afterburner/afterburner.ino
ole00 f3147397f9 sparse fusemap: use 32 bit fuse blocks
Previously 16 bit fuse blocks were used and block types were stored in 1 bit.
That did not allow to compact fusemaps where all bits were 1 - which is
typically after the fuses are erased. So fuses of an erased chip would
not fit into the sparse memory array. The solution was to extend the fuse
block type storage from 1 bit to 2 bits and use that extra space to mark
blocks as sparse when all bits in the block are 1's. Such block is now
block type 3. To keep the fuseType array the same size as it was (128
bytes) the size of the block was extended from 16 bits to 32 bits.

The block type is now:
0 - all bits in the fuse block are 0, no block data in the fuse array
3 - all bits in the fuse block are 1, no block data in the fuse array
1 - any combination of bits in the fuse block, data are stored in the fuse array
2 - reserved for future use.
2024-02-16 19:44:52 +00:00

2956 lines
78 KiB
C++

/*
(banner font: aciiart.eu)
_____________________________________________________________
| _ __ _ _ \
| / \ / _| |_ ___ _ _| |__ _ _ _ __ ___ ___ _ _ |\
| / _ \| |_| '_/ _ \| '_/ '_ \| | | | '_/ _ \/ _ \| '_/ ||
| / ___ \ _| |_| __/| | | |_) | |_| | | | | | | __/| | ||
| /_/ \_\| \__\___||_| |____/\___,_|_| |_| |_|___||_| ||
\_____________________________________________________________||
'------------------------------------------------------------'
Afterburner: GAL IC Programmer for Arduino by -= olin =-
Based on ATFblast 3.1 by Bruce Abbott
http://www.bhabbott.net.nz/atfblast.html
Based on GALBLAST by Manfred Winterhoff
http://www.armory.com/%7Erstevew/Public/Pgmrs/GAL/_ClikMe1st.htm
Based on GALmate by Yorck Thiele
https://www.ythiee.com/2021/06/06/galmate-hardware/
Supports:
* National GAL16V8
* Lattice GAL16V8A, GAL16V8B, GAL16V8D
* Lattice GAL22V10B
* Lattice GAL20V8
* Atmel ATF16V8B, ATF16V8C, ATF22V10B, ATF22V10CQZ
Requires:
* afterburner PC program to upload JED fuse map, erase, read etc.
* simple programming circuit. See: https://github.com/ole00/afterburner
* 2024-02-02 Fixed: Command 'B9' (Calibration Offset = 0,25V) doesn't work
Note: Also requires elimination of a in the PC program afterburner.c
Added: 10.0V measurement in measureVppValues(()
*/
#define VERSION "0.5.6"
//#define DEBUG_PES
//#define DEBUG_VERIFY
//ARDUINO UNO pin mapping
// GAL PIN NAME | ARDUINO UNO PIN NUMBER
//programing voltage control pin
#define PIN_VPP 11
#define PIN_SDOUT 12
#define PIN_STROBE 13
#define PIN_PV 9
#define PIN_SDIN 8
#define PIN_RA0 10
#define PIN_RA1 2
#define PIN_RA2 3
#define PIN_RA3 4
#define PIN_RA4 5
#define PIN_RA5 6
#define PIN_SCLK 7
// pin multiplex: ZIF_PIN <----> ARDUINO PIN or Shift register pin (0b1xxx)
#define PIN_ZIF3 2
#define PIN_ZIF4 0b1
#define PIN_ZIF5 0b1000
#define PIN_ZIF6 0b100
#define PIN_ZIF7 0b10
#define PIN_ZIF8 5
#define PIN_ZIF9 6
#define PIN_ZIF10 7
#define PIN_ZIF11 8
#define PIN_ZIF13 12
#define PIN_ZIF14 11
#define PIN_ZIF15 10
#define PIN_ZIF16 9
#define PIN_ZIF20 0b100000
#define PIN_ZIF21 0b10000
#define PIN_ZIF22 4
#define PIN_ZIF23 3
#define PIN_ZIF_GND_CTRL 13
//A0: VPP sense
//A3: DIGI_POT CS
#define PIN_SHR_EN A1
#define PIN_SHR_CS A2
//clk and dat is shared SPI bus
#define PIN_SHR_CLK A4
#define PIN_SHR_DAT A5
#define COMMAND_NONE 0
#define COMMAND_UNKNOWN 1
#define COMMAND_IDENTIFY_PROGRAMMER '*'
#define COMMAND_HELP 'h'
#define COMMAND_UPLOAD 'u'
#define COMMAND_DEBUG 'd'
#define COMMAND_READ_PES 'p'
#define COMMAND_WRITE_PES 'P'
#define COMMAND_READ_FUSES 'r'
#define COMMAND_WRITE_FUSES 'w'
