/** * Read and write ATMEL 28C series EEPROMs. Support block writes for better * performance. Read-only is supported for most parallel EPROM/EEPROMs. * * ROM images are moved to and from a host computer using XMODEM. * This is available in a number of terminal programs, such as * TeraTerm and Minicom. * * The hardware uses two 74LS164 shift registers as the low and * high address registers. **/ #include "Configure.h" #include "CmdStatus.h" #include "XModem.h" // Global status CmdStatus cmdStatus; // Declare a global PROM device depending on the device type that is // defined in Configure.h #if defined(PROM_IS_28C) // Define a device for a 28C256 EEPROM with the following parameters: // 32K byte device capacity // 64 byte block writes // 10ms max write time // Data polling supported PromDevice28C prom(32 * 1024L, 64, 10, true); #elif defined(PROM_IS_8755) // Define a device for an 8755. This has a fixed size of 2K and no // other parameters. PromDevice8755 prom(2 * 1024L); #else #error "Must define a PROM type in Configure.h" #endif // Global XModem driver XModem xmodem(prom, cmdStatus); /*****************************************************************************/ /*****************************************************************************/ /** * CLI parse functions */ const char hex[] = "0123456789abcdef"; enum { // CLI Commands CMD_INVALID, CMD_CHECKSUM, CMD_DUMP, CMD_ERASED, CMD_FILL, CMD_READ, CMD_UNLOCK, CMD_WRITE, CMD_SCAN, CMD_TEST, CMD_ZAP, CMD_LAST_STATUS }; // Read a line of data from the serial connection. char * readLine(char * buffer, int len) { for (int ix = 0; (ix < len); ix++) { buffer[ix] = 0; } // read serial data until linebreak or buffer is full char c = ' '; int ix = 0; do { if (Serial.available()) { c = Serial.read(); if ((c == '\b') && (ix > 0)) { // Backspace, forget last character --ix; } buffer[ix++] = c; Serial.write(c); } } while ((c != '\n') && (ix < len)); buffer[ix - 1] = 0; return buffer; } byte parseCommand(char c) { byte cmd = CMD_INVALID; // Convert the command to lowercase. if ((c >= 'A') && (c <= 'Z')) { c |= 0x20; } switch (c) { case 'c': cmd = CMD_CHECKSUM; break; case 'd': cmd = CMD_DUMP; break; case 'e': cmd = CMD_ERASED; break; case 'f': cmd = CMD_FILL; break; case 'r': cmd = CMD_READ; break; case 'u': cmd = CMD_UNLOCK; break; case 'w': cmd = CMD_WRITE; break; case 's': cmd = CMD_SCAN; break; case 't': cmd = CMD_TEST; break; case 'z': cmd = CMD_ZAP; break; case '/': cmd = CMD_LAST_STATUS;break; default: cmd = CMD_INVALID; break; } return cmd; } /************************************************************ * convert a single hex character [0-9a-fA-F] to its value * @param char c single character (digit) * @return byte value of the digit (0-15) ************************************************************/ byte hexDigit(char c) { if ((c >= '0') && (c <= '9')) { return c - '0'; } else if ((c >= 'a') && (c <= 'f')) { return c - 'a' + 10; } else if ((c >= 'A') && (c <= 'F')) { return c - 'A' + 10; } else { return 0xff; } } /************************************************************ * convert a hex byte (00 - ff) to byte * @param c-string with the hex value of the byte * @return byte represented by the digits ************************************************************/ byte hexByte(char * a) { return (hexDigit(a[0]) << 4) | hexDigit(a[1]); } /************************************************************ * convert