c2t/c2t.c

1717 lines
44 KiB
C

/*
c2t, Code to Tape|Text, Version 0.995, Tue May 22 22:11:12 GMT 2012
Parts copyright (c) 2011, 2012 All Rights Reserved, Egan Ford (egan@sense.net)
THIS CODE AND INFORMATION ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY
KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND/OR FITNESS FOR A
PARTICULAR PURPOSE.
Built on work by:
* Mike Willegal (http://www.willegal.net/appleii/toaiff.c)
* Paul Bourke (http://paulbourke.net/dataformats/audio/, AIFF and WAVE output code)
* Malcolm Slaney and Ken Turkowski (Integer to IEEE 80-bit float code)
* Lance Leventhal and Winthrop Saville (6502 Assembly Language Subroutines, CRC 6502 code)
* Piotr Fusik (http://atariarea.krap.pl/x-asm/inflate.html, inflate 6502 code)
* Rich Geldreich (http://code.google.com/p/miniz/, deflate C code)
* Mike Chambers (http://rubbermallet.org/fake6502.c, 6502 simulator)
License:
* Do what you like, remember to credit all sources when using.
Description:
This small utility will read Apple I/II binary and
monitor text files and output Apple I or II AIFF and WAV
audio files for use with the Apple I and II cassette
interface.
Features:
* Apple I, II, II+, IIe support.
* Big and little-endian machine support.
o Little-endian tested.
* AIFF and WAVE output (both tested).
* Platforms tested:
o 32-bit/64-bit x86 OS/X.
o 32-bit/64-bit x86 Linux.
o 32-bit x86 Windows/Cygwin.
o 32-bit x86 Windows/MinGW.
* Multi-segment tapes.
Compile:
OS/X:
gcc -Wall -O -o c2t c2t.c
Linux:
gcc -Wall -O -o c2t c2t.c -lm
Windows/Cygwin:
gcc -Wall -O -o c2t c2t.c
Windows/MinGW:
PATH=C:\MinGW\bin;%PATH%
gcc -Wall -O -static -o c2t c2t.c
Notes:
* Virtual ][ only supports .aif (or .cass)
* Dropbox only supports .wav and .aiff (do not use .wave or .aif)
Not yet done:
* Test big-endian.
* gnuindent
* Redo malloc code in appendtone
Thinking about:
* Check for existing file and abort, or warn, or prompt.
* -q quiet option for Makefiles
* autoload support for basic programs
Bugs:
* Probably
*/
#include "miniz.h"
#include "fake6502.h"
#include <stdio.h>
#include <stdlib.h>
#include <ctype.h>
#include <unistd.h>
#include <string.h>
#include <math.h>
#include "c2t.h"
#define ABS(x) (((x) < 0) ? -(x) : (x))
#define VERSION "Version 0.996"
#define OUTFILE argv[argc-1]
#define BINARY 0
#define MONITOR 1
#define AIFF 2
#define WAVE 3
#define DSK 4
#define WRITEBYTE(x) { \
unsigned char wb_j, wb_temp=(x); \
for(wb_j=0;wb_j<8;wb_j++) { \
if(wb_temp & 0x80) \
appendtone(&output,&outputlength,freq1,rate,0,1,&offset); \
else \
appendtone(&output,&outputlength,freq0,rate,0,1,&offset); \
wb_temp<<=1; \
} \
}
void usage();
char *getext(char *filename);
void appendtone(double **sound, long *length, int freq, int rate, double time, double cycles, int *offset);
void Write_AIFF(FILE * fptr, double *samples, long nsamples, int nfreq, int bits, double amp);
void Write_WAVE(FILE * fptr, double *samples, long nsamples, int nfreq, int bits, double amp);
void ConvertToIeeeExtended(double num, unsigned char *bytes);
uint8_t read6502(uint16_t address);
void write6502(uint16_t address, uint8_t value);
unsigned char ram[65536];
int square = 0;
typedef struct seg {
int start;
int length;
int codelength;
unsigned char *data;
char filename[256];
} segment;
int main(int argc, char **argv)
{
FILE *ofp;
double *output = NULL, amp=0.75;
long outputlength=0;
int i, c, model=0, outputtype, offset=0, fileoutput=1, warm=0, dsk=0, noformat=0, k8=0, qr=0;
int autoload=0, basicload=0, compress=0, fast=0, cd=0, tape=0, endpage=0, longmon=0, rate=11025, bits=8, freq0=2000, freq1=1000, freq_pre=770, freq_end=770;
char *filetypes[] = {"binary","monitor","aiff","wave","disk"};
char *modeltypes[] = {"\b","I","II"};
char *ext;
unsigned int numseg = 0;
segment *segments = NULL;
opterr = 1;
while((c = getopt(argc, argv, "12vabcftdpn8meh?lqr:")) != -1)
switch(c) {
case '1': // apple 1
rate = 8000;
model = 1;
break;
case '2': // apple 2
model = 2;
break;
case 'v': // version
fprintf(stderr,"\n%s\n\n",VERSION);
return 1;
break;
case 'a': // assembly autoloader
model = 2;
autoload = 1;
break;
case 'b': // basic autoloader
model = 2;
basicload = autoload = 1;
break;
case 'c': // compression
model = 2;
autoload = compress = 1;
break;
case 'f': // hifreq
rate = 48000;
model = 2;
autoload = fast = 1;
cd = k8 = 0;
break;
case 'd': // hifreq CD
rate = 44100;
bits = 16;
amp = 1.0;
model = 2;
cd = autoload = 1;
fast = k8 = 0;
break;
case 't': // 10 sec leader
tape = 6;
amp = 1.0;
break;
case 'm': // drop to monitor after load
warm = 1;
break;
case 'e': // end on page boundary
endpage = 1;
break;
case 'p': // stdout
fileoutput = 0;
break;
case 'n':
noformat = 1;
break;
case '8': // 8k
rate = 48000;
model = 2;
autoload = k8 = 1;
fast = cd = 0;
break;
case 'h': // help
case '?':
usage();
return 1;
case 'q': // qr code support
rate = 48000;
model = 2;
autoload = k8 = qr = 1;
fast = cd = 0;
break;
case 'l': // long mon lines
longmon = 1;
break;
case 'r': // override rate for -1/-2 only
rate = atoi(optarg);
autoload = basicload = k8 = qr = fast = cd = 0;
break;
}
if(argc - optind < 1 + fileoutput) {
usage();
return 1;
}
// read intput files
fprintf(stderr,"\n");
for(i=optind;i<argc-fileoutput;i++) {
