RAM2E/CPLD/RAM2E-MAX.v

692 lines
23 KiB
Verilog

module RAM2E(C14M, RCLK, PHI1, LED,
nWE, nWE80, nEN80, nC07X,
Ain, Din, Dout, nDOE, Vout, nVOE,
CKE, nCS, nRAS, nCAS, nRWE,
BA, RA, RD, DQML, DQMH);
/* Clocks */
input C14M, PHI1;
/* SDRAM clock output */
output RCLK;
reg RCLKx0;
reg RCLKx1;
always @(negedge C14M) RCLKx1 <= !RCLKx1;
always @(posedge C14M) RCLKx0 <= RCLKx1;
assign RCLK = RCLKx0 ^ RCLKx1;
/* Control inputs */
input nWE, nWE80, nEN80, nC07X;
/* Activity LED */
reg LEDEN = 0;
output LED;
assign LED = !(!nEN80 && LEDEN && Ready);
/* Address Bus */
input [7:0] Ain; // Multiplexed DRAM address input
/* 6502 Data Bus */
input [7:0] Din; // 6502 data bus inputs
reg DOEEN = 0; // 6502 data bus output enable from state machine
output nDOE;
assign nDOE = !(!nEN80 && nWE && DOEEN); // 6502 data bus output enable
output reg [7:0] Dout; // 6502 data Bus output
/* Video Data Bus */
output nVOE;
assign nVOE = !(!PHI1); /// Video data bus output enable
output reg [7:0] Vout; // Video data bus
/* SDRAM */
output reg CKE = 0;
output nCS;
assign nCS = 0;
output reg nRAS = 1, nCAS = 1, nRWE = 1;
output reg [1:0] BA;
output reg [11:0] RA;
output reg DQML = 1, DQMH = 1;
wire RDOE = !nEN80 && !nWE80;
inout [7:0] RD;
assign RD[7:0] = RDOE ? Din[7:0] : 8'bZ;
/* RAMWorks Bank Register and Capacity Mask */
reg [7:0] RWBank = 0; // RAMWorks bank register
reg [7:0] RWMask = 0; // RAMWorks bank reg. capacity mask
reg RWSel = 0; // RAMWorks bank register select
reg CmdRWMaskSet = 0; // RAMWorks Mask register set flag
// Causes RWBank to be zeroed next RWSel access
reg CmdSetRWBankFFMAX = 0;
//reg CmdSetRWBankFFSPI = 0;
//reg CmdSetRWBankFFMXO2 = 0;
reg CmdSetRWBankFFLED = 0;
reg CmdLEDSet = 0;
reg CmdLEDGet = 0;
/* Command Sequence Detector */
reg [2:0] CS = 0; // Command sequence state
reg [2:0] CmdTout = 0; // Command sequence timeout
/* UFM Interface */
reg [15:7] UFMD = 0; // *Parallel* UFM data register
reg ARCLK = 0; // UFM address register clock
// UFM address register data input tied to 0
reg ARShift = 0; // 1 to Shift UFM address in, 0 to increment
reg DRCLK = 0; // UFM data register clock
reg DRDIn = 0; // UFM data register input
reg DRShift = 0; // 1 to shift UFM out, 0 to load from current address
reg UFMErase = 0; // Rising edge starts erase. UFM+RTP must not be busy
reg UFMProgram = 0; // Rising edge starts program. UFM+RTP must not be busy
wire UFMBusy; // 1 if UFM is doing user operation. Asynchronous
wire RTPBusy; // 1 if real-time programming in progress. Asynchronous
wire DRDOut; // UFM data output
// UFM oscillator always enabled
wire UFMOsc; // UFM oscillator output (3.3-5.5 MHz)
UFM UFM_inst ( // UFM IP block (for Altera MAX II and MAX V)
.arclk (ARCLK),
.ardin (1'b0),
.arshft (ARShift),
.drclk (DRCLK),
.drdin (DRDIn),
.drshft (DRShift),
.erase (UFMErase),
.oscena (1'b1),
.program (UFMProgram),
.busy (UFMBusy),
.drdout (DRDOut),
.osc (UFMOsc),
.rtpbusy (RTPBusy));
