TommyPROM/TommyPROM/TommyPROM.ino

776 lines
19 KiB
C++

/**
* Read and write parallel EEPROMS with an interctive command-line interface.
* Modules are available for ATMEL 28C series EEPROMs and Intel 8755A EPROMS.
* Many other parallel EPROM/EEPROMs can be read, but not written, using the
* 28C code.
*
* The 28C module supports block writes for better performance and
* Software Data Protection (SDP) unlocking.
*
* ROM images are moved to and from a host computer using XMODEM. This is
* available in a number of terminal programs, such as TeraTerm and Minicom.
*
* The default hardware uses two 74LS164 shift registers as the low and
* high address registers.
**/
#include "Configure.h"
#include "CmdStatus.h"
#include "XModem.h"
static const char * MY_VERSION = "2.7";
// Global status
CmdStatus cmdStatus;
// Declare a global PROM device depending on the device type that is
// defined in Configure.h
#if defined(PROM_IS_28C)
// Define a device for a 28C256 EEPROM with the following parameters:
// 32K byte device capacity
// 64 byte block writes
// 10ms max write time
// Data polling supported
PromDevice28C prom(32 * 1024L, 64, 10, true);
#elif defined(PROM_IS_27)
// Define a device for a 2764 EPROM with the following parameters:
// 8K byte device capacity
// 1000us (1ms) write pulse
// 15 write attempts
// 4x overwrite pulse
PromDevice27 prom(8 * 1024L, 1000L, 15, 4); // 2764 with SEEQ intelligent programming
//PromDevice27 prom(32 * 1024L, 1000L, 25, 3); // 27C256 with SEEQ intelligent programming
//PromDevice27 prom(2 * 1024L, 50000L, 1, 0); // 2716 with single 50ms write
//PromDevice27 prom(64 * 1024L, 100L, 11, 0); // 27C040 with Atmel rapid programming
#elif defined(PROM_IS_8755A)
// Define a device for an Intel 8755A with a fixed size of 2K and no other parameters.
PromDevice8755A prom(2 * 1024L);
// Additional device-specific code goes here...
//#elif defined(PROM_IS...
#else
#error "Must define a PROM type in Configure.h"
#endif
// Global XModem driver
XModem xmodem(prom, cmdStatus);
/*****************************************************************************/
/*****************************************************************************/
/**
* CLI parse functions
*/
const char hex[] = "0123456789abcdef";
enum {
// CLI Commands
CMD_INVALID,
CMD_CHECKSUM,
CMD_DUMP,
CMD_ERASED,
CMD_FILL,
CMD_LOCK,
CMD_POKE,
CMD_READ,
CMD_UNLOCK,
CMD_WRITE,
CMD_INFO,
CMD_SCAN,
CMD_TEST,
CMD_ZAP,
CMD_LAST_STATUS
};
// Read a line of data from the serial connection.
char * readLine(char * buffer, int len)
{
for (int ix = 0; (ix < len); ix++)
{
buffer[ix] = 0;
}
// read serial data until linebreak or buffer is full
char c = ' ';
int ix = 0;
do {
if (Serial.available())
{
c = Serial.read();
if ((c == '\b') && (ix > 0))
{
// Backspace, forget last character
--ix;
}
buffer[ix++] = c;
Serial.write(c);
}
} while ((c != '\n') && (c != '\r') && (ix < len));
buffer[ix - 1] = 0;
return buffer;
}
byte parseCommand(char c)
{
byte cmd = CMD_INVALID;
// Convert the command to lowercase.