char start[5];
unsigned char b, *data;
int j, k, inputtype=BINARY;
segment *tmp;
FILE *ifp;
if((tmp = realloc(segments, (numseg+1) * sizeof(segment))) == NULL) {
fprintf(stderr,"could not allocate segment %d\n",numseg+1);
abort();
}
segments = tmp;
k=0;
for(j=0;j<strlen(argv[i]);j++) {
if(argv[i][j] == ',')
break;
segments[numseg].filename[k++]=argv[i][j];
}
segments[numseg].filename[k] = '\0';
// TODO: store as basename, check for MINGW compat
k=0;j++;
for(;j<strlen(argv[i]);j++)
start[k++]=argv[i][j];
start[k] = '\0';
if(k == 0)
segments[numseg].start = -1;
else
segments[numseg].start = (int)strtol(start, (char **)NULL, 16);
if((ext = getext(segments[numseg].filename)) != NULL)
if(strcmp(ext,"mon") == 0)
inputtype = MONITOR;
if((ext = getext(segments[numseg].filename)) != NULL)
if(strcmp(ext,"dsk") == 0)
inputtype = DSK;
//TODO: Windows needs "rb", check UNIX/Linux
if ((ifp = fopen(segments[numseg].filename, "rb")) == NULL) {
fprintf(stderr,"Cannot read: %s\n\n",segments[numseg].filename);
return 1;
}
fprintf(stderr,"Reading %s, type %s, segment %d, start: ",segments[numseg].filename,filetypes[inputtype],numseg+1);
//hack to support dumping disks for testing, should be 48, not 140 (really should be dynamic)
if((data = malloc(140*1024*sizeof(char))) == NULL) {
fprintf(stderr,"could not allocate 140K data\n");
abort();
}
if(inputtype == DSK) {
dsk = 1;
segments[numseg].length = 0;
for(i=0;i<5;i++) {
//segments[numseg].start=i*(140 * 1024 / 5);
segments[numseg].start=0x1000;
while(fread(&b, 1, 1, ifp) == 1 && segments[numseg].length < (140 * 1024 / 5))
data[segments[numseg].length++]=b;
segments[numseg].data = data;
fprintf(stderr,"0x%04X, length: %d\n",segments[numseg].start,segments[numseg].length);
if(segments[numseg].length != (140 * 1024 / 5)) {
fprintf(stderr,"\n%s segment too short (< %d) for file type DISK\n\n",segments[numseg].filename,140*1024/5);
return 1;
}
if(i==4)
break;
numseg++;
if((tmp = realloc(segments, (numseg+1) * sizeof(segment))) == NULL) {
fprintf(stderr,"could not allocate segment %d\n",numseg+1);
abort();
}
segments = tmp;
strcpy(segments[numseg].filename,segments[numseg-1].filename);
segments[numseg].length = 0;
if((data = malloc(48*1024*sizeof(char))) == NULL) {
fprintf(stderr,"could not allocate 48K data\n");
abort();
}
data[segments[numseg].length++]=b;
fprintf(stderr,"Reading %s, type %s, segment %d, start: ",segments[numseg].filename,filetypes[inputtype],numseg+1);
}
}
if(inputtype == BINARY) {
if(segments[numseg].start == -1) {
fread(&b, 1, 1, ifp);
segments[numseg].start = b;
fread(&b, 1, 1, ifp);
segments[numseg].start |= b << 8;
fread(&b, 1, 1, ifp);
segments[numseg].length = b;
fread(&b, 1, 1, ifp);
segments[numseg].length |= b << 8;
}
segments[numseg].length=0;
while(fread(&b, 1, 1, ifp) == 1)
data[segments[numseg].length++]=b;
segments[numseg].data = data;
fprintf(stderr,"0x%04X, length: %d\n",segments[numseg].start,segments[numseg].length);
}
if(inputtype == MONITOR) {
int byte, naddr;
char addrs[8], s;
segments[numseg].start = -1;
segments[numseg].length = 0;
while(fscanf(ifp,"%s ",addrs) != EOF) {
naddr = (int)strtol(addrs, (char **)NULL, 16);
if(segments[numseg].start == -1)
segments[numseg].start = naddr;
if(naddr != segments[numseg].start + segments[numseg].length) { // multi segment
segments[numseg].data = data;
fprintf(stderr,"0x%04X, length: %d\n",segments[numseg].start,segments[numseg].length);
numseg++;
if((tmp = realloc(segments, (numseg+1) * sizeof(segment))) == NULL) {
fprintf(stderr,"could not allocate segment %d\n",numseg+1);
abort();
}
segments = tmp;
if((data = malloc(48*1024*sizeof(char))) == NULL) {
fprintf(stderr,"could not allocate 48K data\n");
abort();
}
segments[numseg].start = naddr;
segments[numseg].length = 0;
strcpy(segments[numseg].filename,segments[numseg-1].filename);
fprintf(stderr,"Reading %s, type %s, segment %d, start: ",segments[numseg].filename,filetypes[inputtype],numseg+1);
}
while (fscanf(ifp, "%x%c", &byte, &s) != EOF) {
data[segments[numseg].length++]=byte;
if (s == '\n' || s == '\r')
break;
}
}
segments[numseg].data = data;
fprintf(stderr,"0x%04X, length: %d\n",segments[numseg].start,segments[numseg].length);
}
fclose(ifp);
numseg++;
}
fprintf(stderr,"\n");
if(dsk) {
fast=autoload=cd=tape=0;
model=2;
if(numseg != 5) {
fprintf(stderr,"Number of segments != 5 and/or not of length %d\n\n",140*1024/5);
return 1;
}
else {
for(i=0;i<5;i++) {
if(segments[i].length != 140*1024/5) {
fprintf(stderr,"Number of segments != 5 and/or not of length %d\n\n",140*1024/5);
return 1;
}
}
}
}
if(endpage)
for(i=0;i<numseg;i++) {
int pad = (0xFF - ((segments[i].length + segments[i].start - 1) & 0xFF));
segments[i].length += pad;
while(pad--)
segments[i].data[segments[i].length - pad - 1] = 0;
}
if(numseg > 1 || model == 1) {
if(autoload)
fprintf(stderr,"WARNING: number of segments > 1 or model = 1: autoload and fast disabled.\n\n");
autoload = fast = 0;
}
if(fileoutput) {
if((ext = getext(OUTFILE)) == NULL) {
usage();
return 1;
}
else {
if(strcmp(ext,"aiff") == 0 || strcmp(ext,"aif") == 0)
outputtype = AIFF;
else if(strcmp(ext,"wave") == 0 || strcmp(ext,"wav") == 0)
outputtype = WAVE;
else if(strcmp(ext,"mon") == 0)
outputtype = MONITOR;