reg UFMRTPBusy = 0;
always @(posedge C14M) UFMRTPBusy <= UFMBusy || RTPBusy;
/* UFM State and User Command Triggers */
reg UFMInitDone = 0; // 1 if UFM initialization finished
reg UFMReqErase = 0; // 1 if UFM requires erase
reg CmdBitbangMAX = 0; // Set by user command. Loads UFM outputs next RWSel
//reg CmdBitbangSPI = 0;
//reg CmdBitbangMXO2 = 0;
//reg CmdExecMXO2 = 0;
reg CmdPrgmMAX = 0; // Set by user command. Programs UFM
reg CmdEraseMAX = 0; // Set by user command. Erases UFM
reg DRCLKPulse = 0; // Set by user command. Causes DRCLK pulse next C14M
/* State Counters */
reg PHI1reg = 0; // Saved PHI1 at last rising clock edge
reg Ready = 0; // 1 if done with init sequence (S0) and enter S1-S15
reg [15:0] FS = 0; // Fast state counter
reg [3:0] S = 0; // IIe State counter
/* State Counters */
always @(posedge C14M) begin
// Increment fast state counter
FS <= FS+16'h0001;
// Synchronize Apple state counter to S1 when just entering PHI1
PHI1reg <= PHI1; // Save old PHI1
S <= (PHI1 && !PHI1reg && Ready) ? 4'h1 :
S==4'h0 ? 4'h0 :
S==4'hF ? 4'hF : S+4'h1;
end
/* UFM Control */
reg UFMProgStart;
always @(posedge C14M) begin
if (S==4'h0) begin
if ((FS[15:13]==3'b101) || (FS[15:13]==3'b111 && UFMReqErase)) begin
// In states AXXX-BXXX and also EXXX-FXXX if erase/wrap req'd
// shift in 0's to address register
ARCLK <= FS[0]; // Clock address register
DRCLK <= 1'b0; // Don't clock data register
ARShift <= 1'b1; // Shift address registers
DRDIn <= 1'b0; // Don't care DRDIn
DRShift <= 1'b0; // Don't care DRDShift
end else if (!UFMInitDone && FS[15:13]==3'b110 && FS[4:1]==4'h4) begin
// In states CXXX-DXXX (substep 4)
// Xfer to data reg (repeat 256x 1x)
ARCLK <= 1'b0; // Don't clock address register
DRCLK <= FS[0]; // Clock data register
ARShift <= 1'b0; // Don't care ARShift
DRDIn <= 1'b0; // Don't care DRDIn
DRShift <= 1'b0; // Don't care DRShift
end else if (!UFMInitDone && FS[15:13]==3'b110 && (FS[4:1]==4'h6 || FS[4:1]==4'h7 || FS[4:1]==4'h8 || FS[4:1]==4'h9 || FS[4:1]==4'hA || FS[4:1]==4'hB || FS[4:1]==4'hC || FS[4:1]==4'hD || FS[4:1]==4'hE)) begin
// In states CXXX-DXXX (substeps 6-E)
// Shift out UFMD[15:7] (repeat 256x 9x)
ARCLK <= 1'b0; // Don't clock address register
DRCLK <= FS[0]; // Clock data register
ARShift <= 1'b0; // ARShift is 0 because we want to increment
DRDIn <= 1'b0; // Don't care what to shift into data register
DRShift <= 1'b1; // Shift data register
// Shift into UFMD
if (FS[0]) UFMD[15:7] <= {UFMD[14:7], DRDOut};
end else if (!UFMInitDone && FS[15:13]==3'b110 && FS[4:1]==4'hF) begin
// In states CXXX-DXXX (substep F)
// Check and save mask, compute and save LEDEN
DRCLK <= 1'b0; // Don't clock data register
ARShift <= 1'b0; // ARShift is 0 because we want to increment
DRDIn <= 1'b0; // Don't care what to shift into data register
DRShift <= 1'b1; // Shift data register
// Set settings
// If byte is erased (0xFF, i.e. all 1's, is erased)...
