TommyPROM/HardwareVerify/HardwareVerify.ino

441 lines
11 KiB
Arduino
Raw Normal View History

2019-06-09 16:13:39 -04:00
/**
* Test hardware for ATMEL 28C series EEPROMs.
*
* The hardware uses two 74LS164 shift registers as the low and
* high address registers.
**/
#include "Configure.h"
#define LED 13
PromDevice28C prom(32 * 1024L, 64, 10, true);
/*****************************************************************************/
/*****************************************************************************/
/**
* CLI parse functions
*/
const char hex[] = "0123456789abcdef";
// Read a line of data from the serial connection.
char * readLine(char * buffer, int len)
{
for (int ix = 0; (ix < len); ix++)
{
buffer[ix] = 0;
}
// read serial data until linebreak or buffer is full
char c = ' ';
int ix = 0;
do {
if (Serial.available())
{
c = Serial.read();
if ((c == '\b') && (ix > 0))
{
// Backspace, forget last character
--ix;
}
buffer[ix++] = c;
Serial.write(c);
}
} while ((c != '\n') && (ix < len));
buffer[ix - 1] = 0;
return buffer;
}
/************************************************************
* convert a single hex character [0-9a-fA-F] to its value
* @param char c single character (digit)
* @return byte value of the digit (0-15)
************************************************************/
byte hexDigit(char c)
{
if ((c >= '0') && (c <= '9'))
{
return c - '0';
}
else if ((c >= 'a') && (c <= 'f'))
{
return c - 'a' + 10;
}
else if ((c >= 'A') && (c <= 'F'))
{
return c - 'A' + 10;
}
else
{
return 0xff;
}
}
/************************************************************
* Convert a hex string to a uint32_t value.
* Skips leading spaces and terminates on the first non-hex
* character. Leading zeroes are not required.
*
* No error checking is performed - if no hex is found then
* defaultValue is returned. Similarly, a hex string of more than
* 8 digits will return the value of the last 8 digits.
* @param pointer to string with the hex value of the word (modified)
* @return unsigned int represented by the digits
2019-06-09 16:13:39 -04:00
************************************************************/
uint32_t getHex32(char *& pData, uint32_t defaultValue=0)
2019-06-09 16:13:39 -04:00
{
uint32_t u32 = 0;
2019-06-09 16:13:39 -04:00
while (isspace(*pData))
{
++pData;
}
2019-06-09 16:13:39 -04:00
if (isxdigit(*pData))
{
while (isxdigit(*pData)) {
u32 = (u32 << 4) | hexDigit(*pData++);
}
}
else
{
u32 = defaultValue;
}
2019-06-09 16:13:39 -04:00
return u32;
}
2019-06-09 16:13:39 -04:00
void printByte(byte b)
{
char line[3];
line[0] = hex[b >> 4];
line[1] = hex[b & 0x0f];
line[2] = '\0';
Serial.print(line);
}
void printWord(word w)
{
char line[5];
line[0] = hex[(w >> 12) & 0x0f];
line[1] = hex[(w >> 8) & 0x0f];
line[2] = hex[(w >> 4) & 0x0f];
line[3] = hex[(w) & 0x0f];
line[4] = '\0';
Serial.print(line);
}
void zapTest(uint32_t start)
{
byte testData[] =
{
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H',