else {
usage();
return 1;
}
}
}
else {
/*
if(!model)
outputtype = MONITOR;
else
outputtype = AIFF;
*/
outputtype = MONITOR;
}
if(outputtype != MONITOR && !model) {
fprintf(stderr,"\nYou must specify -1 or -2 for Apple I or II tape format, exiting.\n\n");
return 1;
}
// TODO: check for existing file and abort, or warn, or prompt
ofp=stdout;
if(fileoutput) {
if ((ofp = fopen(OUTFILE, "w")) == NULL) {
fprintf(stderr,"\nCannot write: %s\n\n",OUTFILE);
return 1;
}
fprintf(stderr,"Writing %s as Apple %s formatted %s.\n\n",OUTFILE,modeltypes[model],filetypes[outputtype]);
}
else
fprintf(stderr,"Writing %s as Apple %s formatted %s.\n\n","STDOUT",modeltypes[model],filetypes[outputtype]);
if(outputtype == MONITOR) {
int i, j, saddr;
unsigned long cmp_len;
unsigned char *cmp_data;
for(i=0;i<numseg;i++) {
if(compress) {
cmp_data = tdefl_compress_mem_to_heap(segments[i].data, segments[i].length, &cmp_len, TDEFL_MAX_PROBES_MASK);
free(segments[i].data);
segments[i].data = cmp_data;
segments[i].length = cmp_len;
}
saddr = segments[i].start;
fprintf(ofp,"%04X:", saddr);
for(j=0;j<segments[i].length;j++) {
fprintf(ofp," %02X", segments[i].data[j]);
if(++saddr % (8+(24*longmon)) == 0 && j < segments[i].length - 1)
fprintf(ofp,"\n%04X:",saddr);
}
fprintf(ofp,"\n");
}
fclose(ofp);
return 0;
}
// write out code
if(!autoload && !dsk) {
int i, j;
unsigned long cmp_len;
unsigned char *cmp_data;
char checksum;
for(i=0;i<numseg;i++) {
// header
if(model == 1) {
appendtone(&output,&outputlength,1000,rate,4.0+tape,0,&offset);
appendtone(&output,&outputlength,2000,rate,0,1,&offset);
}
else {
appendtone(&output,&outputlength,770,rate,4.0+tape,0,&offset);
appendtone(&output,&outputlength,2500,rate,0,0.5,&offset);
appendtone(&output,&outputlength,2000,rate,0,0.5,&offset);
}
checksum = 0xff;
if(compress) {
cmp_data = tdefl_compress_mem_to_heap(segments[i].data, segments[i].length, &cmp_len, TDEFL_MAX_PROBES_MASK);
free(segments[i].data);
segments[i].data = cmp_data;
segments[i].length = cmp_len;
}
for(j=0;j<segments[i].length;j++) {
WRITEBYTE(segments[i].data[j]);
checksum ^= segments[i].data[j];
}
// checksum/endbits
if(model == 2)
WRITEBYTE(checksum);
appendtone(&output,&outputlength,1000,rate,0,1,&offset);
}
// friendly help
fprintf(stderr,"To load up and run on your Apple %s, type:\n\n",modeltypes[model]);
if(model == 1)
fprintf(stderr,"\tC100R\n\t");
else
fprintf(stderr,"\tCALL -151\n\t");
for(i=0;i<numseg;i++)
fprintf(stderr,"%X.%XR ",segments[i].start,segments[i].start+segments[i].length-1);
fprintf(stderr,"\n");
if(numseg == 1) {
if(model == 1)
fprintf(stderr,"\t%XR\n",segments[0].start);
else
fprintf(stderr,"\t%XG\n",segments[0].start);
}
fprintf(stderr,"\n");
}
if(autoload) {
char eta[40], loading[]=" LOADING ";
unsigned char byte, checksum, *cmp_data, table[12];
unsigned long ones=0, zeros=0, cmp_len;
unsigned int length, move_len;
int i, j;
appendtone(&output,&outputlength,770,rate,4.0+tape,0,&offset);
appendtone(&output,&outputlength,2500,rate,0,0.5,&offset);
appendtone(&output,&outputlength,2000,rate,0,0.5,&offset);
// compute uncompressed ETA
for(j=0;j<segments[0].length;j++) {
byte=segments[0].data[j];
for(i=0;i<8;i++) {
if(byte & 0x80)
ones++;
else
zeros++;
byte <<= 1;
}
}
if(fast) {
freq0 = 12000;
freq1 = 8000;
freq_pre = 6000;
freq_end = 2000;
}
if(k8) {
freq0 = 12000;
freq1 = 6000;
freq_pre = 2000;
freq_end = 770;
}
if(cd) {
freq0 = 11025;
freq1 = 7350;
freq_pre = 5512;
freq_end = 2000;
}
if(compress) {
unsigned long cmp_ones=0, cmp_zeros=0;
double inflate_time = 0;
unsigned int endj;
cmp_data = tdefl_compress_mem_to_heap(segments[0].data, segments[0].length, &cmp_len, TDEFL_MAX_PROBES_MASK);
for(j=0;j<cmp_len;j++) {
byte=cmp_data[j];
for(i=0;i<8;i++) {
if(byte & 0x80)
cmp_ones++;
else
cmp_zeros++;
byte <<= 1;
}
}
// we need to append inflate/decompress code to end of data
for(j=0;j<sizeof(inflatecode)/sizeof(char);j++) {
byte=inflatecode[j];
for(i=0;i<8;i++) {
if(byte & 0x80)
cmp_ones++;
else
cmp_zeros++;
byte <<= 1;
}
}
//compute inflate time
//load up inflate data
checksum = 0xff;
for(j=0;j<cmp_len;j++) {
ram[0xBA00 - cmp_len + j] = cmp_data[j];
checksum ^= cmp_data[j];
}
//load up inflate code
for(j=0;j<sizeof(inflatecode)/sizeof(char);j++) {
ram[0xBA00 + j] = inflatecode[j];
checksum ^= inflatecode[j];
}
ram[0xBA00 + j] = checksum;
endj = 0xBA00 + j + 1;
if(k8) {
for(j=(0x823 - 0x80C);j<sizeof(fastload8000)/sizeof(char);j++)
ram[0xBE80 - (0x823 - 0x80C) + j] = fastload8000[j];
ram[0xBE80 - (0x823 - 0x80C) + j++] = (0xBA00 - cmp_len) & 0xFF;
ram[0xBE80 - (0x823 - 0x80C) + j++] = (0xBA00 - cmp_len) >> 8;
ram[0xBE80 - (0x823 - 0x80C) + j++] = endj & 0xFF;
ram[0xBE80 - (0x823 - 0x80C) + j++] = endj >> 8;
ram[0x00] = 0xFF;
ram[0xBF09] = 0x00; //BRK
reset6502();
exec6502(0xBEE3);
if(ram[0x00] != 0)
fprintf(stderr,"WARNING: simulated checksum failed: %02X\n",ram[0x00]);
inflate_time += clockticks6502/1023000.0;
}
//zero page src
ram[0x0] = (0xBA00 - cmp_len) & 0xFF;
ram[0x1] = (0xBA00 - cmp_len) >> 8;
//zero page dst
ram[0x2] = (segments[0].start) & 0xFF;
ram[0x3] = (segments[0].start) >> 8;
//setup JSR
ram[0xBF00] = 0x20; // JSR $9B00
ram[0xBF01] = 0x00;
ram[0xBF02] = 0xBA;
ram[0xBF03] = 0x00; //BRK to stop simulation