if (UFMD[15:8]==8'hFF && UFMD[7]==1'b1) begin
// Current UFM address is where we want to store
UFMInitDone <= 1'b1; // Quit iterating
ARCLK <= 1'b0; // Don't increment address register
// Otherwise byte is valid setting (i.e. some bit is 0)...
end else begin
// Set RWMask, but if saved mask is 0x80, set for FF
if (UFMD[15:8]==8'b10000000) RWMask[7:0] <= {1'b1, 7'h00};
else RWMask[7:0] <= {UFMD[15], ~UFMD[14:8]};
// Set LED setting
LEDEN <= UFMD[15] ^ UFMD[7];
// If last byte in sector...
if (FS[12:5]==8'hFF) begin
UFMReqErase <= 1'b1; // Need to erase
ARCLK <= 1'b0; // Don't increment address register
end else ARCLK <= FS[0]; // Increment if not last byte
end
end else begin
ARCLK <= 1'b0;
DRCLK <= 1'b0;
ARShift <= 1'b0;
DRDIn <= 1'b0;
DRShift <= 1'b0;
end
// Don't erase or program UFM during initialization
UFMErase <= 1'b0;
UFMProgram <= 1'b0;
// Keep DRCLK pulse control disabled during init
DRCLKPulse <= 1'b0;
// Reset UFMProgStart
UFMProgStart <= 1'b0;
end else begin
// Can only shift UFM data register now
ARCLK <= 1'b0;
ARShift <= 1'b0;
DRShift <= 1'b1;
// UFM bitbang control
if (CmdBitbangMAX && RWSel && S==4'hC) begin
DRDIn <= Din[6];
DRCLKPulse <= Din[7];
DRCLK <= 1'b0;
end else begin
DRCLKPulse <= 1'b0;
DRCLK <= DRCLKPulse;
end
if (RWSel && S==4'hC) begin
// LED control
if (CmdLEDSet) LEDEN <= Din[0];
// Set capacity mask
if (CmdRWMaskSet) RWMask[7:0] <= {Din[7], ~Din[6:0]};
end
// UFM programming sequence
if (S==4'h1 && !UFMRTPBusy) begin
if (!UFMProgStart) begin
if (CmdPrgmMAX) begin
UFMErase <= UFMReqErase;
UFMProgram <= 0;
UFMProgStart <= 1;
end else if (CmdEraseMAX) begin
UFMErase <= 1;
UFMProgram <= 0;
UFMProgStart <= 1;
end
end else begin
UFMErase <= 0;
UFMProgram <= !UFMErase;
UFMProgStart <= 1;
end
end
end
end
/* SDRAM Control */
always @(posedge C14M) begin
if (S==4'h0) begin
// SDRAM initialization
if (FS[15:0]==16'hFFC0) begin
// Precharge All
nRAS <= 1'b0;
nCAS <= 1'b1;
nRWE <= 1'b0;
RA[10] <= 1'b1; // "all"
end else if (FS[15:4]==16'hFFD && FS[0]==1'b0) begin // Repeat 8x
// Auto-refresh
nRAS <= 1'b0;
nCAS <= 1'b0;
nRWE <= 1'b1;
RA[10] <= 1'b0;
end else if (FS[15:0]==16'hFFE8) begin
// Set Mode Register
nRAS <= 1'b0;
nCAS <= 1'b0;
nRWE <= 1'b0;
RA[10] <= 1'b0; // Reserved in mode register
end else if (FS[15:4]==12'hFFF && FS[0]==1'b0) begin // Repeat 8x
// Auto-refresh
nRAS <= 1'b0;
nCAS <= 1'b0;
nRWE <= 1'b1;
RA[10] <= 1'b0;
end else begin // Otherwise send no-op
// NOP
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
RA[10] <= 1'b0;
end
// Enable SDRAM clock after 65,280 cycles (~4.56ms)