#define COMMAND_VERIFY_FUSES 'v'
#define COMMAND_ERASE_GAL 'c'
#define COMMAND_ERASE_GAL_ALL '~'
#define COMMAND_UTX '#'
#define COMMAND_ECHO 'e'
#define COMMAND_TEST_VOLTAGE 't'
#define COMMAND_SET_GAL_TYPE 'g'
#define COMMAND_ENABLE_CHECK_TYPE 'f'
#define COMMAND_DISABLE_CHECK_TYPE 'F'
#define COMMAND_ENABLE_SECURITY 's'
#define COMMAND_ENABLE_APD 'z'
#define COMMAND_DISABLE_APD 'Z'
#define COMMAND_MEASURE_VPP 'm'
#define COMMAND_CALIBRATE_VPP 'b'
#define COMMAND_CALIBRATION_OFFSET 'B'
#define READGAL 0
#define VERIFYGAL 1
#define READPES 2
#define SCLKTEST 3
#define WRITEGAL 4
#define ERASEGAL 5
#define ERASEALL 6
#define BURNSECURITY 7
#define WRITEPES 8
#define VPPTEST 9
#define INIT 100
//check GAL type before starting an operation
#define FLAG_BIT_TYPE_CHECK (1 << 0)
// ATF16V8C flavour
#define FLAG_BIT_ATF16V8C (1 << 1)
// Keep the power-down feature enabled for ATF C GALs
#define FLAG_BIT_APD (1 << 2)
// contents of pes[3]
// Atmel PES is text string eg. 1B8V61F1 or 3Z01V22F1
// ^ ^
#define LATTICE 0xA1
#define NATIONAL 0x8F
#define SGSTHOMSON 0x20
#define ATMEL16 'V'
#define ATMEL22 '1'
#define ATMEL750 'C'
typedef enum {
UNKNOWN,
GAL16V8,
GAL18V10,
GAL20V8,
GAL20RA10,
GAL20XV10,
GAL22V10,
GAL26CV12,
GAL26V12,
GAL6001,
GAL6002,
ATF16V8B,
ATF20V8B,
ATF22V10B,
ATF22V10C,
ATF750C,
LAST_GAL_TYPE //dummy
} GALTYPE;
typedef enum {
PINOUT_UNKNOWN,
PINOUT_16V8,
PINOUT_18V10,
PINOUT_20V8,
PINOUT_22V10,
PINOUT_600,
} PINOUT;
#define BIT_NONE 0
#define BIT_ZERO 1
#define BIT_ONE 2
// config bit numbers
#define CFG_BASE_16 2048
#define CFG_BASE_18 3456
#define CFG_BASE_20 2560
#define CFG_BASE_20RA 3200
#define CFG_BASE_20XV 1600
#define CFG_BASE_22 5808
#define CFG_BASE_26CV 6344
#define CFG_BASE_26V 7800
#define CFG_BASE_600 8154
#define CFG_BASE_750 14364
#define CFG_STROBE_ROW 0
#define CFG_SET_ROW 1
#define CFG_STROBE_ROW2 3
// Atmel power-down row
#define CFG_ROW_APD 59
// Naive detection of the board's RAM size - for support of big Fuse map:
// PIN_A11 - present on MEGA (8kB) or Leonardo (2.5kB SRAM)
// _RENESAS_RA_ - Uno R4 (32kB)
#if defined(PIN_A11) || defined(_RENESAS_RA_)
#define RAM_BIG
#endif
// common CFG fuse address map for cfg16V8 and cfg20V8
// the only difference is the starting address: 2048 for cfg16V8 and 2560 for cfg20V8
// total size: 82
static const unsigned char cfgV8[] PROGMEM =
{
80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,
0,1,2,3,
145,
72,73,74,75,76,77,78,79,
144,
4,5,6,7,
112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,
};
// common CFG fuse address map for cfg16V8AB and cfg20V8AB
// the only difference is the starting address: 2048 for cfg16V8AB and 2560 for cfg20V8AB
// total size: 82
static const unsigned char cfgV8AB[] PROGMEM =
{
0,1,2,3,
145,
72,73,74,75,
80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96,97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120,121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,
76,77,78,79,
144,
4,5,6,7,
};
// common CFG fuse address map for cfg18V10
// starting address: 3456
// total size 20
static const unsigned char cfg18V10[] PROGMEM =
{
1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14, 17, 16, 19, 18
};
// common CFG fuse address map for cfg20RA10
// starting address: 3200
// total size 10
static const unsigned char cfgRA10[] PROGMEM =
{
0, 1, 2, 3, 4, 5, 6, 7, 8, 9
};
// common CFG fuse address map for cfg20XV10
// starting address: 1600
// total size 31
static const unsigned char cfgXV10[] PROGMEM =
{
30,
28, 29,
20, 21, 22,
10, 11, 12, 13, 14,
0, 1, 2, 3, 4,
27, 26,
23, 24, 25,