//run it
reset6502();
exec6502(0xBF00);
//compare (just to be safe)
for(j=0;j<segments[0].length;j++)
if(ram[segments[0].start + j] != segments[0].data[j]) {
fprintf(stderr,"WARNING: simulated inflate failed at %04X\n",j+0x1000);
break;
}
inflate_time += clockticks6502/1023000.0;
fprintf(stderr,"start: 0x%04X, length: %5d, deflated: %.02f%%, data time:%.02f, inflate time:%.02f\n",(unsigned int)(0xB9FF - cmp_len),(unsigned int)cmp_len,100.0*(1-cmp_len/(float)segments[0].length),cmp_ones/(float)freq1 + cmp_zeros/(float)freq0,inflate_time);
if((ones/(float)freq1 + zeros/(float)freq0) < inflate_time + (cmp_ones/(float)freq1 + cmp_zeros/(float)freq0)) {
fprintf(stderr,"WARNING: compression disabled: no significant gain (%.02f)\n",ones/(float)freq1 + zeros/(float)freq0);
compress = 0;
}
else {
free(segments[0].data);
segments[0].data = cmp_data;
segments[0].codelength = segments[0].length;
segments[0].length = cmp_len;
ones=cmp_ones;
zeros=cmp_zeros;
}
fprintf(stderr,"\n");
}
sprintf(eta,", ETA %d SEC. ",(int) (ones/(float)freq1 + zeros/(float)freq0 + 0.5 + 0.25 + (3.75 * ((k8|cd|fast) == 0))) );
length = sizeof(basic)/sizeof(char) + sizeof(table)/sizeof(char) + strlen(loading) + strlen(segments[0].filename) + strlen(eta) + 1;
move_len = (0x823 - 0x80C);
if(fast)
length += sizeof(fastload9600)/sizeof(char);
else
if(k8)
length += sizeof(fastload8000)/sizeof(char);
else
if(cd)
length += sizeof(fastloadcd)/sizeof(char);
else {
length += sizeof(autoloadcode)/sizeof(char);
move_len = (0x81A - 0x80C);
}
if(fast | k8 | cd) {
if(length - sizeof(basic)/sizeof(char) - move_len > 384) {
segments[0].filename[strlen(segments[0].filename) - (length - sizeof(basic)/sizeof(char) - move_len - 384)] = '\0';
fprintf(stderr,"WARNING: BF00 page overflow: truncating display filename to %s\n\n",segments[0].filename);
length = 384 + sizeof(basic)/sizeof(char) + move_len;
}
}
else {
if(length - sizeof(basic)/sizeof(char) - move_len > 256) {
segments[0].filename[strlen(segments[0].filename) - (length - sizeof(basic)/sizeof(char) - move_len - 256)] = '\0';
fprintf(stderr,"WARNING: BF00 page overflow: truncating display filename to %s\n\n",segments[0].filename);
length = 256 + sizeof(basic)/sizeof(char) + move_len;
}
}
freq0 = 2000;
freq1 = 1000;
checksum = 0xff;
if(basicload) { // write basic stub
header[0] = length & 0xFF;
header[1] = length >> 8;
for(i=0;i<3;i++) {
WRITEBYTE(header[i]);
checksum ^= header[i];
}
WRITEBYTE(checksum);
appendtone(&output,&outputlength,1000,rate,0,1,&offset);
appendtone(&output,&outputlength,770,rate,4.0,0,&offset);
appendtone(&output,&outputlength,2500,rate,0,0.5,&offset);
appendtone(&output,&outputlength,2000,rate,0,0.5,&offset);
// write out basic program
checksum = 0xff;
for(i=0;i<sizeof(basic)/sizeof(char);i++) {
WRITEBYTE(basic[i]);
checksum ^= basic[i];
}
}
else { // write out JMP 80C NOP NOP ...
unsigned char patch[] = {0x4C,0x0C,0x08,0xEA,0xEA,0xEA,0xEA,0xEA,0xEA,0xEA,0xEA,0xEA};
for(i=0;i<sizeof(patch)/sizeof(char);i++) {
WRITEBYTE(patch[i]);
checksum ^= patch[i];
}
}
// write out move and load code
if(compress) {
unsigned int cmp_start = 0xBA00 - segments[0].length;
//load start
table[0] = cmp_start & 0xff;
table[1] = cmp_start >> 8;
//load end
table[2] = (cmp_start + segments[0].length + sizeof(inflatecode)/sizeof(char) + 1) & 0xff;
table[3] = (cmp_start + segments[0].length + sizeof(inflatecode)/sizeof(char) + 1) >> 8;
//inflate src
table[4] = cmp_start & 0xff;
table[5] = cmp_start >> 8;
//inflate end
table[8] = (segments[0].start + segments[0].codelength) & 0xff;
table[9] = (segments[0].start + segments[0].codelength) >> 8;
}
else {
//load start
table[0] = segments[0].start & 0xff;
table[1] = segments[0].start >> 8;
//load end
table[2] = (segments[0].start + segments[0].length + 1) & 0xff;
table[3] = (segments[0].start + segments[0].length + 1) >> 8;
}
//JMP to code, inflate dst
table[6] = segments[0].start & 0xff;
table[7] = segments[0].start >> 8;
table[10] = compress;
table[11] = warm;
if(fast)
for(i=0;i<sizeof(fastload9600)/sizeof(char);i++) {
WRITEBYTE(fastload9600[i]);
checksum ^= fastload9600[i];
}
else
if(k8)
for(i=0;i<sizeof(fastload8000)/sizeof(char);i++) {
WRITEBYTE(fastload8000[i]);
checksum ^= fastload8000[i];
}
else
if(cd)
for(i=0;i<sizeof(fastloadcd)/sizeof(char);i++) {
WRITEBYTE(fastloadcd[i]);
checksum ^= fastloadcd[i];
}
else
for(i=0;i<sizeof(autoloadcode)/sizeof(char);i++) {
WRITEBYTE(autoloadcode[i]);
checksum ^= autoloadcode[i];
}
// append table
for(i=0;i<sizeof(table)/sizeof(char);i++) {
WRITEBYTE(table[i]);
checksum ^= table[i];
}
// append LOADING...
loading[0] = 0x0D;
for(i=0;i<strlen(loading);i++) {
byte = toupper(loading[i]) + 0x80;
if(loading[i] == '_')
byte = toupper(' ') + 0x80;
WRITEBYTE(byte);
checksum ^= byte;
}
// append to loader the name of the file
for(i=0;i<strlen(segments[0].filename);i++) {
byte = toupper(segments[0].filename[i]) + 0x80;
if(segments[0].filename[i] == '_')
byte = toupper(' ') + 0x80;
WRITEBYTE(byte);
checksum ^= byte;
}
// append to loader the ETA
for(i=0;i<strlen(eta);i++) {
byte = toupper(eta[i]) + 0x80;
WRITEBYTE(byte);
checksum ^= byte;
}
// append to NULL to LOADING string
WRITEBYTE(0x00);
checksum ^= 0x00;
// it's a wrap!