CKE <= FS[15:8] == 8'hFF;
// Mode register contents
BA[1:0] <= 2'b00; // Reserved
RA[11] <= 1'b0; // Reserved
// RA[10] set above ^
RA[9] <= 1'b1; // "1" for single write mode
RA[8] <= 1'b0; // Reserved
RA[7] <= 1'b0; // "0" for not test mode
RA[6:4] <= 3'b010; // "2" for CAS latency 2
RA[3] <= 1'b0; // "0" for sequential burst (not used)
RA[2:0] <= 3'b000; // "0" for burst length 1 (no burst)
// Mask everything
DQML <= 1'b1;
DQMH <= 1'b1;
// Inhibit data bus output
DOEEN <= 1'b0;
// Begin normal operation after 128k init cycles (~9.15ms)
if (FS == 16'hFFFF) Ready <= 1'b1;
end else if (S==4'h1) begin
// Enable clock
CKE <= 1'b1;
// NOP
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
// Don't care bank, RA[11:8]
BA[1:0] <= 2'b00;
RA[11:8] <= 4'b0000;
// Mask everything
DQML <= 1'b1;
DQMH <= 1'b1;
// Inhibit data bus output
DOEEN <= 1'b0;
end else if (S==4'h2) begin
// Enable clock
CKE <= 1'b1;
// Activate
nRAS <= 1'b0;
nCAS <= 1'b1;
nRWE <= 1'b1;
// SDRAM bank 0, high-order row address is 0
BA[1:0] <= 2'b00;
RA[11:8] <= 4'b0000;
// Row address is as previously latched
// Mask everything
DQML <= 1'b1;
DQMH <= 1'b1;
// Inhibit data bus output
DOEEN <= 1'b0;
end else if (S==4'h3) begin
// Enable clock
CKE <= 1'b1;
// Read
nRAS <= 1'b1;
nCAS <= 1'b0;
nRWE <= 1'b1;
// SDRAM bank 0, RA[11,9:8] don't care
BA[1:0] <= 2'b00;
RA[11] <= 1'b0;
RA[10] <= 1'b1; // (A10 set to auto-precharge)
RA[9] <= 1'b0;
RA[8] <= 1'b0;
// Latch column address for read command
RA[7:0] <= Ain[7:0];
// Read low byte (high byte is +4MB in ramworks)
DQML <= 1'b0;
DQMH <= 1'b1;
// Inhibit data bus output
DOEEN <= 1'b0;
end else if (S==4'h4) begin
// Enable clock
CKE <= 1'b1;
// NOP
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
// Don't care bank, RA[11:8]
BA[1:0] <= 2'b00;
RA[11:8] <= 4'b0000;
// Mask everything
DQML <= 1'b1;
DQMH <= 1'b1;
// Inhibit data bus output
DOEEN <= 1'b0;
end else if (S==4'h5) begin
// Enable clock
CKE <= 1'b1;
// NOP
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
// Don't care bank, RA[11:8]
BA[1:0] <= 2'b00;
RA[11:8] <= 4'b0000;
// Mask everything
DQML <= 1'b1;
DQMH <= 1'b1;
// Inhibit data bus output
DOEEN <= 1'b0;
end else if (S==4'h6) begin
// Enable clock
CKE <= 1'b1;
if (FS[5:4]==0) begin
// Auto-refresh
nRAS <= 1'b0;
nCAS <= 1'b0;
nRWE <= 1'b1;
end else begin
// NOP
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
end
// Don't care bank, RA[11:8]
BA[1:0] <= 2'b00;
RA[11:8] <= 4'b0000;
// Mask everything
DQML <= 1'b1;
DQMH <= 1'b1;
// Inhibit data bus output
DOEEN <= 1'b0;