19, 18, 17, 16, 15,
9, 8, 7, 6, 5
};
// common CFG fuse address map for cfg22V10
// starting address: 5808
// total size 20
static const unsigned char cfgV10[] PROGMEM =
{
1,0,3,2,5,4,7,6,9,8,11,10,13,12,15,14,17,16,19,18,
};
// common CFG fuse address map for cfg26CV12
// starting address: 6344
// total size 24
static const unsigned char cfg26CV12[] PROGMEM =
{
1, 0, 3, 2, 5, 4, 7, 6, 9, 8, 11, 10, 13, 12, 15, 14, 17, 16, 19, 18, 21, 20, 23, 22
};
// common CFG fuse address map for cfg26V12
// starting address: 7800
// total size 48
static const unsigned char cfg26V12[] PROGMEM =
{
36, 24, 12, 0, 37, 25, 13, 1, 38, 26, 14, 2, 39, 27, 15, 3,
40, 28, 16, 4, 41, 29, 17, 5, 42, 30, 18, 6, 43, 31, 19, 7,
44, 32, 20, 8, 45, 33, 21, 9, 46, 34, 22, 10, 47, 35, 23, 11
};
// common CFG fuse address map for cfg6001
// starting address: 8154
// total size 68
static const unsigned char cfg6001[] PROGMEM =
{
67, 66,
25, 29, 33, 37, 41, 45, 49, 53, 57, 61,
60, 56, 52, 48, 44, 40, 36, 32, 28, 24,
62, 63, 58, 59, 54, 55, 50, 51, 46, 47,
42, 43, 38, 39, 34, 35, 30, 31, 26, 27,
2, 5, 8, 11, 14, 17, 20, 23,
0, 3, 6, 9, 12, 15, 18, 21,
22, 19, 16, 13, 10, 7, 4, 1,
64, 65
};
// common CFG fuse address map for cfg6002
// starting address: 8154
// total size 104
static const unsigned char cfg6002[] PROGMEM =
{
103, 102,
25, 29, 33, 37, 41, 45, 49, 53, 57, 61,
60, 56, 52, 48, 44, 40, 36, 32, 28, 24,
62, 63, 58, 59, 54, 55, 50, 51, 46, 47,
42, 43, 38, 39, 34, 35, 30, 31, 26, 27,
101, 100, 99, 98, 97, 96, 95, 94, 93,
92, 91, 90, 89, 88, 87, 86, 85, 84,
66, 67, 68, 69, 70, 71, 72, 73, 74,
75, 76, 77, 78, 79, 80, 81, 82, 83,
2, 5, 8, 11, 14, 17, 20, 23,
0, 3, 6, 9, 12, 15, 18, 21,
22, 19, 16, 13, 10, 7, 4, 1,
64, 65
};
// TODO: handle those:
/*
30, // 75: Security?
135, // 70: Powerdown
136, // 71: PinKeeper
137, // 72: reserved1
138, // 73: reserved2
139, // 74: reserved3
*/
static const uint8_t cfgV750[] PROGMEM = {
0, 3, 6, 9, 12, 15, 18, 21, 24, 27, // S0
1, 4, 7, 10, 13, 16, 19, 22, 25, 28, // S1
2, 5, 8, 11, 14, 17, 20, 23, 26, 29, // S2
31, 35, 39, 43, 47, 51, 55, 59, 63, 67, // S3
32, 36, 40, 44, 48, 52, 56, 60, 64, 68, // S4
33, 37, 41, 45, 49, 53, 57, 61, 65, 69, // S5
34, 38, 42, 46, 50, 54, 58, 62, 66, 70 // S6
};
// UES user electronic signature
// PES programmer electronic signature (ATF = text string, others = Vendor/Vpp/timing)
// cfg configuration bits for OLMCs
// GAL info
typedef struct
{
GALTYPE type;
unsigned char id0,id1; /* variant 1, variant 2 (eg. 16V8=0x00, 16V8A+=0x1A)*/
short fuses; /* total number of fuses */
char pins; /* number of pins on chip */
char rows; /* number of fuse rows */
unsigned char bits; /* number of fuses per row */
char uesrow; /* UES row number */
short uesfuse; /* first UES fuse number */
char uesbytes; /* number of UES bytes */
char eraserow; /* row adddeess for erase */
char eraseallrow; /* row address for erase all (also PES) */
char pesrow; /* row address for PES read/write */
char pesbytes; /* number of PES bytes */
char cfgrow; /* row address of config bits (ACW) */
unsigned short cfgbase; /* base address of the config bit numbers */
const unsigned char *cfg; /* pointer to config bit numbers */
unsigned char cfgbits; /* number of config bits */
unsigned char cfgmethod; /* strobe or set row for reading config */
PINOUT pinout;
} galinfo_t;
const static galinfo_t galInfoList[] PROGMEM =
{
// +fuses +bits +uesbytes +pesrow +cfgbase
// | +pins | +uesrow | +eraserow| +pesbytes | +cfg
// +-- type + id0 + id1 | | +rows | | +uesfuse | +eraseallrow +cfgrow | | + cfgbits +cfgmethod +pinout
