Merge branch 'master' into pr/4

Conflicts:
	DSK Image/BLANK-PRODOS.dsk.png
	DSK Image/DSK-Image.py
This commit is contained in:
Charles Mangin 2016-10-04 15:21:44 -04:00
commit 7a28946b26
6 changed files with 305 additions and 105 deletions

4
.gitignore vendored
View File

@ -2,3 +2,7 @@
*/.DS_Store
.DS_Store
.DS_Store
IIe-USB/arduino/.DS_Store

Binary file not shown.

After

Width:  |  Height:  |  Size: 32 KiB

View File

@ -54,10 +54,17 @@ PIXELS = []
try:
byte = DSK.read(1) # read a byte
<<<<<<< HEAD
while byte != "": # while the file still has bytes in it
byte = DSK.read(1)
if len(byte) > 0: # the last byte, for whatever reason, is length 0. Bah.
BYTES.append(ord(byte)) # append the number representing the byte (0-255) to the BYTES array
=======
while byte !="": # while the file still has bytes in it
BYTES.append(ord(byte)) # append the number representing the byte (0-255) to the BYTES array
byte = DSK.read(1)
>>>>>>> master
except:
print("\n\nOops. Is " + INPUTFILE + " a DSK file of 143kb?\n\n")
sys.exit(1) # exit on exception - file is empty, etc
@ -65,11 +72,18 @@ except:
print("\n Starting.\n")
<<<<<<< HEAD
for TRACK in range(0,TRACKS,1): # for each of the 35 tracks
LINE=[] # start a new line of pixels
for SECTOR in range(0,SECTORS*BYTESPERSECTOR,1): # write the bytes for the sectors in that track to the line array
offset = (SECTOR * TRACK) + SECTOR
LINE.append(BYTES[(SECTOR * TRACK) + SECTOR])
=======
for TRACK in range(TRACKS): # for each of the 35 tracks
LINE=[] # start a new line of pixels
for SECTOR in range(SECTORS*BYTESPERSECTOR): # write the bytes for the sectors in that track to the line array
LINE.append(BYTES[(SECTORS*BYTESPERSECTOR * TRACK) + SECTOR])
>>>>>>> master
print(" Track: " + str(TRACK))
PIXELS.append(LINE) # add the array of pixels to the array of arrays
@ -93,7 +107,8 @@ OUTPUTFILE = os.path.join(INPUTFILE + ".png")
try:
subprocess.call(['convert', 'DiskImageTEMP.png', '-matte', '-virtual-pixel', 'transparent', '-resize', '1024x1024!', '-rotate', '90', '-distort', 'Polar', '512 110 512,512 -180,180', OUTPUTFILE])
subprocess.call(['convert', 'DiskImageTEMP.png', '-scale', '100%x300%', '-resize', '3072x!', '(', '-size', '3072x115', 'pattern:horizontal3', '-negate', '-alpha', 'copy', '-fx', '#000', ')', '-composite', '-virtual-pixel', 'HorizontalTile', '-flip', '+distort', 'Polar', '1024 220', '-resize', '50%x50%', OUTPUTFILE])
# convert the 4096x35px image to a square, rotate, then rotate around an axis.
except OSError:
print("\n\nOops. This script requires ImageMagick: http://www.imagemagick.org/")