end else if (S==4'h7) begin
// Enable clock
CKE <= 1'b1;
// NOP
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
// Don't care bank, RA[11:8]
BA[1:0] <= 2'b00;
RA[11:8] <= 4'b0000;
// Latch row address for activate command
RA[7:0] <= Ain[7:0];
// Mask everything
DQML <= 1'b1;
DQMH <= 1'b1;
// Inhibit data bus output
DOEEN <= 1'b0;
end else if (S==4'h8) begin
// Enable clock if '245 output enabled
CKE <= !nEN80;
// Activate if '245 output enabled
nRAS <= nEN80;
nCAS <= 1'b1;
nRWE <= 1'b1;
// SDRAM bank, RA[11:8] determine by RamWorks bank
BA[1:0] <= RWBank[5:4];
RA[11:8] <= RWBank[3:0];
// Row address is as previously latched
// Mask everything
DQML <= 1'b1;
DQMH <= 1'b1;
// Inhibit data bus output
DOEEN <= 1'b0;
end else if (S==4'h9) begin
// Keep CKE same as last clock
// Read/Write if '245 output enabled
if (CKE) begin
// Read/Write if CKE ('245 output enabled)
nRAS <= 1'b1;
nCAS <= 1'b0;
nRWE <= nWE80;
end else begin
// NOP
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
end
// SDRAM bank still determined by RamWorks, RA[11,9:8] don't care
BA[1:0] <= RWBank[5:4];
RA[11] <= 1'b0;
RA[10] <= 1'b1; // (A10 set to auto-precharge)
RA[9] <= 1'b0;
RA[8] <= RWBank[7];
// Latch column address for R/W command
RA[7:0] <= Ain[7:0];
// Latch RAMWorks low nybble write select using old row address
RWSel <= RA[0] && !RA[3] && !nWE && !nC07X;
// Mask according to RAMWorks bank (high byte is +4MB)
DQML <= RWBank[6];
DQMH <= !RWBank[6];
// Inhibit data bus output
DOEEN <= 1'b0;
end else if (S==4'hA) begin
// Keep CKE same as last clock
// NOP
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
// Don't care bank, RA[11:8]
BA[1:0] <= 2'b00;
RA[11:8] <= 4'b0000;
// Mask everything
DQML <= 1'b1;
DQMH <= 1'b1;
// Inhibit data bus output
DOEEN <= 1'b0;
end else if (S==4'hB) begin
// Disable clock
CKE <= 1'b0;
// NOP
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
// Don't care bank, RA[11:8]
BA[1:0] <= 2'b00;
RA[11:8] <= 4'b0000;
// Mask everything
DQML <= 1'b1;
DQMH <= 1'b1;
// Enable data bus output
DOEEN <= 1'b1;
end else if (S==4'hC) begin
// Disable clock
CKE <= 1'b0;
// NOP
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
// Don't care bank, RA[11:8]
BA[1:0] <= 2'b00;
RA[11:8] <= 4'b0000;
// Mask everything
DQML <= 1'b1;
DQMH <= 1'b1;
// Enable data bus output
DOEEN <= 1'b1;
// RAMWorks Bank Register Select
if (RWSel) begin
// Latch RAMWorks bank if accessed
if (CmdSetRWBankFFLED ||
CmdSetRWBankFFMAX ||
//CmdSetRWBankFFSPI ||
//CmdSetRWBankFFMXO2 ||
(CmdLEDGet && LEDEN)) RWBank <= 8'hFF;