// | | | | | | | | | | | | | | | | | | | |
{UNKNOWN, 0x00, 0x00, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 8, 0, 0, NULL , 0 , 0 , PINOUT_UNKNOWN},
{GAL16V8, 0x00, 0x1A, 2194, 20, 32, 64, 32, 2056, 8, 63, 62, 58, 8, 60, CFG_BASE_16 , cfgV8AB , sizeof(cfgV8AB) , CFG_STROBE_ROW, PINOUT_16V8 },
{GAL18V10, 0x50, 0x51, 3540, 20, 36, 96, 44, 3476, 8, 61, 60, 58, 10, 16, CFG_BASE_18 , cfg18V10 , sizeof(cfg18V10) , CFG_SET_ROW , PINOUT_18V10 },
{GAL20V8, 0x20, 0x3A, 2706, 24, 40, 64, 40, 2568, 8, 63, 62, 58, 8, 60, CFG_BASE_20 , cfgV8AB , sizeof(cfgV8AB) , CFG_STROBE_ROW, PINOUT_20V8 },
{GAL20RA10, 0x60, 0x61, 3274, 24, 40, 80, 40, 3210, 8, 61, 60, 58, 10, 16, CFG_BASE_20RA, cfgRA10 , sizeof(cfgRA10) , CFG_SET_ROW , PINOUT_22V10 },
{GAL20XV10, 0x65, 0x66, 1671, 24, 40, 40, 44, 1631, 5, 61, 60, 58, 5, 16, CFG_BASE_20XV, cfgXV10 , sizeof(cfgXV10) , CFG_SET_ROW , PINOUT_22V10 },
{GAL22V10, 0x48, 0x49, 5892, 24, 44, 132, 44, 5828, 8, 61, 62, 58, 10, 16, CFG_BASE_22 , cfgV10 , sizeof(cfgV10) , CFG_SET_ROW , PINOUT_22V10 },
{GAL26CV12, 0x58, 0x59, 6432, 28, 52, 122, 52, 6368, 8, 61, 60, 58, 12, 16, CFG_BASE_26CV, cfg26CV12, sizeof(cfg26CV12), CFG_SET_ROW , PINOUT_22V10 },
{GAL26V12, 0x5D, 0x5D, 7912, 28, 52, 150, 52, 7848, 8, 61, 60, 58, 12, 16, CFG_BASE_26V , cfg26V12 , sizeof(cfg26V12) , CFG_SET_ROW , PINOUT_22V10 },
{GAL6001, 0x40, 0x41, 8294, 24, 78, 75, 97, 8222, 9, 63, 62, 96, 8, 8, CFG_BASE_600 , cfg6001 , sizeof(cfg6001) , CFG_SET_ROW , PINOUT_600 },
{GAL6002, 0x44, 0x44, 8330, 24, 78, 75, 97, 8258, 9, 63, 62, 96, 8, 8, CFG_BASE_600 , cfg6002 , sizeof(cfg6002) , CFG_SET_ROW , PINOUT_600 },
{ATF16V8B, 0x00, 0x00, 2194, 20, 32, 64, 32, 2056, 8, 63, 62, 58, 8, 60, CFG_BASE_16 , cfgV8AB , sizeof(cfgV8AB) , CFG_STROBE_ROW, PINOUT_16V8 },
{ATF20V8B, 0x00, 0x00, 2706, 24, 40, 64, 40, 2568, 8, 63, 62, 58, 8, 60, CFG_BASE_20 , cfgV8AB , sizeof(cfgV8AB) , CFG_STROBE_ROW, PINOUT_20V8 },
{ATF22V10B, 0x00, 0x00, 5892, 24, 44, 132, 44, 5828, 8, 61, 62, 58, 10, 16, CFG_BASE_22 , cfgV10 , sizeof(cfgV10) , CFG_SET_ROW , PINOUT_22V10 },
{ATF22V10C, 0x00, 0x00, 5892, 24, 44, 132, 44, 5828, 8, 61, 62, 58, 10, 16, CFG_BASE_22 , cfgV10 , sizeof(cfgV10) , CFG_SET_ROW , PINOUT_22V10 },
{ATF750C, 0x00, 0x00, 14499, 24, 84, 171, 84,14435, 8, 61, 60,127, 10, 16, CFG_BASE_750 , cfgV750 , sizeof(cfgV750) , CFG_STROBE_ROW2, PINOUT_22V10 }, // TODO: not all numbers are clear
};
galinfo_t galinfo __attribute__ ((section (".noinit"))); //preserve data between resets
#ifdef RAM_BIG
// for ATF750C
// MAXFUSES = (((171 * 84 bits) + uesbits + (10*3 + 1 + 10*4 + 5)) + 7) / 8
// (14504 + 7) / 8 = 1813
#define MAXFUSES 1813
#else
// Boards with small RAM (< 2.5kB) do not support ATF750C
// MAXFUSES calculated as the biggest required space to hold the fuse bitmap
// MAXFUSES = GAL6002 8330 bits = 8330/8 = 1041.25 bytes rounded up to 1042 bytes
//#define MAXFUSES 1042
//extra space added for sparse fusemap
#define MAXFUSES 1280
#define USE_SPARSE_FUSEMAP
#endif
GALTYPE gal __attribute__ ((section (".noinit"))); //the gal device index pointing to galInfoList, value is preserved between resets
static short erasetime = 100, progtime = 100;
static uint8_t vpp = 0;
char echoEnabled;
unsigned char pes[12];
char line[32];
short lineIndex;
char endOfLine;
char mapUploaded;
char isUploading;
char uploadError;
unsigned char fusemap[MAXFUSES];
unsigned char flagBits;
char varVppExists;
uint8_t lastShiftRegVal = 0;
static void setFuseBit(unsigned short bitPos);
static unsigned short checkSum(unsigned short n);
static char checkGalTypeViaPes(void);