if ((c >= 'A') && (c <= 'Z')) {
c |= 0x20;
}
switch (c)
{
case 'c': cmd = CMD_CHECKSUM; break;
case 'd': cmd = CMD_DUMP; break;
case 'e': cmd = CMD_ERASED; break;
case 'f': cmd = CMD_FILL; break;
case 'l': cmd = CMD_LOCK; break;
case 'p': cmd = CMD_POKE; break;
case 'r': cmd = CMD_READ; break;
case 'u': cmd = CMD_UNLOCK; break;
case 'w': cmd = CMD_WRITE; break;
case 'i': cmd = CMD_INFO; break;
case 's': cmd = CMD_SCAN; break;
case 't': cmd = CMD_TEST; break;
case 'z': cmd = CMD_ZAP; break;
case '/': cmd = CMD_LAST_STATUS;break;
default: cmd = CMD_INVALID; break;
}
return cmd;
}
/************************************************************
* convert a single hex character [0-9a-fA-F] to its value
* @param char c single character (digit)
* @return byte value of the digit (0-15)
************************************************************/
byte hexDigit(char c)
{
if ((c >= '0') && (c <= '9'))
{
return c - '0';
}
else if ((c >= 'a') && (c <= 'f'))
{
return c - 'a' + 10;
}
else if ((c >= 'A') && (c <= 'F'))
{
return c - 'A' + 10;
}
else
{
return 0xff;
}
}
/************************************************************
* Convert a hex string to a uint32_t value.
* Skips leading spaces and terminates on the first non-hex
* character. Leading zeroes are not required.
*
* No error checking is performed - if no hex is found then
* defaultValue is returned. Similarly, a hex string of more than
* 8 digits will return the value of the last 8 digits.
* @param pointer to string with the hex value of the word (modified)
* @return unsigned int represented by the digits
************************************************************/
uint32_t getHex32(char *& pData, uint32_t defaultValue=0)
{
uint32_t u32 = 0;
while (isspace(*pData))
{
++pData;
}
if (isxdigit(*pData))
{
while (isxdigit(*pData)) {
u32 = (u32 << 4) | hexDigit(*pData++);
}
}
else
{
u32 = defaultValue;
}
return u32;
}
void printByte(byte b)
{
char line[3];
line[0] = hex[b >> 4];
line[1] = hex[b & 0x0f];
line[2] = '\0';
Serial.print(line);
}
void printWord(word w)
{
char line[5];
line[0] = hex[(w >> 12) & 0x0f];
line[1] = hex[(w >> 8) & 0x0f];
line[2] = hex[(w >> 4) & 0x0f];
line[3] = hex[(w) & 0x0f];
line[4] = '\0';
Serial.print(line);
}
/*
* Prints a 32 bit value as a hex.
*
* Note that no values over 5 digits are used in
* this appication, so only 5 digits are printed.*/
void printHex32(uint32_t u32)
{
char line[6];
line[0] = hex[(u32 >> 16) & 0x0f];
line[1] = hex[(u32 >> 12) & 0x0f];
line[2] = hex[(u32 >> 8) & 0x0f];
line[3] = hex[(u32 >> 4) & 0x0f];
line[4] = hex[(u32) & 0x0f];
line[5] = '\0';
Serial.print(line);
}
// If the user presses a key then pause until they press another. Return true if
// Ctrl-C is pressed.
bool checkForBreak()
{
if (Serial.available())
{
if (Serial.read() == 0x03)
{
return true;
}
while (!Serial.available())
{}
if (Serial.read() == 0x03)
{
return true;
}
}
return false;
}
/*****************************************************************************/
/*****************************************************************************/
/**
* Command implementations
*/
/**
* Compute a 16 bit checksum from PROM data
*
* Note that this always reads an even number of bytes from the
* device and will read one byte beyond the specified end
* address if an odd number of bytes is specified by start and
* end.
*/
word checksumBlock(uint32_t start, uint32_t end)
{
word checksum = 0;
for (uint32_t addr = start; (addr <= end); addr += 2)
{
word w = prom.readData(addr);
w <<= 8;
w |= prom.readData(addr + 1);
checksum += w;
}
return checksum;
}
/**
* Read data from the device and dump it in hex and ascii.