else RWBank <= Din[7:0] & {RWMask[7], ~RWMask[6:0]};
// Recognize command sequence and advance CS state
if ((CS==3'h0 && Din[7:0]==8'hFF) ||
(CS==3'h1 && Din[7:0]==8'h00) ||
(CS==3'h2 && Din[7:0]==8'h55) ||
(CS==3'h3 && Din[7:0]==8'hAA) ||
(CS==3'h4 && Din[7:0]==8'hC1) ||
(CS==3'h5 && Din[7:0]==8'hAD) ||
CS==3'h6 || CS==3'h7) CS <= CS+3'h1;
else CS <= 0; // Back to beginning if it's not right
if (CS==3'h6) begin // Recognize and submit command in CS6
CmdSetRWBankFFMAX <= Din[7:0]==8'hFF;
//CmdSetRWBankFFSPI <= Din[7:0]==8'hFE;
//CmdSetRWBankFFMXO2 <= Din[7:0]==8'hFD;
CmdSetRWBankFFLED <= Din[7:0]==8'hF0;
CmdRWMaskSet <= Din[7:0]==8'hE0;
CmdLEDSet <= Din[7:0]==8'hE2;
CmdLEDGet <= Din[7:0]==8'hE3;
CmdBitbangMAX <= Din[7:0]==8'hEA;
//CmdBitbangSPI <= Din[7:0]==8'hEB;
//CmdBitbangMXO2 <= Din[7:0]==8'hEC;
//CmdExecMXO2 <= Din[7:0]==8'hED;
if (!CmdEraseMAX && !CmdPrgmMAX) begin
if (Din[7:0]==8'hEE) CmdEraseMAX <= 1;
if (Din[7:0]==8'hEF) CmdPrgmMAX <= 1;
end
end else begin // Reset command triggers
CmdSetRWBankFFMAX <= 0;
//CmdSetRWBankFFSPI <= 0;
//CmdSetRWBankFFMXO2 <= 0;
CmdSetRWBankFFLED <= 0;
CmdRWMaskSet <= 0;
CmdLEDSet <= 0;
CmdLEDGet <= 0;
CmdBitbangMAX <= 0;
//CmdBitbangSPI <= 0;
//CmdBitbangMXO2 <= 0;
//CmdExecMXO2 <= 0;
end
CmdTout <= 0; // Reset command timeout if RWSel accessed
end else begin
CmdTout <= CmdTout+3'h1; // Increment command timeout
// If command sequence times out, reset sequence state
if (CmdTout==3'h7) CS <= 0;
end
end else if (S==4'hD) begin
// Disable clock
CKE <= 1'b0;
// NOP
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
// Don't care bank, RA[11:8]
BA[1:0] <= 2'b00;
RA[11:8] <= 4'b0000;
// Mask everything
DQML <= 1'b1;
DQMH <= 1'b1;
// Enable data bus output
DOEEN <= 1'b1;
end else if (S==4'hE) begin
// Disable clock
CKE <= 1'b0;
// NOP
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
// Don't care bank, RA[11:8]
BA[1:0] <= 2'b00;
RA[11:8] <= 4'b0000;
// Latch row address for next video read
RA[7:0] <= Ain[7:0];
// Mask everything
DQML <= 1'b1;
DQMH <= 1'b1;
// Enable data bus output
DOEEN <= 1'b1;
end else if (S==4'hF) begin
// Disable clock
CKE <= 1'b0;
// NOP
nRAS <= 1'b1;
nCAS <= 1'b1;
nRWE <= 1'b1;
// Don't care bank, RA[11:8]
BA[1:0] <= 2'b00;
RA[11:8] <= 4'b0000;
// Latch row address for next video read
RA[7:0] <= Ain[7:0];
// Mask everything
DQML <= 1'b1;
DQMH <= 1'b1;
// Enable data bus output
DOEEN <= 1'b1;
end
end
always @(negedge C14M) begin
// Latch video and read data outputs
if (S==4'h6) Vout[7:0] <= RD[7:0];
if (S==4'hC) Dout[7:0] <= RD[7:0];
end
endmodule