View File

@ -14,40 +14,42 @@ Declares the matrix rows/cols of the Apple IIe keyboard.
More information here:
http://apple2.info/wiki/index.php?title=Pinouts#Apple_.2F.2Fe_Motherboard_keyboard_connector
*/
// Prevent compiler warning about casts from unsigned ints to chars
#define C(x) ((char) (x))
const byte ROWS = 10; // rows
const byte COLS = 8; // columns
char keys[ROWS][COLS] = {
{ KEY_ESC, KEY_TAB, KEY_A, KEY_Z, KEYPAD_SLASH , 0 , KEYPAD_ASTERIX, KEY_ESC},
{ C(KEY_ESC), C(KEY_TAB), C(KEY_A), C(KEY_Z), C(KEYPAD_SLASH), 0, C(KEYPAD_ASTERIX), C(KEY_ESC)},
{ KEY_1, KEY_Q, KEY_D, KEY_X, 0, 0, 0, 0},
{ C(KEY_1), C(KEY_Q), C(KEY_D), C(KEY_X), 0, 0, 0, 0},
{ KEY_2, KEY_W, KEY_S, KEY_C, KEYPAD_0, KEYPAD_4, KEYPAD_8, 0},
{ C(KEY_2), C(KEY_W), C(KEY_S), C(KEY_C), C(KEYPAD_0), C(KEYPAD_4), C(KEYPAD_8), 0},
{ KEY_3, KEY_E, KEY_H, KEY_V, KEYPAD_1, KEYPAD_5, KEYPAD_9, KEYPAD_MINUS},
{ C(KEY_3), C(KEY_E), C(KEY_H), C(KEY_V), C(KEYPAD_1), C(KEYPAD_5), C(KEYPAD_9), C(KEYPAD_MINUS)},
{ KEY_4, KEY_R, KEY_F, KEY_B, KEYPAD_2, KEYPAD_6, KEYPAD_PERIOD, KEYPAD_ENTER},
{ C(KEY_4), C(KEY_R), C(KEY_F), C(KEY_B), C(KEYPAD_2), C(KEYPAD_6), C(KEYPAD_PERIOD), C(KEYPAD_ENTER)},
{ KEY_6, KEY_Y, KEY_G, KEY_N, KEYPAD_3, KEYPAD_7, KEYPAD_PLUS, 0},
{ C(KEY_6), C(KEY_Y), C(KEY_G), C(KEY_N), C(KEYPAD_3), C(KEYPAD_7), C(KEYPAD_PLUS), 0},
{ KEY_5, KEY_T, KEY_J, KEY_M, KEY_BACKSLASH, KEY_TILDE, KEY_ENTER, KEY_BACKSPACE},
{ C(KEY_5), C(KEY_T), C(KEY_J), C(KEY_M), C(KEY_BACKSLASH), C(KEY_TILDE), C(KEY_ENTER), C(KEY_BACKSPACE)},
{ KEY_7, KEY_U, KEY_K, KEY_COMMA, KEY_EQUAL, KEY_P, KEY_UP, KEY_DOWN },
{ C(KEY_7), C(KEY_U), C(KEY_K), C(KEY_COMMA), C(KEY_EQUAL), C(KEY_P), C(KEY_UP), C(KEY_DOWN) },
{ KEY_8, KEY_I, KEY_SEMICOLON, KEY_PERIOD, KEY_0, KEY_LEFT_BRACE, KEY_SPACE, KEY_LEFT },
{ C(KEY_8), C(KEY_I), C(KEY_SEMICOLON), C(KEY_PERIOD), C(KEY_0), C(KEY_LEFT_BRACE), C(KEY_SPACE), C(KEY_LEFT) },
{ KEY_9, KEY_O, KEY_L, KEY_SLASH, KEY_MINUS, KEY_RIGHT_BRACE, KEY_QUOTE, KEY_RIGHT },
{ C(KEY_9), C(KEY_O), C(KEY_L), C(KEY_SLASH), C(KEY_MINUS), C(KEY_RIGHT_BRACE), C(KEY_QUOTE), C(KEY_RIGHT) },
};
char Fkeys[2][10] = {
{KEY_1, KEY_2, KEY_3, KEY_4, KEY_5, KEY_6, KEY_7, KEY_8, KEY_9, KEY_0 },
{KEY_F1, KEY_F2, KEY_F3, KEY_F4, KEY_F5, KEY_F6, KEY_F7, KEY_F8, KEY_F9, KEY_F10 }
{C(KEY_1), C(KEY_2), C(KEY_3), C(KEY_4), C(KEY_5), C(KEY_6), C(KEY_7), C(KEY_8), C(KEY_9), C(KEY_0)},
{C(KEY_F1), C(KEY_F2), C(KEY_F3), C(KEY_F4), C(KEY_F5), C(KEY_F6), C(KEY_F7), C(KEY_F8), C(KEY_F9), C(KEY_F10)}
};
@ -118,79 +120,88 @@ byte colPins[COLS] = { // X0 - X7
Keypad KPD = Keypad( makeKeymap(keys), rowPins, colPins, ROWS, COLS );
// these pins are special in that they are dis/connected to ground, instead of to a row/col
const int SHIFTPin = 21; // the pin that the shift key is attached to