static void turnOff(void);
static void printFormatedNumberHex2(unsigned char num) ;
#include "aftb_vpp.h"
#include "aftb_sparse.h"
// print some help on the serial console
void printHelp(char full) {
Serial.println(F("AFTerburner v." VERSION));
// indication for PC software that the new board desgin is used
if (varVppExists) {
Serial.println(F(" varVpp "));
}
#ifdef RAM_BIG
Serial.println(F(" RAM-BIG "));
#endif
if (!full) {
Serial.println(F("type 'h' for help"));
return;
}
Serial.println(F("commands:"));
Serial.println(F(" h - print help"));
Serial.println(F(" e - toggle echo"));
Serial.println(F(" p - read & print PES"));
Serial.println(F(" r - read & print fuses"));
Serial.println(F(" u - upload fuses"));
Serial.println(F(" w - write uploaded fuses"));
Serial.println(F(" v - verify fuses"));
Serial.println(F(" c - erase chip"));
Serial.println(F(" t - test & set VPP"));
Serial.println(F(" b - calibrate VPP"));
Serial.println(F(" m - measure VPP"));
}
static void setFlagBit(uint8_t flag, uint8_t value) {
if (value) {
flagBits |= flag;
} else {
flagBits &= ~flag;
}
}
static void setPinMux(uint8_t pm) {
switch (gal) {
case GAL16V8:
case ATF16V8B:
pinMode(PIN_ZIF10, INPUT); //GND via MOSFET
pinMode(PIN_ZIF11, INPUT);
pinMode(PIN_ZIF13, INPUT);
pinMode(PIN_ZIF14, INPUT);
pinMode(PIN_ZIF16, INPUT_PULLUP); //DOUT
// ensure ZIF10 is Grounded via transistor
digitalWrite(PIN_ZIF_GND_CTRL, pm == OUTPUT ? HIGH: LOW);
break;
case GAL18V10:
pinMode(PIN_ZIF10, INPUT); //GND via MOSFET
pinMode(PIN_ZIF11, INPUT);
pinMode(PIN_ZIF13, INPUT);
pinMode(PIN_ZIF14, INPUT);
pinMode(PIN_ZIF9, INPUT_PULLUP); //DOUT
// ensure ZIF10 is Grounded via transistor
digitalWrite(PIN_ZIF_GND_CTRL, pm == OUTPUT ? HIGH: LOW);
//pull down unused pins
pinMode(PIN_ZIF15, pm);
pinMode(PIN_ZIF16, pm);
digitalWrite(PIN_ZIF15, LOW);
digitalWrite(PIN_ZIF16, LOW);
break;
case GAL20V8:
case ATF20V8B:
pinMode(PIN_ZIF10, pm);
pinMode(PIN_ZIF11, pm);
pinMode(PIN_ZIF13, pm);
pinMode(PIN_ZIF14, pm);
// ensure pull-up is enabled during reading and disabled when inactive
pinMode(PIN_ZIF15, pm == OUTPUT ? INPUT_PULLUP: INPUT); //DOUT
pinMode(PIN_ZIF16, pm);
// ensure ZIF10 GND pull is disabled
digitalWrite(PIN_ZIF_GND_CTRL, LOW);
//pull down unused pins
digitalWrite(PIN_ZIF14, LOW);
digitalWrite(PIN_ZIF16, LOW);
digitalWrite(PIN_ZIF23, LOW);
break;
case GAL20RA10:
case GAL20XV10:
case GAL22V10:
case GAL26CV12:
case GAL26V12:
case ATF22V10B:
case ATF22V10C:
case ATF750C:
pinMode(PIN_ZIF10, pm);
pinMode(PIN_ZIF11, pm);
pinMode(PIN_ZIF13, pm);
pinMode(PIN_ZIF14, INPUT_PULLUP); //DOUT
pinMode(PIN_ZIF15, pm);
pinMode(PIN_ZIF16, pm);
// ensure ZIF10 GND pull is disabled
digitalWrite(PIN_ZIF_GND_CTRL, LOW);
//pull down unused pins
digitalWrite(PIN_ZIF15, LOW);
digitalWrite(PIN_ZIF16, LOW);
digitalWrite(PIN_ZIF22, LOW);
digitalWrite(PIN_ZIF23, LOW);
break;
case GAL6001:
case GAL6002:
pinMode(PIN_ZIF10, pm);
pinMode(PIN_ZIF11, pm);
pinMode(PIN_ZIF13, pm);
pinMode(PIN_ZIF14, INPUT_PULLUP); //DOUT
pinMode(PIN_ZIF15, pm);
pinMode(PIN_ZIF16, pm);
// ensure ZIF10 GND pull is disabled
digitalWrite(PIN_ZIF_GND_CTRL, LOW);
//pull down unused pins
digitalWrite(PIN_ZIF3, LOW);
digitalWrite(PIN_ZIF15, LOW);
digitalWrite(PIN_ZIF16, LOW);
digitalWrite(PIN_ZIF22, LOW);
break;
}
}
static void setupGpios(uint8_t pm) {
// Serial input of the GAL chip, output from Arduino
pinMode(PIN_SDIN, pm);
pinMode(PIN_STROBE, pm);
pinMode(PIN_PV, pm);
pinMode(PIN_RA0, pm);
pinMode(PIN_RA1, pm);
pinMode(PIN_RA2, pm);
pinMode(PIN_RA3, pm);
pinMode(PIN_RA4, pm);
pinMode(PIN_RA5, pm);