WRITEBYTE(0xff);
checksum ^= 0xff;
if(!basicload) {
int pad = (0xFF - (length & 0xFF));
if(!(fast|cd|k8))
pad += 0x100;
length += pad;
while(pad--)
WRITEBYTE(0x00);
}
WRITEBYTE(checksum);
appendtone(&output,&outputlength,1000,rate,0,1,&offset);
if(fast || cd || k8)
appendtone(&output,&outputlength,freq_pre,rate,0.25,0,&offset);
else {
appendtone(&output,&outputlength,770,rate,4.0,0,&offset);
appendtone(&output,&outputlength,2500,rate,0,0.5,&offset);
appendtone(&output,&outputlength,2000,rate,0,0.5,&offset);
}
// now the code
if(fast) {
freq0 = 12000;
freq1 = 8000;
}
if(cd) {
freq0 = 11025;
freq1 = 7350;
}
if(k8) {
freq0 = 12000;
freq1 = 6000;
}
if(qr) {
char loading[]="LOADING ";
outputlength = 0;
// 0.25 sec
appendtone(&output,&outputlength,freq_pre,rate,0.25,0,&offset);
checksum = 0xff;
// parameters, 12 bytes
for(i=0;i<sizeof(table)/sizeof(char);i++) {
WRITEBYTE(table[i]);
checksum ^= table[i];
}
// LOADING
for(i=0;i<strlen(loading);i++) {
byte = loading[i] + 0x80;
WRITEBYTE(byte);
checksum ^= byte;
}
// append to loader the name of the file
for(i=0;i<strlen(segments[0].filename);i++) {
byte = toupper(segments[0].filename[i]) + 0x80;
if(segments[0].filename[i] == '_')
byte = toupper(' ') + 0x80;
WRITEBYTE(byte);
checksum ^= byte;
}
// append to loader the ETA
for(i=0;i<strlen(eta);i++) {
byte = toupper(eta[i]) + 0x80;
WRITEBYTE(byte);
checksum ^= byte;
}
for(i=0;i<60-strlen(segments[0].filename)-strlen(eta)-strlen(loading);i++) {
WRITEBYTE(0x00);
checksum ^= 0x00;
}
WRITEBYTE(checksum);
// end of parameters
appendtone(&output,&outputlength,freq_end,rate,0,2,&offset);
// time to processes
appendtone(&output,&outputlength,freq_pre,rate,0.25,0,&offset);
}
checksum = 0xff;
for(j=0;j<segments[0].length;j++) {
WRITEBYTE(segments[0].data[j]);
checksum ^= segments[0].data[j];
}
if(compress) {
for(j=0;j<sizeof(inflatecode)/sizeof(char);j++) {
WRITEBYTE(inflatecode[j]);
checksum ^= inflatecode[j];
}
}
if(fast + cd + k8 == 0) { // hack so that standard method matches others
WRITEBYTE(0x00);
WRITEBYTE(0x00);
}
WRITEBYTE(checksum);
if(fast || cd || k8)
//appendtone(&output,&outputlength,freq_end,rate,0,1,&offset);
appendtone(&output,&outputlength,freq_end,rate,0,10,&offset);
else
//appendtone(&output,&outputlength,1000,rate,0,1,&offset);
appendtone(&output,&outputlength,1000,rate,0,10,&offset);
if(!qr) {
if(basicload) {
fprintf(stderr,"To load up and run on your Apple %s, type:\n\n\tLOAD\n",modeltypes[model]);
if(warm)
fprintf(stderr,"\t%XG\n",segments[0].start);
}
else {
fprintf(stderr,"To load up and run on your Apple %s, type:\n\n\t800.%XR 800G\n",modeltypes[model],0x800 + length + 1);
}
}
else {
fprintf(stderr,"To load up and run on your Apple %s, use the client disk.\n",modeltypes[model]);
}
fprintf(stderr,"\n");
}
if(dsk) {
char eta[40];
unsigned char byte, checksum=0xff, *cmp_data, start_table[21], *diskloadcode;
unsigned long ones=0, zeros=0, cmp_len, diskloadcode_len;
unsigned int length, start_table_len = 0;
int i, j;
double inflate_times[5];
if(k8) {
diskloadcode = diskload8000;
diskloadcode_len = sizeof(diskload8000)/sizeof(char);
}
else {
diskloadcode = diskload9600;
diskloadcode_len = sizeof(diskload9600)/sizeof(char);
}
rate = 48000;
appendtone(&output,&outputlength,770,rate,4.0+tape,0,&offset);
appendtone(&output,&outputlength,2500,rate,0,0.5,&offset);
appendtone(&output,&outputlength,2000,rate,0,0.5,&offset);
for(j=0;j<sizeof(diskloadcode2)/sizeof(char);j++) {
byte=diskloadcode2[j];
for(i=0;i<8;i++) {
if(byte & 0x80)
ones++;
else
zeros++;
byte <<= 1;
}
}
// compute pad length, assuming 4 pages max for code
zeros += 8*(4 * 256 - sizeof(diskloadcode2)/sizeof(char));
for(j=0;j<sizeof(diskloadcode3)/sizeof(char);j++) {
byte=diskloadcode3[j];
for(i=0;i<8;i++) {
if(byte & 0x80)
ones++;
else
zeros++;
byte <<= 1;
}
}
for(j=0;j<sizeof(dosboot1)/sizeof(char);j++) {
byte=dosboot1[j];
for(i=0;i<8;i++) {
if(byte & 0x80)
ones++;
else
zeros++;
byte <<= 1;
}
}
for(j=0;j<sizeof(dosboot2)/sizeof(char);j++) {
byte=dosboot2[j];
for(i=0;i<8;i++) {
if(byte & 0x80)
ones++;
else
zeros++;
byte <<= 1;
}
}
freq0 = 12000;
freq1 = 8000;
if(k8)
freq1 = 6000;
sprintf(eta,"%d SEC. ",(int) (ones/(float)freq1 + zeros/(float)freq0 + 0.5 + 0.25));
//length = sizeof(basic)/sizeof(char) + sizeof(diskloadcode)/sizeof(char);
length = sizeof(basic)/sizeof(char) + diskloadcode_len;
header[0] = length & 0xFF;
header[1] = length >> 8;
freq0 = 2000;
freq1 = 1000;
for(i=0;i<3;i++) {
WRITEBYTE(header[i]);
checksum ^= header[i];
}
WRITEBYTE(checksum);
appendtone(&output,&outputlength,1000,rate,0,1,&offset);
appendtone(&output,&outputlength,770,rate,4.0,0,&offset);
appendtone(&output,&outputlength,2500,rate,0,0.5,&offset);
appendtone(&output,&outputlength,2000,rate,0,0.5,&offset);
// write out basic program
checksum = 0xff;
for(i=0;i<sizeof(basic)/sizeof(char);i++) {
WRITEBYTE(basic[i]);
checksum ^= basic[i];
}
// patch in ETA
for(i=0;i<strlen(eta);i++)
diskloadcode[0x84F - 0x80C + i] = eta[i] + 0x80;
// write out move and load code
//for(i=0;i<sizeof(diskloadcode)/sizeof(char);i++) {
for(i=0;i<diskloadcode_len;i++) {
WRITEBYTE(diskloadcode[i]);