a hex word (0000 - ffff) to unsigned int * @param c-string with the hex value of the word * @return unsigned int represented by the digits ************************************************************/ unsigned int hexWord(char * data) { return (hexDigit(data[0]) << 12) | (hexDigit(data[1]) << 8) | (hexDigit(data[2]) << 4) | (hexDigit(data[3])); } void printByte(byte b) { char line[3]; line[0] = hex[b >> 4]; line[1] = hex[b & 0x0f]; line[2] = '\0'; Serial.print(line); } void printWord(word w) { char line[5]; line[0] = hex[(w >> 12) & 0x0f]; line[1] = hex[(w >> 8) & 0x0f]; line[2] = hex[(w >> 4) & 0x0f]; line[3] = hex[(w) & 0x0f]; line[4] = '\0'; Serial.print(line); } // If the user presses a key then pause until they press another. Return true if // Ctrl-C is pressed. bool checkForBreak() { if (Serial.available()) { if (Serial.read() == 0x03) { return true; } while (!Serial.available()) {;} if (Serial.read() == 0x03) { return true; } } return false; } /*****************************************************************************/ /*****************************************************************************/ /** * Command implementations */ /** * Compute a 16 bit checksum from PROM data * * Note that this always reads an even number of bytes from the * device and will read one byte beyond the specified end * address if an odd number of bytes is specified by start and * end. */ word checksumBlock(word start, word end) { word checksum = 0; for (word addr = start; (addr <= end); addr += 2) { word w = prom.readData(addr); w <<= 8; w |= prom.readData(addr + 1); checksum += w; if (addr >= 0xfffe) { // This is a really kludgy check to make sure the counter doesn't wrap // around to zero. Could replace addr and end with longs to fix this, // but that might not be any faster. break; } } return checksum; } /** * Read data from the device and dump it in hex and ascii. **/ void dumpBlock(word start, word end) { char line[81]; // 01234567891 234567892 234567893 234567894 234567895 234567896 234567897 23456789 // 1234: 01 23 45 67 89 ab cf ef 01 23 45 67 89 ab cd ef 1.2.3.4. 5.6.7.8. int count = 0; memset(line, ' ', sizeof(line)); char * pHex = line; char * pChar = line + 58; for (word addr = start; (addr <= end); addr++) { if (count == 0) { //print out the address at the beginning of the line pHex = line; pChar = line + 58; *pHex++ = hex[(addr >> 12) & 0x0f]; *pHex++ = hex[(addr >> 8) & 0x0f]; *pHex++ = hex[(addr >> 4) & 0x0f]; *pHex++ = hex[(addr) & 0x0f]; *pHex++ = ':'; *pHex++ = ' '; } byte data = prom.readData(addr); *pHex++ = hex[data >> 4]; *pHex++ = hex[data & 0x0f]; *pHex++ = ' '; *pChar++ = ((data < 32) | (data >= 127)) ? '.' : data; if ((count & 3) == 3) { *pHex++ = ' '; } if ((count & 7) == 7) { *pChar++ = ' '; } if ((++count >= 16) || (addr == end)) { *pChar = '\0'; Serial.println(line); if (checkForBreak()) { return; } memset(line, ' ', sizeof(line)); count = 0; } } if (count) { Serial.println(); } } /** * Fill a block of PROM data with a single value. * * @param start - start address * @param end - end address * @param val - data byte to write to all addresses */ void fillBlock(word start, word end, byte val) { enum { BLOCK_SIZE = 32 }; byte block[BLOCK_SIZE]; for (int ix = 0; ix < BLOCK_SIZE; ix++) { block[ix] = val; } for (word addr = start; (addr <= end); addr += BLOCK_SIZE) { unsigned writeLen = ((end - addr + 1) < BLOCK_SIZE) ? (end - addr + 