pinMode(PIN_SCLK, pm);
pinMode(PIN_VPP, pm);
if (varVppExists) {
pinMode(PIN_ZIF_GND_CTRL, OUTPUT);
//disconnect shift register pins (High Z) when pm == Input
digitalWrite(PIN_SHR_EN, pm == INPUT ? HIGH : LOW);
setPinMux(pm);
}
}
#define SHR_SET_BIT(X) digitalWrite(PIN_SHR_CLK, 0); \
digitalWrite(PIN_SHR_DAT, (X) ? HIGH : LOW); \
digitalWrite(PIN_SHR_CLK, 1)
static void setShiftReg(uint8_t val) {
lastShiftRegVal = val;
//assume CS is high
//ensure CLK is high (might be set low by other SPI devices)
digitalWrite(PIN_SHR_CLK, 1);
// set CS low
digitalWrite(PIN_SHR_CS, 0);
SHR_SET_BIT(val & 0b10000000);
SHR_SET_BIT(val & 0b1000000);
SHR_SET_BIT(val & 0b100000);
SHR_SET_BIT(val & 0b10000);
SHR_SET_BIT(val & 0b1000);
SHR_SET_BIT(val & 0b100);
SHR_SET_BIT(val & 0b10);
SHR_SET_BIT(val & 0b1);
digitalWrite(PIN_SHR_CS, 1);
}
// setup the Arduino board
void setup() {
// initialize serial:
Serial.begin(57600);
isUploading = 0;
endOfLine = 0;
echoEnabled = 0;
mapUploaded = 0;
lineIndex = 0;
setFlagBit(FLAG_BIT_TYPE_CHECK, 1); //do type check
//check & initialise variable voltage (old / new board design)
varVppExists = varVppInit();
// shift register
pinMode(PIN_SHR_EN, OUTPUT);
// Serial output from the GAL chip, input for Arduino
pinMode(PIN_SDOUT, INPUT);
// Set all GPIO pins to Input to prevent accidents when
// inserting the GAL IC into socket.
setupGpios(INPUT);
printHelp(0);
if (varVppExists) {
// reads the calibration values
if (varVppCheckCalibration()) {
Serial.println(F("I: VPP calib. OK"));
}
// set shift reg Chip select
pinMode(PIN_SHR_CS, OUTPUT);
digitalWrite(PIN_SHR_CS, 1); //unselect the POT's SPI bus
}
Serial.println(">");
}
//copy galinfo item from the flash array into RAM backed struct
static void copyGalInfo(void) {
memcpy_P(&galinfo, &galInfoList[gal], sizeof(galinfo_t));
// Note: Sparse fuse map is ignored on MCUs with big SRAM
if (gal == ATF750C) {
sparseInit(0);
} else {
sparseDisable();
}
}
// read from serial line and discard the data
void readGarbage() {
while (Serial.available() > 0) {
Serial.read();
}
}
// Reads input from the serial terminal and returns the command
// which is the first character of the entered text.
char handleTerminalCommands() {
char c;
while (Serial.available() > 0) {
c = Serial.read();
line[lineIndex] = c;
if (c == '\n' || c == '\r') {
endOfLine = 1;
}
//echo input to output
else {
if (!isUploading && echoEnabled) {
Serial.print(c);
}
}
if (lineIndex >= sizeof(line)- 2) {
lineIndex = 0;
readGarbage();
Serial.println();
Serial.println(F("Error: line too long."));
} else {
lineIndex++;
}
}
if (endOfLine) {
c = COMMAND_NONE;
//single letter command entered
if (lineIndex == 2) {
c = line[0];
} else if (lineIndex > 2) {
c = line[0];
if (!isUploading || c != '#') {
// prevent 2 character commands from being flagged as invalid
if (!(c == COMMAND_SET_GAL_TYPE || c == COMMAND_CALIBRATION_OFFSET)) {
c = COMMAND_UNKNOWN;
}
}
}
if (!isUploading) {
Serial.println();
line[lineIndex] = 0;
lineIndex = 0;
}
endOfLine = 0;
return c;
}
return COMMAND_NONE;
}
// Parses decimal integer number typed as 4 digit.
// Returns the number value.
unsigned short parse4dec(char i) {
unsigned short v = (line[i++] - '0') * 1000;
v += (line[i++] - '0') * 100;
v += (line[i++] - '0') * 10;
v += line[i] - '0';
return v;
}
// Converts textual hex value 0-9, A-F to a number.
unsigned char toHex(char c) {
if (c >= '0' && c <= '9') return c - '0';
if (c >= 'A' && c <= 'F') return c - 'A' + 10;
if (c >= 'a' && c <= 'f') return c - 'a' + 10;
return 0;
}
// Parses hexdecimal integer number typed as 2 digit.