**/
void dumpBlock(uint32_t start, uint32_t end)
{
char line[81];
// 01234567891 234567892 234567893 234567894 234567895 234567896 234567897 23456789
// 01234: 01 23 45 67 89 ab cf ef 01 23 45 67 89 ab cd ef 1.2.3.4. 5.6.7.8.
int count = 0;
memset(line, ' ', sizeof(line));
char * pHex = line;
char * pChar = line + 59;
for (uint32_t addr = start; (addr <= end); addr++)
{
if (count == 0)
{
//print out the address at the beginning of the line
pHex = line;
pChar = line + 59;
*pHex++ = hex[(addr >> 16) & 0x0f];
*pHex++ = hex[(addr >> 12) & 0x0f];
*pHex++ = hex[(addr >> 8) & 0x0f];
*pHex++ = hex[(addr >> 4) & 0x0f];
*pHex++ = hex[(addr) & 0x0f];
*pHex++ = ':';
*pHex++ = ' ';
}
byte data = prom.readData(addr);
*pHex++ = hex[data >> 4];
*pHex++ = hex[data & 0x0f];
*pHex++ = ' ';
*pChar++ = ((data < 32) | (data >= 127)) ? '.' : data;
if ((count & 3) == 3)
{
*pHex++ = ' ';
}
if ((count & 7) == 7)
{
*pChar++ = ' ';
}
if ((++count >= 16) || (addr == end))
{
*pChar = '\0';
Serial.println(line);
if (checkForBreak())
{
return;
}
memset(line, ' ', sizeof(line));
count = 0;
}
}
if (count)
{
Serial.println();
}
}
/**
* Fill a block of PROM data with a single value.
*
* @param start - start address
* @param end - end address
* @param val - data byte to write to all addresses
*/
void fillBlock(uint32_t start, uint32_t end, byte val)
{
enum { BLOCK_SIZE = 32 };
byte block[BLOCK_SIZE];
for (int ix = 0; ix < BLOCK_SIZE; ix++)
{
block[ix] = val;
}
for (uint32_t addr = start; (addr <= end); addr += BLOCK_SIZE)
{
uint32_t writeLen = ((end - addr + 1) < BLOCK_SIZE) ? (end - addr + 1) : uint32_t(BLOCK_SIZE);
if (!prom.writeData(block, writeLen, addr))
{
cmdStatus.error("Write failed");
return;
}
}
}
/**
* Verify that a block of PROM contains the all FF erased value.
*
* @param start - start address
* @param end - end address
*/
void erasedBlockCheck(uint32_t start, uint32_t end)
{
for (uint32_t addr = start; (addr <= end); addr ++)
{
byte val = prom.readData(addr);
if (val != 0xff)
{
cmdStatus.error("Block is not erased");
cmdStatus.setValueHex(0, "addr", addr);
cmdStatus.setValueHex(1, "value", val);
return;
}
}
cmdStatus.info("Block is erased");
}
/**
* Write a series of bytes from the command line to the PROM.
*
* @param cursor - pointer to command line text
*/
void pokeBytes(char * pCursor)
{
uint32_t val;
uint32_t start;
unsigned byteCtr = 0;
enum { BLOCK_SIZE = 32 };
byte data[BLOCK_SIZE];
//first value returned is the starting address
start = getHex32(pCursor, 0);
while (((val = getHex32(pCursor, 0xffff)) != 0xffff) && (byteCtr < BLOCK_SIZE))
{
data[byteCtr++] = byte(val);
}
if (byteCtr > 0)
{
if (!prom.writeData(data, byteCtr, start))
{
cmdStatus.error("Write failed");
return;
}
}
else
{
cmdStatus.error("Missing address or data");
return;
}
delay(100);
for (unsigned ix = 0; ix < byteCtr ; ix++)
{
byte val = prom.readData(start + ix);
if (val != data[ix])
{
cmdStatus.error("Verify failed");
cmdStatus.setValueHex(0, "addr", start + ix);
cmdStatus.setValueHex(1, "read", val);
cmdStatus.setValueHex(2, "expected", data[ix]);
return;
}
}
cmdStatus.info("Poke successful");
}
#ifdef ENABLE_DEBUG_COMMANDS
/**
* Runs through a range of addresses, reading a single address
* multiple times. Fails if all of the reads for an address do
* not produce that same value.