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
0x7f, 0xbf, 0xdf, 0xef, 0xf7, 0xfb, 0xfd, 0xfe,
0x00, 0xff, 0x55, 0xaa, '0', '1', '2', '3'
};
if (!prom.writeData(testData, sizeof(testData), start))
{
Serial.println("Write failed");
return;
}
delay(100);
for (unsigned ix = 0; ix < sizeof(testData); ix++)
{
byte val = prom.readData(start + ix);
if (val != testData[ix])
{
Serial.print(F("Verify failed, addr="));
Serial.print(start + ix, HEX);
Serial.print(F(", read="));
Serial.print(val, HEX);
Serial.print(F(", expected="));
Serial.println(testData[ix], HEX);
return;
}
}
Serial.println("Write test successful");
}
void pokeBytes(char * pCursor)
{
uint32_t val;
uint32_t start;
unsigned byteCtr = 0;
enum { BLOCK_SIZE = 32 };
byte data[BLOCK_SIZE];
//first value returned is the starting address
start = getHex32(pCursor, 0);
while (((val = getHex32(pCursor, 0xffff)) != 0xffff) && (byteCtr < BLOCK_SIZE))
{
data[byteCtr++] = byte(val);
}
if (byteCtr > 0)
{
if (!prom.writeData(data, byteCtr, start))
{
Serial.println(F("Write failed"));
return;
}
}
else
{
Serial.println(F("Missing address or data"));
return;
}
delay(100);
for (unsigned ix = 0; ix < byteCtr ; ix++)
{
byte val = prom.readData(start + ix);
if (val != data[ix])
{
Serial.print(F("Verify failed, addr="));
Serial.print(start + ix, HEX);
Serial.print(F(", read="));
Serial.print(val, HEX);
Serial.print(F(", expected="));
Serial.println(data[ix], HEX);
return;
}
}
Serial.println("Poke successful");
}
void dumpBlock(uint32_t start, uint32_t end)
{
char line[81];
// 01234567891 234567892 234567893 234567894 234567895 234567896 234567897 23456789
// 01234: 01 23 45 67 89 ab cf ef 01 23 45 67 89 ab cd ef 1.2.3.4. 5.6.7.8.
int count = 0;
memset(line, ' ', sizeof(line));
char * pHex = line;
char * pChar = line + 59;
for (uint32_t addr = start; (addr <= end); addr++)
{
if (count == 0)
{
//print out the address at the beginning of the line
pHex = line;
pChar = line + 59;
*pHex++ = hex[(addr >> 16) & 0x0f];
*pHex++ = hex[(addr >> 12) & 0x0f];
*pHex++ = hex[(addr >> 8) & 0x0f];
*pHex++ = hex[(addr >> 4) & 0x0f];
*pHex++ = hex[(addr) & 0x0f];
*pHex++ = ':';
*pHex++ = ' ';
}
byte data = prom.readData(addr);
*pHex++ = hex[data >> 4];
*pHex++ = hex[data & 0x0f];
*pHex++ = ' ';
*pChar++ = ((data < 32) | (data >= 127)) ? '.' : data;
if ((count & 3) == 3)
{
*pHex++ = ' ';
}
if ((count & 7) == 7)
{
*pChar++ = ' ';
}
if ((++count >= 16) || (addr == end))
{
*pChar = '\0';
Serial.println(line);
memset(line, ' ', sizeof(line));
count = 0;
}
}
if (count)
{
Serial.println();
}
}
2019-06-09 16:13:39 -04:00
/************************************************
* MAIN
*************************************************/
word addr = 0;
void setup()
{
// Do this first so that it initializes all of the hardware pins into a
// non-harmful state. The Arduino or the target EEPROM could be damaged
// if both writing to the data bus at the same time.