// Returns the number value.
unsigned short parse2hex(char i) {
if (line[i] == '\r' || line[i] == 0 || line[i] == ' ') {
return -1;
}
unsigned short v = toHex(line[i++]) << 4;
return v + toHex(line[i]);
}
// Parses hexdecimal integer number typed as 4 digit.
// Returns the number value.
unsigned short parse4hex(char i) {
if (line[i] == '\r' || line[i] == 0 || line[i] == ' ') {
return -1;
}
unsigned short v = ((unsigned short)toHex(line[i++])) << 12;
v |= ((unsigned short)toHex(line[i++])) << 8;
v |= toHex(line[i++]) << 4;
return v + toHex(line[i]);
}
// Parses a line fed by the serial connection.
// This hnadles a primitive upload protocol that
// expects a programatic data feed - not suitable
// for human interaction.
// Data: each command on its own line
// line starts with '#' character followed by a command
// and a space. Then a command specific data follow.
// Commands:
// t <gal index>: gal type index to the GALTYPEE enum
// f <fuse index> <row>: row of fuse-map data starting on fuse bit index
// c <checksum> : checksum of the whole fuse map
// e : end ofthe upload transfer - returns to terminal
void parseUploadLine() {
switch (line[1]) {
case 'e': {
if (uploadError) {
Serial.print(F("ER upload failed"));
} else {
Serial.print(F("OK upload finished"));
}
isUploading = 0;
} break;
// gal type
case 't': {
short v = line[3] - '0';
if (v > 0 && v < LAST_GAL_TYPE) {
gal = (GALTYPE) v;
copyGalInfo();
Serial.print(F("OK gal set: "));
Serial.println((short) gal, DEC);
} else {
Serial.println(F("ER unknown gal index"));
uploadError = 1;
}
} break;
//fusemap data
case 'f': {
char i = 8;
char j;
unsigned short addr = parse4dec(3);
short v;
do {
v = parse2hex(i);
if (v >= 0) {
for (j = 0; j < 8; j++) {
// if fuse bit is set -> then change the fusemap
if (v & (1 << j)) {
setFuseBit(addr);
}
addr++;
}
i += 2;
}
} while (v >= 0);
//any fuse being set is considered as uploaded fuse map
mapUploaded = 1;
Serial.print(F("OK "));
Serial.println((short) addr, DEC);
} break;
//checksum
case 'c': {
unsigned short val = parse4hex(3);
unsigned char apdFuse = (flagBits & FLAG_BIT_APD) ? 1 : 0;
unsigned short cs = checkSum(galinfo.fuses + apdFuse);
if (cs == val) {
Serial.println(F("OK checksum matches"));
// Conditioning jed files might not have any fuse set, so as long as
// they supply empty checksum (C0000) the upload is OK.
mapUploaded = 1;
} else {
uploadError = 1;
Serial.print(F("ER checksum:"));
Serial.print(cs, HEX);
Serial.print(F(" expected:"));
Serial.println(val, HEX);
}
} break;
// PES
case 'p': {
uint8_t i = 0;
uint8_t j = 3;
while (i < 8) {
pes[i] = parse2hex(j);
i++;
j+=3; //AB:00:... - 3 characters per one PES byte
}
} break;
default:
uploadError = 1;
Serial.println(F("ER unknown upload cmd"));
}
lineIndex = 0;
}
// *********************************************************
// set/reset individual pins of GAL
static void setVCC(char on) {
//no control for turning the voltage on of
//it is assumed the voltage is always on
}
static void setVPP(char on) {
// new board desgin
if (varVppExists) {
uint8_t v = VPP_11V0;
// when PES is read the VPP is not determined via PES
if (on == READPES) {
if (gal == ATF16V8B || gal == ATF20V8B || gal == ATF22V10B || gal == ATF22V10C || gal == ATF750C) {
v = VPP_10V5;
} else {
v = VPP_11V5;
}
#if 0
Serial.print(F("VPP index="));
Serial.println(v);
#endif
} else {
//safety check
if (vpp < 36) {
vpp = 36; //9V
} else
if (vpp > 66) {
vpp = 48; //12V
}
v = (vpp >> 1) - 18; // 18: 2 * 9V, resolution 0.5V (not 0.25V) hence 'vpp >> 1'
#if 0
Serial.print(F("setVPP "));
Serial.print(vpp);