const int CTRLPin = 5; // the pin that the control key is attached to
const int APPLEPin1 = 8; // the pin that the open-apple key is attached to
const int APPLEPin2 = 9; // the pin that the closed-apple key is attached to
// these pins are special in that they are dis/connected to ground, instead of to a row/col
const int CAPSPin = 7;
#define LED 6
uint16_t modifierKeys[4];
char modifierKeys[4];
#define KEY_CAPS_UNLOCK 0
boolean resetCapsLock = false; // Allows one caps unlock signal.
unsigned long dTime = 0;
boolean CAPSLock = false; // Initialize this to a reasonable value.
boolean FKEYS = false; // used to set numbers to F-Key equivalent. currently tied to caps lock
#define KEY_CAPS_UNLOCK 0
boolean resetCapsLock = false; // Allows one caps unlock signal.
unsigned long dTime = 0;
char CAPSState; // Initialize this to a reasonable value.
boolean FKEYS = false; // used to set numbers to F-Key equivalent. currently tied to caps lock
void setup(){
pinMode(SHIFTPin, INPUT);
pinMode(CTRLPin, INPUT);
pinMode(APPLEPin1, INPUT);
pinMode(APPLEPin2, INPUT);
digitalWrite(APPLEPin1, LOW);
digitalWrite(APPLEPin2, LOW);
void setup()
{
pinMode(SHIFTPin, INPUT_PULLUP);
digitalWrite(SHIFTPin, HIGH);
pinMode(CTRLPin, INPUT_PULLUP);
digitalWrite(CTRLPin, HIGH);
pinMode(CAPSPin, INPUT);
pinMode(APPLEPin1, INPUT);
digitalWrite(APPLEPin1, LOW);
pinMode(APPLEPin2, INPUT);
digitalWrite(APPLEPin2, LOW);
pinMode(CAPSPin, INPUT_PULLUP);
digitalWrite(CAPSPin, HIGH);
// DEBUG
// Serial.begin(115200);
pinMode(LED, OUTPUT);
//Serial.begin(115200);
//Serial.println(CAPSState);
// This gives time for the keyboard to hook up to the PC.
// Otherwise the caps lock state may be incorrect.
delay(1000);
}
void loop()
{
//probably should be on an interrupt, to catch high->low transition
// Only do something if the pin is different from previous state.
if ( (CAPSState!=digitalRead(CAPSPin)) && !resetCapsLock) {
CAPSState = digitalRead(CAPSPin); // Remember new CAPSState.
Keyboard.set_key6(KEY_CAPS_LOCK); // Send KEY_CAPS_LOCK.
boolean newCaps = digitalRead(CAPSPin) ? false : true;
if ( (CAPSLock != newCaps) && !resetCapsLock)
{
CAPSLock = newCaps; // Remember new CAPSLock.
Keyboard.set_key6((uint8_t) KEY_CAPS_LOCK); // Send KEY_CAPS_LOCK.
dTime = millis(); // Reset delay timer.
resetCapsLock = true;
Serial.print("Caps = ");
Serial.println(CAPSState);
// Serial.print("Caps = ");
// Serial.println(CAPSLock);
// Turn on the LED for caps lock.
digitalWrite(LED, CAPSLock ? HIGH : LOW);
}
if ( resetCapsLock && (millis()-dTime) > 10) {
if ( resetCapsLock && (millis()-dTime) > 10)
{
Keyboard.set_key6(KEY_CAPS_UNLOCK);
resetCapsLock = false;
}
FKEYS = !CAPSState;
// If caps lock is set, then turn number keys into function keys.
FKEYS = CAPSLock;
/*char CAPSState = digitalRead(CAPSPin);
if (CAPSState == LOW) {