1) : BLOCK_SIZE; if (!prom.writeData(block, writeLen, addr)) { cmdStatus.error("Write failed"); return; } } } /** * Verify that a block of PROM contains the all FF erased value. * * @param start - start address * @param end - end address */ void erasedBlockCheck(word start, word end) { for (word addr = start; (addr <= end); addr ++) { byte val = prom.readData(addr); if (val != 0xff) { cmdStatus.error("Block is not erased"); cmdStatus.setValueHex(0, "addr", addr); cmdStatus.setValueHex(1, "value", val); return; } } cmdStatus.info("Block is erased"); } #ifdef ENABLE_DEBUG_COMMANDS /** * Runs through a range of addresses, reading a single address * multiple times. Fails if all of the reads for an address do * not produce that same value. * * @param start - start address * @param end - end address */ void scanBlock(word start, word end) { enum { SCAN_TESTS = 10 }; for (word addr = start; (addr <= end); addr++) { byte values[SCAN_TESTS]; values[0] = prom.readData(addr); bool fail = false; for (int ix = 1; (ix < SCAN_TESTS); ix++) { values[ix] = prom.readData(addr); if (values[ix] != values[0]) { fail = true; } } if (fail) { printWord(addr); Serial.print(": "); for (int ix = 0; (ix < SCAN_TESTS); ix++) { printByte(values[ix]); Serial.print(" "); } Serial.println(); cmdStatus.error("Repeated reads returned different values"); cmdStatus.setValueHex(0, "addr", addr); break; } if (addr == 0xffff) break; } } /** * Reads a single address in the PROM multiple times and fails * if all of the reads do not produce the same value. * * @param addr - address to test */ void testAddr(word addr) { enum { NUM_TESTS = 100 }; bool fail = false; byte value; byte firstValue = prom.readData(addr); for (int ix = 1; (ix < NUM_TESTS); ix++) { value = prom.readData(addr); if (value != firstValue) { fail = true; } } if (fail) { cmdStatus.error("Repeated reads returned different values"); cmdStatus.setValueHex(0, "addr", addr); cmdStatus.setValueHex(1, "first read", firstValue); cmdStatus.setValueHex(2, "last read", value); } else { cmdStatus.info("Read test passed"); } } /** * Write a 32 byte test pattern to the PROM device and verify it * by reading back. The pattern includes a walking 1 and a * walking zero, which may help to detect pins that are tied * together or swapped. * * @param start - start address */ void zapTest(word start) { byte testData[] = { 'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80, 0x7f, 0xbf, 0xdf, 0xef, 0xf7, 0xfb, 0xfd, 0xfe, 0x00, 0xff, 0x55, 0xaa, '0', '1', '2', '3' }; if (!prom.writeData(testData, sizeof(testData), start)) { cmdStatus.error("Write failed"); return; } delayMicroseconds(10000); for (int ix = 0; ix < sizeof(testData); ix++) { byte val = prom.readData(start + ix); if (val != testData[ix]) { cmdStatus.error("Verify failed"); cmdStatus.setValueHex(0, "addr", start + ix); cmdStatus.setValueHex(1, "read", val); cmdStatus.setValueHex(2, "expected", testData[ix]); return; } } cmdStatus.info("Write test successful"); } #endif /* ENABLE_DEBUG_COMMANDS */ /************************************************ * MAIN *************************************************/ word addr = 0; void setup() { // Do this first so that it initializes all of the hardware pins into a // non-harmful state. The Arduino or the target EEPROM could be damaged // if both writing to the data bus at the same time. prom.begin(); Serial.begin(115200); } /** * main loop that runs