checksum ^= diskloadcode[i];
}
// end of basic and diskloadcode
WRITEBYTE(0xff);
checksum ^= 0xff;
WRITEBYTE(checksum);
appendtone(&output,&outputlength,1000,rate,0,1,&offset);
square=0;
freq0 = 12000;
if(k8) {
freq1 = 6000;
appendtone(&output,&outputlength,2000,rate,0.25,0,&offset);
}
else {
freq1 = 8000;
appendtone(&output,&outputlength,6000,rate,0.25,0,&offset);
}
checksum = 0xff;
for(i=0;i<sizeof(dosboot1)/sizeof(char);i++) {
WRITEBYTE(dosboot1[i]);
checksum ^= dosboot1[i];
}
// time to compress and compute start location and length
// patch loadcode2 with start locations and ETA
for(i=0;i<numseg;i++) {
int k, err;
double orig_len;
unsigned char checksum=0xff;
inflate_times[i] = 0;
cmp_data = tdefl_compress_mem_to_heap(segments[i].data, segments[i].length, &cmp_len, TDEFL_MAX_PROBES_MASK);
//compute inflate time
//load up inflate code
for(j=0;j<sizeof(diskloadcode3)/sizeof(char);j++)
ram[0x9B00 + j] = diskloadcode3[j];
//load up inflate data
for(j=0;j<cmp_len;j++) {
ram[0x8FFF - cmp_len + j] = cmp_data[j];
checksum ^= cmp_data[j];
}
ram[0x8FFF] = checksum;
//compute chksum time
if(k8) {
for(j=(0x859 - 0x80C);j<diskloadcode_len;j++)
ram[0x9000 - (0x859 - 0x80C) + j] = diskloadcode[j];
ram[0x00] = (0x8FFF - cmp_len) & 0xFF;
ram[0x01] = (0x8FFF - cmp_len) >> 8;
ram[0x02] = 0x00;
ram[0x03] = 0x90;
ram[0x04] = 0xFF;
ram[0x9089] = 0x85; //STA
ram[0x908A] = 0x04; //zero page $04
ram[0x908B] = 0x00; //BRK
reset6502();
exec6502(0x9065);
if(ram[0x04] != 0)
fprintf(stderr,"WARNING: simulated checksum failed: %02X\n",ram[0x04]);
inflate_times[i] += clockticks6502/1023000.0;
}
//zero page src
ram[0x10] = (0x8FFF - cmp_len) & 0xFF;
ram[0x11] = (0x8FFF - cmp_len) >> 8;
//zero page dst
ram[0x12] = 0x00;
ram[0x13] = 0x10;
//setup JSR
ram[0x9000] = 0x20; // JSR $9B00
ram[0x9001] = 0x00;
ram[0x9002] = 0x9B;
ram[0x9003] = 0x00; //BRK to stop simulation
//run it
reset6502();
exec6502(0x9000);
//compare (just to be safe)
err=0;
for(j=0;j<7 * 4096;j++)
if(ram[0x1000 + j] != segments[i].data[j]) {
err = 1;
break;
}
if(err)
fprintf(stderr,"WARNING: simulated inflate failed at %04X\n",j+0x1000);
inflate_times[i] += clockticks6502/1023000.0;
free(segments[i].data);
segments[i].data = cmp_data;
orig_len = segments[i].length;
segments[i].length = cmp_len;
segments[i].start = 0x8FFF - segments[i].length;
// compress ?
// need to see what is faster, defaulting to compress for now
// if not compressed do not set start location, change asm code to check for 0,0
// and not use inflate code
// where to load data
start_table[start_table_len++] = segments[i].start & 0xFF;
start_table[start_table_len++] = segments[i].start >> 8;
ones = zeros = 0;
for(j=0;j<segments[i].length;j++) {
byte=segments[i].data[j];
for(k=0;k<8;k++) {
if(byte & 0x80)
ones++;
else
zeros++;
byte <<= 1;
}
}
sprintf(eta,"%d",(int) (ones/(float)freq1 + zeros/(float)freq0 + 0.5 + 0.25));
// ETA
start_table[start_table_len++] = eta[0] + 0x80;
if(eta[1] != 0)
start_table[start_table_len++] = eta[1] + 0x80;
else
start_table[start_table_len++] = 0;
fprintf(stderr,"Segment: %d, start: 0x%04X, length: %5d, deflated: %.02f%%, data time:%s, inflate time:%.02f\n",i,segments[i].start,segments[i].length,100.0*(1-segments[i].length/orig_len),eta,inflate_times[i]);
}
fprintf(stderr,"\n");
for(i=0;i<sizeof(diskloadcode2)/sizeof(char);i++) {
WRITEBYTE(diskloadcode2[i]);
checksum ^= diskloadcode2[i];
}
start_table[start_table_len++] = noformat;
for(i=0;i<start_table_len;i++) {
WRITEBYTE(start_table[i]);
checksum ^= start_table[i];
}
for(i=0;i<4*256 - sizeof(diskloadcode2)/sizeof(char) - start_table_len;i++) {
WRITEBYTE(0x00);
checksum ^= 0x00;
}
for(i=0;i<sizeof(diskloadcode3)/sizeof(char);i++) {
WRITEBYTE(diskloadcode3[i]);
checksum ^= diskloadcode3[i];
}
for(i=0;i<sizeof(dosboot2)/sizeof(char);i++) {
WRITEBYTE(dosboot2[i]);
checksum ^= dosboot2[i];
}
WRITEBYTE(checksum);
if(k8) {
appendtone(&output,&outputlength,770,rate,0,2,&offset);
appendtone(&output,&outputlength,2000,rate,0.3,0,&offset);
}
else {
appendtone(&output,&outputlength,2000,rate,0,1,&offset);
appendtone(&output,&outputlength,6000,rate,0.1,0,&offset);
}
for(i=0;i<numseg;i++) {
//appendtone(&output,&outputlength,6000,rate,1,0,&offset);
//timing
if(i==0) {
if(!noformat)
j=28;
else
j=0;
}
else {
//j = 6 + ceil(inflate_times[i-1]); // 6 = write track time, may need to make it 7
// disk ][ verified (format and no-format)
// Virtual ][ emulator verified (format and no-format, 8K only)
// CFFA3000 3.1 failed, needs more time
j = ceil(6.5 + inflate_times[i-1]); // 6 = write track time, may need to make it 7
// disk ][ verified (format and no-format)
// Apple duodisk verified (format and no-format)
// CFFA3000 3.1 verified with USB stick (no-format only)
// CFFA3000 3.1 failed with IBM 4GB Microdrive (too slow)
// Nishida Radio SDISK // (no-format only)
}
if(i==1) // seek time for track 0, just in case
j+=2;
/* count down code
for(;j>=0;j--) {
checksum = 0xff;
WRITEBYTE(j/10 + 48 + 0x80);
checksum ^= (j/10 + 48 + 0x80);
WRITEBYTE(j%10 + 48 + 0x80);
checksum ^= (j%10 + 48 + 0x80);
WRITEBYTE(0x00);
checksum ^= 0x00;