*
* @param start - start address
* @param end - end address
*/
void scanBlock(uint32_t start, uint32_t end)
{
enum { SCAN_TESTS = 10 };
for (uint32_t addr = start; (addr <= end); addr++)
{
byte values[SCAN_TESTS];
values[0] = prom.readData(addr);
bool fail = false;
for (int ix = 1; (ix < SCAN_TESTS); ix++)
{
values[ix] = prom.readData(addr);
if (values[ix] != values[0])
{
fail = true;
}
}
if (fail)
{
printHex32(addr);
Serial.print(": ");
for (int ix = 0; (ix < SCAN_TESTS); ix++)
{
printByte(values[ix]);
Serial.print(" ");
}
Serial.println();
cmdStatus.error("Repeated reads returned different values");
cmdStatus.setValueHex(0, "addr", addr);
break;
}
if (addr == 0xffff) break;
}
}
/**
* Reads a single address in the PROM multiple times and fails
* if all of the reads do not produce the same value.
*
* @param addr - address to test
*/
void testAddr(uint32_t addr)
{
enum { NUM_TESTS = 100 };
bool fail = false;
byte value;
byte firstValue = prom.readData(addr);
for (int ix = 1; (ix < NUM_TESTS); ix++)
{
value = prom.readData(addr);
if (value != firstValue)
{
fail = true;
}
}
if (fail)
{
cmdStatus.error("Repeated reads returned different values");
cmdStatus.setValueHex(0, "addr", addr);
cmdStatus.setValueHex(1, "first read", firstValue);
cmdStatus.setValueHex(2, "last read", value);
}
else
{
cmdStatus.info("Read test passed");
}
}
/**
* Write a 32 byte test pattern to the PROM device and verify it
* by reading back. The pattern includes a walking 1 and a
* walking zero, which may help to detect pins that are tied
* together or swapped.
*
* @param start - start address
*/
void zapTest(uint32_t start)
{
byte testData[] =
{
'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H',
0x01, 0x02, 0x04, 0x08, 0x10, 0x20, 0x40, 0x80,
0x7f, 0xbf, 0xdf, 0xef, 0xf7, 0xfb, 0xfd, 0xfe,
0x00, 0xff, 0x55, 0xaa, '0', '1', '2', '3'
};
if (!prom.writeData(testData, sizeof(testData), start))
{
cmdStatus.error("Write failed");
return;
}
delay(100);
for (unsigned ix = 0; ix < sizeof(testData); ix++)
{
byte val = prom.readData(start + ix);
if (val != testData[ix])
{
cmdStatus.error("Verify failed");
cmdStatus.setValueHex(0, "addr", start + ix);
cmdStatus.setValueHex(1, "read", val);
cmdStatus.setValueHex(2, "expected", testData[ix]);
return;
}
}
cmdStatus.info("Write test successful");
}
#endif /* ENABLE_DEBUG_COMMANDS */
/************************************************
* MAIN
*************************************************/
uint32_t addr = 0;
void setup()
{
// Do this first so that it initializes all of the hardware pins into a
// non-harmful state. The Arduino or the target EEPROM could be damaged
// if both writing to the data bus at the same time.
prom.begin();
Serial.begin(115200);
}
/**
* main loop that runs infinite times, parsing a given command and
* executing read or write requestes.