/*char CAPSLock = digitalRead(CAPSPin);
if (CAPSLock == LOW) {
Keyboard.set_key6(KEY_CAPS_LOCK);
} else {
Keyboard.set_key6(0);89
@ -201,9 +212,7 @@ FKEYS = !CAPSState;
if (SHIFTState == LOW) {
modifierKeys[0] = MODIFIERKEY_SHIFT;
digitalWrite(SHIFTPin, HIGH);
} else {
digitalWrite(SHIFTPin, HIGH);
modifierKeys[0] = 0;
}
@ -211,10 +220,8 @@ FKEYS = !CAPSState;
if (CTRLState == LOW) {
modifierKeys[1] = MODIFIERKEY_CTRL;
digitalWrite(CTRLPin, HIGH);
} else {
modifierKeys[1] = 0;
digitalWrite(CTRLPin, HIGH);
}
char OAPPLEState = digitalRead(APPLEPin1);
@ -232,28 +239,20 @@ FKEYS = !CAPSState;
*/
// *** NOW USING CLOSED APPLE AS ALT/OPTION
if (OAPPLEState == HIGH) {
modifierKeys[2] = MODIFIERKEY_GUI;
digitalWrite(APPLEPin1, LOW);
} else {
modifierKeys[2] = 0;
digitalWrite(APPLEPin1, LOW);
}
if (CAPPLEState == HIGH) {
modifierKeys[3] = MODIFIERKEY_ALT;
digitalWrite(APPLEPin2, LOW);
} else {
modifierKeys[3] = 0;
digitalWrite(APPLEPin2, LOW);
}
// to use the TILDE key as ALT/OPTION
/* modifierKeys[3] = 0;
if( KPD.isPressed(KEY_TILDE) ) {
@ -263,14 +262,10 @@ FKEYS = !CAPSState;
// *** NOW USING CLOSED APPLE AS ALT/OPTION
   Keyboard.set_modifier( modifierKeys[0] | modifierKeys[1] | modifierKeys[2] | modifierKeys[3] );
Keyboard.set_modifier( modifierKeys[0] | modifierKeys[1] | modifierKeys[2] | modifierKeys[3] );
KPD.getKeys(); // Scan for all pressed keys. 6 Max, + 4 modifiers. Should be plenty, but can be extended to 10+
// Set keyboard keys to default values.
Keyboard.set_key1(0);
Keyboard.set_key2(0);
@ -280,41 +275,36 @@ FKEYS = !CAPSState;
//Keyboard.set_key6(0);
/* based on suggestion from Craig Brooks <s.craig.brooks@gmail.com>
uses CAPS LOCK to turn number keys into F-Key equivalent.
*/
// Update keyboard keys to active values.
if( KPD.key[0].kchar && ( KPD.key[0].kstate==PRESSED || KPD.key[0].kstate==HOLD )) {
if ( KPD.key[0].kchar && ( KPD.key[0].kstate==PRESSED || KPD.key[0].kstate==HOLD ))
{
//Serial.println(FKEYS);
if (FKEYS) {
if (FKEYS)
{
// number keys 1 through 0 for f1 - f10
if((KPD.key[0].kchar >= 0x1E) && (KPD.key[0].kchar <= 0x27)){
if ((KPD.key[0].kchar >= 0x1E) && (KPD.key[0].kchar <= 0x27))
{
KPD.key[0].kchar += 0x1C;
// Serial.println( KPD.key[0].kchar, HEX );
// - and = for f11 and f12
} else if( KPD.key[0].kchar == 0x2D || KPD.key[0].kchar == 0x2E ) {
// Serial.println( KPD.key[0].kchar, HEX );
}
else if ( KPD.key[0].kchar == 0x2D || KPD.key[0].kchar == 0x2E )
{
// - and = for f11 and f12
KPD.key[0].kchar += 0x17;
}
}
Keyboard.set_key1( KPD.key[0].kchar );
}
if( KPD.key[1].kchar && ( KPD.key[1].kstate==PRESSED || KPD.key[1].kstate==HOLD ))
if ( KPD.key[1].kchar && ( KPD.key[1].kstate==PRESSED || KPD.key[1].kstate==HOLD ))
Keyboard.set_key2( KPD.key[1].kchar );
if( KPD.key[2].kchar && ( KPD.key[2].kstate==PRESSED || KPD.key[2].kstate==HOLD ))

