*
* NaN's and infinities are converted to HUGE_VAL or HUGE, which
* happens to be infinity on IEEE machines. Unfortunately, it is
* impossible to preserve NaN's in a machine-independent way.
* Infinities are, however, preserved on IEEE machines.
*
* These routines have been tested on the following machines:
* Apple Macintosh, MPW 3.1 C compiler
* Apple Macintosh, THINK C compiler
* Silicon Graphics IRIS, MIPS compiler
* Cray X/MP and Y/MP
* Digital Equipment VAX
*
*
* Implemented by Malcolm Slaney and Ken Turkowski.
*
* Malcolm Slaney contributions during 1988-1990 include big- and little-
* endian file I/O, conversion to and from Motorola's extended 80-bit
* floating-point format, and conversions to and from IEEE single-
* precision floating-point format.
*
* In 1991, Ken Turkowski implemented the conversions to and from
* IEEE double-precision format, added more precision to the extended
* conversions, and accommodated conversions involving +/- infinity,
* NaN's, and denormalized numbers.
*/
#ifndef HUGE_VAL
#define HUGE_VAL HUGE
#endif /*HUGE_VAL */
#define FloatToUnsigned(f) ((unsigned long)(((long)(f - 2147483648.0)) + 2147483647L) + 1)
void ConvertToIeeeExtended(double num, unsigned char *bytes)
{
int sign;
int expon;
double fMant, fsMant;
unsigned long hiMant, loMant;
if (num < 0) {
sign = 0x8000;
num *= -1;
} else {
sign = 0;
}
if (num == 0) {
expon = 0;
hiMant = 0;
loMant = 0;
} else {
fMant = frexp(num, &expon);
if ((expon > 16384) || !(fMant < 1)) { /* Infinity or NaN */
expon = sign | 0x7FFF;
hiMant = 0;
loMant = 0; /* infinity */
} else { /* Finite */
expon += 16382;
if (expon < 0) { /* denormalized */
fMant = ldexp(fMant, expon);
expon = 0;
}
expon |= sign;
fMant = ldexp(fMant, 32);
fsMant = floor(fMant);
hiMant = FloatToUnsigned(fsMant);
fMant = ldexp(fMant - fsMant, 32);
fsMant = floor(fMant);
loMant = FloatToUnsigned(fsMant);
}
}
bytes[0] = expon >> 8;
bytes[1] = expon;
bytes[2] = hiMant >> 24;
bytes[3] = hiMant >> 16;
bytes[4] = hiMant >> 8;
bytes[5] = hiMant;
bytes[6] = loMant >> 24;
bytes[7] = loMant >> 16;
bytes[8] = loMant >> 8;
bytes[9] = loMant;
}