**/
char line[120];
uint32_t start = 0;
uint32_t end = 0xff;
byte val = 0xff;
void loop()
{
uint32_t w;
uint32_t numBytes;
Serial.print("\n>");
Serial.flush();
readLine(line, sizeof(line));
Serial.println();
byte cmd = parseCommand(line[0]);
char * pCursor = line+1;
start = getHex32(pCursor, 0);
end = getHex32(pCursor, 0xff);
val = (byte) getHex32(pCursor, 0);
if ((cmd != CMD_LAST_STATUS) && (cmd != CMD_INVALID))
{
cmdStatus.clear();
}
switch (cmd)
{
case CMD_CHECKSUM:
w = checksumBlock(start, end);
Serial.print(F("Checksum "));
printWord(start);
Serial.print(F("-"));
printWord(end);
Serial.print(F(" = "));
printWord(w);
Serial.println();
break;
case CMD_DUMP:
dumpBlock(start, end);
break;
case CMD_ERASED:
erasedBlockCheck(start, end);
break;
case CMD_FILL:
prom.resetDebugStats();
fillBlock(start, end, val);
break;
case CMD_LOCK:
Serial.println(F("Writing the lock code to enable Software Write Protect mode."));
prom.enableSoftwareWriteProtect();
break;
case CMD_POKE:
prom.resetDebugStats();
pokeBytes(line+1);
break;
case CMD_READ:
if (xmodem.SendFile(start, uint32_t(end) - start + 1))
{
cmdStatus.info("Send complete.");
cmdStatus.setValueDec(0, "NumBytes", uint32_t(end) - start + 1);
}
break;
case CMD_UNLOCK:
Serial.println(F("Writing the unlock code to disable Software Write Protect mode."));
prom.disableSoftwareWriteProtect();
break;
case CMD_WRITE:
prom.resetDebugStats();
numBytes = xmodem.ReceiveFile(start);
if (numBytes)
{
cmdStatus.info("Success writing to EEPROM device.");
cmdStatus.setValueDec(0, "NumBytes", numBytes);
}
else
{
xmodem.Cancel();
}
break;
#ifdef ENABLE_DEBUG_COMMANDS
case CMD_INFO:
prom.printDebugStats();
break;
case CMD_SCAN:
scanBlock(start, end);
break;
case CMD_TEST:
testAddr(start);
break;
case CMD_ZAP:
prom.resetDebugStats();
zapTest(start);
break;
#endif /* ENABLE_DEBUG_COMMANDS */
case CMD_LAST_STATUS:
Serial.println(F("Status of last command:"));
break;
default:
Serial.print(F("TommyPROM "));
Serial.print(MY_VERSION);
Serial.print(F(" - "));
Serial.println(prom.getName());
Serial.println();
Serial.println(F("Valid commands are:"));
Serial.println(F(" Csssss eeeee - Compute checksum from device"));
Serial.println(F(" Dsssss eeeee - Dump bytes from device to terminal"));
Serial.println(F(" Esssss eeeee - Check to see if device range is Erased (all FF)"));
Serial.println(F(" Fsssss eeeee dd - Fill block on device with fixed value"));
Serial.println(F(" L - Lock (enable) device Software Data Protection"));
Serial.println(F(" Psssss dd dd... - Poke (write) values to device (up to 32 values)"));
Serial.println(F(" Rsssss eeeee - Read from device and save to XMODEM CRC file"));
Serial.println(F(" U - Unlock (disable) device Software Data Protection"));
Serial.println(F(" Wsssss - Write to device from XMODEM CRC file"));
#ifdef ENABLE_DEBUG_COMMANDS
Serial.println();
Serial.println(F(" I - Print debug Info"));
Serial.println(F(" Ssssss eeeee - Scan addresses (read each 10x)"));
Serial.println(F(" Tsssss - Test read address (read 100x)"));
Serial.println(F(" Zsssss - Zap (burn) a 32 byte test pattern"));
#endif /* ENABLE_DEBUG_COMMANDS */
break;
}
if (!cmdStatus.isClear() || (cmd == CMD_LAST_STATUS))
{
Serial.println();
cmdStatus.printStatus();
}
}