View File

@ -0,0 +1,191 @@
/*
CANT HAVE ANYTHING HOOKED UP TO PINS 3 OR 4 AND DO USB. FFFFUUUUUU
M0100 pins:
if LPIN & RPIN are HIGH or LPIN & RPIN are LOW
if LPIN goes HIGH to LOW or LPIN goes LOW to HIGH
moving right, X++
if RPIN goes HIGH to LOW or RPIN goes LOW to HIGH
moving left, X--
/
/
Mouse.move(X, Y), where X and Y range from -127 to +127. Positive X moves to the right. Positive Y moves downwards.
*/
// mouse is essentially two rotary encoders. one for L/R one for U/D
int LPIN = 0;
int RPIN = 4;
int led = 1; // blink 'digital' pin 1 - AKA the built in red LED
static uint8_t X_prev_pos = 0;
static uint8_t X_flags = 0;
int DPIN = 2;
int UPIN = 3;
static uint8_t Y_prev_pos = 0;
static uint8_t Y_flags = 0;
// using comparison to previous read to check direction instead of interrupts.
volatile int DeltaX = 0;
volatile int DeltaY = 0;
int MouseButtonPin = 1;
boolean MouseButton = 0;
int MouseCalibration = 4; // how fast does the movement translate (3 - 6 seems okay, 10 is too fast)
#include <TrinketMouse.h>
//#include <Bounce.h>
//Bounce button4 = Bounce(4, 10);
void setup() {
pinMode(MouseButtonPin, INPUT_PULLUP);
pinMode(led, OUTPUT);
pinMode(LPIN, INPUT);
// pinMode(RPIN, INPUT);
// pinMode(UPIN, INPUT);
// pinMode(DPIN, INPUT);
digitalWrite(LPIN, HIGH);
// digitalWrite(RPIN, HIGH);
// digitalWrite(UPIN, HIGH);
// digitalWrite(DPIN, HIGH);
TrinketMouse.begin();
// get an initial reading on the encoder pins
/* if (digitalRead(LPIN) == LOW) {
X_prev_pos |= (1 << 0);
}
if (digitalRead(RPIN) == LOW) {
X_prev_pos |= (1 << 1);
}
if (digitalRead(UPIN) == LOW) {
Y_prev_pos |= (1 << 0);
}
if (digitalRead(DPIN) == LOW) {
Y_prev_pos |= (1 << 1);
}
*/
}
void loop()
{
/*
int8_t X_action = 0; // 1 or -1 if moved, sign is direction
uint8_t X_cur_pos = 0;
// read in the encoder state first
if ( digitalRead(LPIN) ) {
X_cur_pos |= (1 << 0);
}
if ( digitalRead(RPIN) ) {
X_cur_pos |= (1 << 1);
}
// if any rotation at all
if (X_cur_pos != X_prev_pos)
{
if (X_prev_pos == 0x00)
{
// this is the first edge
if (X_cur_pos == 0x01) {
X_flags |= (1 << 0);
}
else if (X_cur_pos == 0x02) {
X_flags |= (1 << 1);
}
}
if (X_cur_pos == 0x03)
{
// this is when the Xoder is in the middle of a "step"
X_flags |= (1 << 4);
}
else if (X_cur_pos == 0x00)
{
// this is the final edge
if (X_prev_pos == 0x02) {
X_flags |= (1 << 2);
}
else if (X_prev_pos == 0x01) {
X_flags |= (1 << 3);
}
// check the first and last edge
// or maybe one edge is missing, if missing then require the middle state
// this will reject bounces and false movements
if (bit_is_set(X_flags, 0) && (bit_is_set(X_flags, 2) || bit_is_set(X_flags, 4))) {
X_action = 1;
}
else if (bit_is_set(X_flags, 2) && (bit_is_set(X_flags, 0) || bit_is_set(X_flags, 4))) {
X_action = 1;
}
else if (bit_is_set(X_flags, 1) && (bit_is_set(X_flags, 3) || bit_is_set(X_flags, 4))) {
X_action = -1;
}
else if (bit_is_set(X_flags, 3) && (bit_is_set(X_flags, 1) || bit_is_set(X_flags, 4))) {
X_action = -1;
}
X_flags = 0; // reset for next time
}
}
X_prev_pos = X_cur_pos;
DeltaX = X_action;
// now do Y...
if( (DeltaX != 0) || (DeltaY != 0) ) {
TrinketMouse.move(DeltaX * MouseCalibration, DeltaY * MouseCalibration, 0, MouseButton);
DeltaX = 0;
DeltaY = 0;
}
*/
digitalWrite(led, digitalRead(LPIN));
TrinketMouse.move(1,0,0,0);
}

Binary file not shown.