WRITEBYTE(checksum);
appendtone(&output,&outputlength,2000,rate,0,1,&offset);
appendtone(&output,&outputlength,6000,rate,1,0,&offset);
}
*/
if(k8)
appendtone(&output,&outputlength,2000,rate,j,0,&offset);
else
appendtone(&output,&outputlength,6000,rate,j,0,&offset);
checksum = 0xff;
for(j=0;j<segments[i].length;j++) {
WRITEBYTE(segments[i].data[j]);
checksum ^= segments[i].data[j];
}
WRITEBYTE(checksum);
if(k8)
//appendtone(&output,&outputlength,770,rate,0,2,&offset);
appendtone(&output,&outputlength,770,rate,0,10,&offset);
else
//appendtone(&output,&outputlength,2000,rate,0,1,&offset);
appendtone(&output,&outputlength,2000,rate,0,10,&offset);
}
fprintf(stderr,"To load up and run on your Apple %s, type:\n\n\tLOAD\n\n",modeltypes[model]);
}
// append zero to zero out last wave
appendtone(&output,&outputlength,0,rate,0,1,&offset);
// 0.1 sec quiet to help some emulators
appendtone(&output,&outputlength,0,rate,0.1,0,&offset);
// 0.4 sec quiet to help some IIs
// appendtone(&output,&outputlength,0,rate,0.4,0,&offset);
// write it
if(outputtype == AIFF)
Write_AIFF(ofp,output,outputlength,rate,bits,amp);
else if(outputtype == WAVE)
Write_WAVE(ofp,output,outputlength,rate,bits,amp);
fclose(ofp);
return 0;
}
void appendtone(double **sound, long *length, int freq, int rate, double time, double cycles, int *offset)
{
long i, n=time*rate;
static long grow = 0;
double *tmp = NULL;
if(freq && cycles)
n=cycles*rate/freq;
if(n == 0)
n=cycles;
/*
if((tmp = (double *)realloc(*sound, (*length + n) * sizeof(double))) == NULL)
abort();
*sound = tmp;
*/
// new code for speed up Windows realloc
if(*length + n > grow) {
grow = *length + n + 10000000;
if((tmp = (double *)realloc(*sound, (grow) * sizeof(double))) == NULL)
abort();
*sound = tmp;
}
//tmp -> (*sound)
if(square) {
int j;
if(freq)
for (i = 0; i < n; i++) {
for(j = 0;j < rate / freq / 2;j++)
(*sound)[*length + i++] = 1;
for(j = 0;j < rate / freq / 2;j++)
(*sound)[*length + i++] = -1;
i--;
}
else
for (i = 0; i < n; i++)
(*sound)[*length + i] = 0;
}
else
for(i=0;i<n;i++)
(*sound)[*length+i] = sin(2*M_PI*i*freq/rate + *offset*M_PI);
if(cycles - (int)cycles == 0.5)
*offset = (*offset == 0);
*length += n;
}
char *getext(char *filename)
{
char stack[256], *rval;
int i, sp = 0;
for(i=strlen(filename)-1;i>=0;i--) {
if(filename[i] == '.')
break;
stack[sp++] = filename[i];
}
stack[sp] = '\0';
if(sp == strlen(filename) || sp == 0)
return(NULL);
if((rval = (char *)malloc(sp * sizeof(char))) == NULL)
; //do error code
rval[sp] = '\0';
for(i=0;i<sp+i;i++)
rval[i] = stack[--sp];
return(rval);
}
void usage()
{
fprintf(stderr,"%s",usagetext);
}
// Code below from http://paulbourke.net/dataformats/audio/
/*
Write an AIFF sound file
Only do one channel, only support 16 bit.
Supports sample frequencies of 11, 22, 44KHz (default).
Little/big endian independent!
*/
// egan: changed code to support any Hz and 8 bit.
void Write_AIFF(FILE * fptr, double *samples, long nsamples, int nfreq, int bits, double amp)
{
unsigned short v;
int i;
unsigned long totalsize;
double themin, themax, scale, themid;
unsigned char bit80[10];
// Write the form chunk
fprintf(fptr, "FORM");
totalsize = 4 + 8 + 18 + 8 + (bits / 8) * nsamples + 8;
fputc((totalsize & 0xff000000) >> 24, fptr);
fputc((totalsize & 0x00ff0000) >> 16, fptr);
fputc((totalsize & 0x0000ff00) >> 8, fptr);
fputc((totalsize & 0x000000ff), fptr);
fprintf(fptr, "AIFF");
// Write the common chunk
fprintf(fptr, "COMM");
fputc(0, fptr); // Size
fputc(0, fptr);
fputc(0, fptr);
fputc(18, fptr);
fputc(0, fptr); // Channels = 1
fputc(1, fptr);
fputc((nsamples & 0xff000000) >> 24, fptr); // Samples
fputc((nsamples & 0x00ff0000) >> 16, fptr);
fputc((nsamples & 0x0000ff00) >> 8, fptr);
fputc((nsamples & 0x000000ff), fptr);
fputc(0, fptr); // Size = 16
fputc(bits, fptr);
ConvertToIeeeExtended(nfreq, bit80);
for (i = 0; i < 10; i++)
fputc(bit80[i], fptr);
// Write the sound data chunk
fprintf(fptr, "SSND");
fputc((((bits / 8) * nsamples + 8) & 0xff000000) >> 24, fptr); // Size
fputc((((bits / 8) * nsamples + 8) & 0x00ff0000) >> 16, fptr);
fputc((((bits / 8) * nsamples + 8) & 0x0000ff00) >> 8, fptr);
fputc((((bits / 8) * nsamples + 8) & 0x000000ff), fptr);
fputc(0, fptr); // Offset
fputc(0, fptr);
fputc(0, fptr);
fputc(0, fptr);
fputc(0, fptr); // Block
fputc(0, fptr);
fputc(0, fptr);
fputc(0, fptr);
// Find the range
themin = samples[0];
themax = themin;
for (i = 1; i < nsamples; i++) {
if (samples[i] > themax)
themax = samples[i];
if (samples[i] < themin)
themin = samples[i];
}
if (themin >= themax) {
themin -= 1;
themax += 1;
}
themid = (themin + themax) / 2;
themin -= themid;
themax -= themid;
if (ABS(themin) > ABS(themax))
themax = ABS(themin);
// scale = amp * 32760 / (themax);
scale = amp * ((bits == 16) ? 32760 : 124) / (themax);
// Write the data
for (i = 0; i < nsamples; i++) {
if (bits == 16) {
v = (unsigned short) (scale * (samples[i] - themid));
fputc((v & 0xff00) >> 8, fptr);
fputc((v & 0x00ff), fptr);
} else {
v = (unsigned char) (scale * (samples[i] - themid));
fputc(v, fptr);
}
}
}
/*
Write an WAVE sound file
Only do one channel, only support 16 bit.
