TommyPROM/HardwareVerify/PromDevice28C.cpp

212 lines
5.1 KiB
C++

#include "Configure.h"
#include "PromAddressDriver.h"
PromDevice28C::PromDevice28C(unsigned long size, word blockSize, unsigned maxWriteTime, bool polling)
: PromDevice(size, blockSize, maxWriteTime, polling)
{
}
void PromDevice28C::begin()
{
// Define the data bus as input initially so that it does not put out a
// signal that could collide with output on the data pins of the EEPROM.
setDataBusMode(INPUT);
// Define the EEPROM control pins as output, making sure they are all
// in the disabled state.
digitalWrite(OE, HIGH);
pinMode(OE, OUTPUT);
digitalWrite(CE, HIGH);
pinMode(CE, OUTPUT);
digitalWrite(WE, HIGH);
pinMode(WE, OUTPUT);
// This chip uses the shift register hardware for addresses, so initialize that.
PromAddressDriver::begin();
}
// Write the special six-byte code to turn off Software Data Protection.
void PromDevice28C::disableSoftwareWriteProtect()
{
disableOutput();
disableWrite();
setDataBusMode(OUTPUT);
setByte(0xaa, 0x5555);
setByte(0x55, 0x2aaa);
setByte(0x80, 0x5555);
setByte(0xaa, 0x5555);
setByte(0x55, 0x2aaa);
setByte(0x20, 0x5555);
setDataBusMode(INPUT);
disableChip();
}
// Write the special three-byte code to turn on Software Data Protection.
void PromDevice28C::enableSoftwareWriteProtect()
{
disableOutput();
disableWrite();
setDataBusMode(OUTPUT);
setByte(0xaa, 0x5555);
setByte(0x55, 0x2aaa);
setByte(0xa0, 0x5555);
setDataBusMode(INPUT);
disableChip();
}
// BEGIN PRIVATE METHODS
//
// Use the PromAddressDriver to set a 16 bit address in the two address shift registers.
void PromDevice28C::setAddress(word address)
{
PromAddressDriver::setAddress(address);
}
// Read a byte from a given address
byte PromDevice28C::readByte(word address)
{
byte data = 0;
setAddress(address);
setDataBusMode(INPUT);
disableOutput();
disableWrite();
enableChip();
enableOutput();
data = readDataBus();
disableOutput();
disableChip();
return data;
}
// Burn a byte to the chip and verify that it was written.
bool PromDevice28C::burnByte(byte value, word address)
{
bool status = false;
disableOutput();
disableWrite();
setAddress(address);
setDataBusMode(OUTPUT);
writeDataBus(value);
enableChip();
delayMicroseconds(1);
enableWrite();
delayMicroseconds(1);
disableWrite();
status = waitForWriteCycleEnd(value);
disableChip();
return status;
}
bool PromDevice28C::burnBlock(byte data[], word len, word address)
{
bool status = false;
if (len == 0) return true;
disableOutput();
disableWrite();
enableChip();
// Write all of the bytes in the block out to the chip. The chip will
// program them all at once as long as they are written fast enough.
setDataBusMode(OUTPUT);
for (word ix = 0; (ix < len); ix++)
{
setAddress(address + ix);
writeDataBus(data[ix]);
delayMicroseconds(1);
enableWrite();
delayMicroseconds(1);
disableWrite();
}
status = waitForWriteCycleEnd(data[len - 1]);
disableChip();
return status;
}
bool PromDevice28C::waitForWriteCycleEnd(byte lastValue)
{
if (mSupportsDataPoll)
{
// Verify programming complete by reading the last value back until it matches the
// value written twice in a row. The D7 bit will read the inverse of last written
// data and the D6 bit will toggle on each read while in programming mode.
//
// Note that the max readcount is set to the device's maxReadTime (in uSecs)
// divided by two because there are two 1 uSec delays in the loop. In reality,
// the loop could run for longer because this does not account for the time needed
// to run all of the loop code. In actual practice, the loop will terminate much
// earlier because it will detect the end of the write well before the max time.
setDataBusMode(INPUT);
delayMicroseconds(1);
for (int readCount = mMaxWriteTime * 1000 / 2; (readCount > 0); readCount--)
{
enableOutput();
delayMicroseconds(1);
byte b1 = readDataBus();
disableOutput();
enableOutput();
delayMicroseconds(1);
byte b2 = readDataBus();
disableOutput();
if ((b1 == b2) && (b1 == lastValue))
{
return true;
}
}
return false;
}
else
{
// No way to detect success. Just wait the max write time.
delayMicroseconds(mMaxWriteTime * 1000L);
return true;
}
}
// Set an address and data value and toggle the write control. This is used
// to write control sequences, like the software write protect. This is not a
// complete byte write function because it does not set the chip enable or the
// mode of the data bus.
void PromDevice28C::setByte(byte value, word address)
{
setAddress(address);
writeDataBus(value);
delayMicroseconds(1);
enableChip();
enableWrite();
delayMicroseconds(1);
disableWrite();
disableChip();
}