infinite times, parsing a given command and * executing read or write requestes. **/ byte ledTest[] = { 0xc3, 0x03, 0x80, 0x3e, 0xc0, 0x30, 0x3e, 0xff, 0x47, 0x3d, 0x05, 0xc2, 0x0a, 0x80, 0xfe, 0x00, 0xc2, 0x09, 0x80, 0x3e, 0x40, 0x30, 0x3e, 0xff, 0x47, 0x3d, 0x05, 0xc2, 0x1a, 0x80, 0xfe, 0x00, 0xc2, 0x19, 0x80, 0xc3, 0x03, 0x80 }; byte charTest[] = { 0xc3, 0x03, 0x80, 0x0e, 0x55, 0xf3, 0x06, 0x0b, 0xaf, 0x3e, 0x80, 0x1f, 0x3f, 0x30, 0x21, 0x19, 0x00, 0x2d, 0xc2, 0x11, 0x80, 0x25, 0xc2, 0x11, 0x80, 0x37, 0x79, 0x1f, 0x4f, 0x05, 0xc2, 0x09, 0x80, 0x3e, 0xc0, 0x30, 0x3e, 0x40, 0x30, 0x3e, 0xc0, 0x30, 0x3e, 0x40, 0x30, 0x21, 0xff, 0xff, 0x2d, 0xc2, 0x30, 0x80, 0x25, 0xc2, 0x30, 0x80, 0xc3, 0x03, 0x80 }; word start = 0; word end = 0xff; byte val = 0xff; void loop() { word w; char line[20]; uint32_t numBytes; Serial.print("\n>"); Serial.flush(); readLine(line, sizeof(line)); byte cmd = parseCommand(line[0]); if (hexDigit(line[1]) <= 15) start = hexWord(line + 1); if (hexDigit(line[6]) <= 15) end = hexWord(line + 6); if (hexDigit(line[6]) <= 11) val = hexByte(line + 11); if ((cmd != CMD_LAST_STATUS) && (cmd != CMD_INVALID)) { cmdStatus.clear(); } switch (cmd) { case CMD_CHECKSUM: w = checksumBlock(start, end); Serial.print("Checksum "); printWord(start); Serial.print("-"); printWord(end); Serial.print(" = "); printWord(w); Serial.println(); break; case CMD_DUMP: dumpBlock(start, end); break; case CMD_ERASED: erasedBlockCheck(start, end); break; case CMD_FILL: fillBlock(start, end, val); break; case CMD_READ: Serial.println(F("Set the terminal to receive XMODEM CRC")); if (xmodem.SendFile(start, uint32_t(end) - start + 1)) { cmdStatus.info("Send complete."); cmdStatus.setValueDec(0, "NumBytes", uint32_t(end) - start + 1); } break; case CMD_UNLOCK: Serial.println(F("Writing the unlock code to disable Software Write Protect mode.")); prom.disableSoftwareWriteProtect(); break; case CMD_WRITE: Serial.println(F("Send the image file using XMODEM CRC")); numBytes = xmodem.ReceiveFile(start); if (numBytes) { cmdStatus.info("Success writing to EEPROM device."); cmdStatus.setValueDec(0, "NumBytes", numBytes); } else { xmodem.Cancel(); } break; #ifdef ENABLE_DEBUG_COMMANDS case CMD_SCAN: scanBlock(start, end); break; case CMD_TEST: testAddr(start); break; case CMD_ZAP: zapTest(start); break; #endif /* ENABLE_DEBUG_COMMANDS */ case CMD_LAST_STATUS: Serial.println(F("Status of last command:")); break; default: Serial.println(F("TommyPROM 1.5\n")); Serial.println(F("Valid commands are:")); Serial.println(F(" Cssss eeee - Compute checksum from device")); Serial.println(F(" Dssss eeee - Dump bytes from device to terminal")); Serial.println(F(" Essss eeee - Check to see if device range is Erased (all FF)")); Serial.println(F(" Fssss eeee dd - Fill block on device with fixed value")); Serial.println(F(" Rssss eeee - Read from device and save to XMODEM CRC file")); Serial.println(F(" U - Unlock device Software Data Protection")); Serial.println(F(" Wssss - Write to device from XMODEM CRC file")); #ifdef ENABLE_DEBUG_COMMANDS Serial.println(); Serial.println(F(" Sssss eeee - Scan addresses (read each 10x)")); Serial.println(F(" Tssss - Test read address (read 100x)")); Serial.println(F(" Zssss - Zap (burn) a 32 byte test pattern")); #endif /* ENABLE_DEBUG_COMMANDS */ break; } if (!cmdStatus.isClear() || (cmd == CMD_LAST_STATUS)) { Serial.println(); cmdStatus.printStatus(); } }