Supports any (reasonable) sample frequency
Little/big endian independent!
*/
// egan: changed code to support 8 bit.
void Write_WAVE(FILE * fptr, double *samples, long nsamples, int nfreq, int bits, double amp)
{
unsigned short v;
int i;
unsigned long totalsize, bytespersec;
double themin, themax, scale, themid;
// Write the form chunk
fprintf(fptr, "RIFF");
totalsize = (bits / 8) * nsamples + 36;
fputc((totalsize & 0x000000ff), fptr); // File size
fputc((totalsize & 0x0000ff00) >> 8, fptr);
fputc((totalsize & 0x00ff0000) >> 16, fptr);
fputc((totalsize & 0xff000000) >> 24, fptr);
fprintf(fptr, "WAVE");
fprintf(fptr, "fmt "); // fmt_ chunk
fputc(16, fptr); // Chunk size
fputc(0, fptr);
fputc(0, fptr);
fputc(0, fptr);
fputc(1, fptr); // Format tag - uncompressed
fputc(0, fptr);
fputc(1, fptr); // Channels
fputc(0, fptr);
fputc((nfreq & 0x000000ff), fptr); // Sample frequency (Hz)
fputc((nfreq & 0x0000ff00) >> 8, fptr);
fputc((nfreq & 0x00ff0000) >> 16, fptr);
fputc((nfreq & 0xff000000) >> 24, fptr);
bytespersec = (bits / 8) * nfreq;
fputc((bytespersec & 0x000000ff), fptr); // Average bytes per second
fputc((bytespersec & 0x0000ff00) >> 8, fptr);
fputc((bytespersec & 0x00ff0000) >> 16, fptr);
fputc((bytespersec & 0xff000000) >> 24, fptr);
fputc((bits / 8), fptr); // Block alignment
fputc(0, fptr);
fputc(bits, fptr); // Bits per sample
fputc(0, fptr);
fprintf(fptr, "data");
totalsize = (bits / 8) * nsamples;
fputc((totalsize & 0x000000ff), fptr); // Data size
fputc((totalsize & 0x0000ff00) >> 8, fptr);
fputc((totalsize & 0x00ff0000) >> 16, fptr);
fputc((totalsize & 0xff000000) >> 24, fptr);
// Find the range
themin = samples[0];
themax = themin;
for (i = 1; i < nsamples; i++) {
if (samples[i] > themax)
themax = samples[i];
if (samples[i] < themin)
themin = samples[i];
}
if (themin >= themax) {
themin -= 1;
themax += 1;
}
themid = (themin + themax) / 2;
themin -= themid;
themax -= themid;
if (ABS(themin) > ABS(themax))
themax = ABS(themin);
// scale = amp * 32760 / (themax);
scale = amp * ((bits == 16) ? 32760 : 124) / (themax);
// Write the data
for (i = 0; i < nsamples; i++) {
if (bits == 16) {
v = (unsigned short) (scale * (samples[i] - themid));
fputc((v & 0x00ff), fptr);
fputc((v & 0xff00) >> 8, fptr);
} else {
v = (unsigned char) (scale * (samples[i] - themid));
fputc(v + 0x80, fptr);
}
}
}
/*
* C O N V E R T T O I E E E E X T E N D E D
*/
/* Copyright (C) 1988-1991 Apple Computer, Inc.
* All rights reserved.
*
* Machine-independent I/O routines for IEEE floating-point numbers.
*
* NaN's and infinities are converted to HUGE_VAL or HUGE, which
* happens to be infinity on IEEE machines. Unfortunately, it is
* impossible to preserve NaN's in a machine-independent way.
* Infinities are, however, preserved on IEEE machines.
*
* These routines have been tested on the following machines:
* Apple Macintosh, MPW 3.1 C compiler
* Apple Macintosh, THINK C compiler
* Silicon Graphics IRIS, MIPS compiler
* Cray X/MP and Y/MP
* Digital Equipment VAX
*
*
* Implemented by Malcolm Slaney and Ken Turkowski.
*
* Malcolm Slaney contributions during 1988-1990 include big- and little-
* endian file I/O, conversion to and from Motorola's extended 80-bit
* floating-point format, and conversions to and from IEEE single-
* precision floating-point format.
*
* In 1991, Ken Turkowski implemented the conversions to and from
* IEEE double-precision format, added more precision to the extended
* conversions, and accommodated conversions involving +/- infinity,
* NaN's, and denormalized numbers.
*/
#ifndef HUGE_VAL
#define HUGE_VAL HUGE
#endif /*HUGE_VAL */
#define FloatToUnsigned(f) ((unsigned long)(((long)(f - 2147483648.0)) + 2147483647L) + 1)
void ConvertToIeeeExtended(double num, unsigned char *bytes)
{
int sign;
int expon;
double fMant, fsMant;
unsigned long hiMant, loMant;
if (num < 0) {
sign = 0x8000;
num *= -1;
} else {
sign = 0;
}
if (num == 0) {
expon = 0;
hiMant = 0;
loMant = 0;
} else {
fMant = frexp(num, &expon);
if ((expon > 16384) || !(fMant < 1)) { /* Infinity or NaN */
expon = sign | 0x7FFF;
hiMant = 0;
loMant = 0; /* infinity */
} else { /* Finite */
expon += 16382;
if (expon < 0) { /* denormalized */
fMant = ldexp(fMant, expon);
expon = 0;
}
expon |= sign;
fMant = ldexp(fMant, 32);
fsMant = floor(fMant);
hiMant = FloatToUnsigned(fsMant);
fMant = ldexp(fMant - fsMant, 32);
fsMant = floor(fMant);
loMant = FloatToUnsigned(fsMant);
}
}
bytes[0] = expon >> 8;
bytes[1] = expon;
bytes[2] = hiMant >> 24;
bytes[3] = hiMant >> 16;
bytes[4] = hiMant >> 8;
bytes[5] = hiMant;
bytes[6] = loMant >> 24;
bytes[7] = loMant >> 16;
bytes[8] = loMant >> 8;
bytes[9] = loMant;
}
uint8_t read6502(uint16_t address)
{
return ram[address];
}
void write6502(uint16_t address, uint8_t value)
{
ram[address] = value;
}