prom.begin();
Serial.begin(115200);
}
void loop()
{
commandLoop();
}
static void commandLoop()
2019-06-09 16:13:39 -04:00
{
byte b;
uint32_t arg;
const uint32_t noValue = uint32_t(-1);
char line[120];
char * cursor = line + 1;
unsigned long timeStart;
unsigned long timeEnd;
bool cmdError = false;
bool unknownCmd = false;
2019-06-09 16:13:39 -04:00
Serial.print("\n#");
Serial.flush();
readLine(line, sizeof(line));
byte c = tolower(line[0]);
if ((c >= 'A') && (c <= 'Z')) {
c |= 0x20;
}
switch (c)
{
case 'a':
if ((arg = getHex32(cursor, noValue)) != noValue)
2019-06-09 16:13:39 -04:00
{
prom.setAddress(word(arg));
2019-06-09 16:13:39 -04:00
}
else
cmdError = true;
2019-06-09 16:13:39 -04:00
break;
2019-06-09 16:13:39 -04:00
case 'd':
if ((arg = getHex32(cursor, noValue)) != noValue)
2019-06-09 16:13:39 -04:00
{
prom.disableOutput();
prom.setDataBusMode(OUTPUT);
prom.writeDataBus(byte(arg));
2019-06-09 16:13:39 -04:00
}
else
cmdError = true;
2019-06-09 16:13:39 -04:00
break;
2019-06-09 16:13:39 -04:00
case 'c':
case 'o':
case 'w':
if ((line[1] != 'd') && (line[1] != 'e'))
{
cmdError = true;
}
else
{
2019-06-09 16:13:39 -04:00
bool enable = line[1] == 'e';
if (c == 'c') {
2019-06-09 16:13:39 -04:00
if (enable) prom.enableChip(); else prom.disableChip();
} else if (c == 'w') {
2019-06-09 16:13:39 -04:00
if (enable) prom.enableWrite(); else prom.disableWrite();
} else { // c == 'o'
if (enable) {
2019-06-09 16:13:39 -04:00
// Don't allow the prom and the data bus to output at the same time
prom.setDataBusMode(INPUT);
prom.enableOutput();
} else {
prom.disableOutput();
2019-06-09 16:13:39 -04:00
}
}
}
break;
case 'r':
prom.setDataBusMode(INPUT);
prom.enableOutput();
b = prom.readDataBus();
printByte(b);
Serial.println();
prom.disableOutput();
break;
case 'l':
Serial.println(F("Writing the lock code to enable Software Write Protect mode."));
prom.enableSoftwareWriteProtect();
break;
case 'u':
Serial.println(F("Writing the unlock code to disable Software Write Protect mode."));
timeStart = micros();
2019-06-09 16:13:39 -04:00
prom.disableSoftwareWriteProtect();
timeEnd = micros();
Serial.print("Unlock command time in uSec=");
Serial.println(timeEnd - timeStart);
2019-06-09 16:13:39 -04:00
break;
case 'p':
pokeBytes(line+1);
break;
case 's':
if ((arg = getHex32(cursor, noValue)) != noValue)
{
Serial.println();
dumpBlock(arg, arg + 63);
}
else
cmdError = true;
break;
case 'z':
if ((arg = getHex32(cursor, noValue)) != noValue)
{
zapTest(arg);
}
else
cmdError = true;
break;
2019-06-09 16:13:39 -04:00
default:
unknownCmd = true;
2019-06-09 16:13:39 -04:00
break;
}
if (cmdError) {
Serial.println(F("Missing or invalid command argument"));
} else if (unknownCmd) {
2019-06-09 16:13:39 -04:00
Serial.print(F("Hardware Verifier - "));
Serial.println(prom.getName());
Serial.println();
Serial.println(F("Valid commands are:"));
Serial.println(F(" Axxxx - Set address bus to xxxx"));
Serial.println(F(" Dxx - Set Data bus to xx"));
Serial.println(F(" Cs - Set Chip enable to state (e=enable, d=disable)"));
Serial.println(F(" Os - Set Output enable to state (e=enable, d=disable)"));
Serial.println(F(" Ws - Set Write enable to state (e=enable, d=disable)"));
Serial.println(F(" R - Read and print the value on the data bus"));
Serial.println(F(" L - Send Lock sequence to enable device Software Data Protection"));
Serial.println(F(" U - Send Unlock sequence to disable device Software Data Protection"));
Serial.println("");
Serial.println(F(" Pxxxx dd dd... - Poke (write) values to EEPROM (up to 32 values)"));
Serial.println(F(" Sxxxx - Show (dump) bytes from EEPROM to terminal"));
Serial.println(F(" Zxxxx - Zap (burn) a 32 byte test pattern"));
2019-06-09 16:13:39 -04:00
}
}