Serial.print(F(" index="));
Serial.println(v);
#endif
}
varVppSet(on ? v : VPP_5V0);
delay(50); //settle the voltage
}
// old board design
else {
//programming voltage is controlled by VPP_PIN,
//but the programming voltage must be set manually by user turning a Pot
digitalWrite(PIN_VPP, on ? 1 : 0);
//Serial.print(F("VPP set to:"));
//Serial.println( on ? "12V": "5V");
delay(10);
}
}
static void setSTB(char on) {
if (varVppExists) {
const PINOUT p = galinfo.pinout;
uint8_t pin = PIN_ZIF13;
if (p == PINOUT_16V8) {
pin = PIN_ZIF15;
} else
if (p == PINOUT_18V10) {
pin = PIN_ZIF8;
}
digitalWrite(pin, on ? 1:0);
} else {
digitalWrite(PIN_STROBE, on ? 1:0);
}
}
static void setPV(char on) {
if (varVppExists) {
const PINOUT p = galinfo.pinout;
uint8_t pin = PIN_ZIF23;
if (p == PINOUT_22V10) {
pin = PIN_ZIF3;
} else
if (p == PINOUT_20V8) {
pin = PIN_ZIF22;
}
digitalWrite(pin, on ? 1:0);
} else {
digitalWrite(PIN_PV, on ? 1:0);
}
}
static void setSDIN(char on) {
if (varVppExists) {
const PINOUT p = galinfo.pinout;
if (p == PINOUT_18V10) {
if (on) {
lastShiftRegVal |= PIN_ZIF7;
} else {
lastShiftRegVal &= ~PIN_ZIF7;
}
setShiftReg(lastShiftRegVal);
} else {
const uint8_t pin = (p == PINOUT_16V8) ? PIN_ZIF9 : PIN_ZIF11;
digitalWrite(pin, on ? 1:0);
}
} else {
digitalWrite(PIN_SDIN, on ? 1:0);
}
}
static void setSCLK(char on){
if (varVppExists) {
const PINOUT p = galinfo.pinout;
if (p == PINOUT_18V10) {
if (on) {
lastShiftRegVal |= PIN_ZIF6;
} else {
lastShiftRegVal &= ~PIN_ZIF6;
}
setShiftReg(lastShiftRegVal);
} else {
uint8_t pin = (p == PINOUT_16V8) ? PIN_ZIF8 : PIN_ZIF10;
digitalWrite(pin, on ? 1:0);
}
} else {
digitalWrite(PIN_SCLK, on ? 1:0);
}
}
// output row address (RA0-5)
static void setRow(char row)
{
if (varVppExists) {
uint8_t srval = 0;
const PINOUT p = galinfo.pinout;
if (p == PINOUT_16V8) {
digitalWrite(PIN_ZIF22, (row & 0x1)); //RA0
digitalWrite(PIN_ZIF3 , (row & 0x2)); //RA1
if (row & 0x4) srval |= PIN_ZIF4; //RA2
if (row & 0x8) srval |= PIN_ZIF5; //RA3
if (row & 0x10) srval |= PIN_ZIF6; //RA4
if (row & 0x20) srval |= PIN_ZIF7; //RA5
} else
if (p == PINOUT_18V10) {
digitalWrite(PIN_ZIF22, (row & 0x1)); //RA0
if (row & 0x2) srval |= PIN_ZIF21; //RA1
if (row & 0x4) srval |= PIN_ZIF20; //RA2
digitalWrite(PIN_ZIF3 , (row & 0x8)); //RA3
if (row & 0x10) srval |= PIN_ZIF4; //RA4
if (row & 0x20) srval |= PIN_ZIF5; //RA5
} else
if (p == PINOUT_22V10 || p == PINOUT_600) {
if (row & 0x1) srval |= PIN_ZIF4; //RA0
if (row & 0x2) srval |= PIN_ZIF5; //RA1
if (row & 0x4) srval |= PIN_ZIF6; //RA2
if (row & 0x8) srval |= PIN_ZIF7; //RA3
digitalWrite(PIN_ZIF8, (row & 0x10)); //RA4
digitalWrite(PIN_ZIF9, (row & 0x20)); //RA5
} else { //PINOUT_20V8
if (row & 0x1) srval |= PIN_ZIF21; //RA0
digitalWrite(PIN_ZIF3 , (row & 0x2)); //RA1
if (row & 0x4) srval |= PIN_ZIF4; //RA2
if (row & 0x8) srval |= PIN_ZIF5; //RA3
digitalWrite(PIN_ZIF8, (row & 0x10)); //RA4
digitalWrite(PIN_ZIF9, (row & 0x20)); //RA5
}
setShiftReg(srval);
} else {
digitalWrite(PIN_RA0, (row & 0x1));
digitalWrite(PIN_RA1, ((row & 0x2) ? 1:0));
digitalWrite(PIN_RA2, ((row & 0x4) ? 1:0));
digitalWrite(PIN_RA3, ((row & 0x8) ? 1:0));
digitalWrite(PIN_RA4, ((row & 0x10) ? 1:0));
digitalWrite(PIN_RA5, ((row & 0x20) ? 1:0));
}
}
// serial data out form the GAL chip -> received by Arduino
static char getSDOUT(void)
{
if (varVppExists) {
const PINOUT p = galinfo.pinout;
uint8_t pin = PIN_ZIF16;
if (p == PINOUT_22V10 || p == PINOUT_600) {
pin = PIN_ZIF14;
} else
if (p == PINOUT_20V8) {
pin = PIN_ZIF15;
} else
if (p == PINOUT_18V10) {
pin = PIN_ZIF9;
}
return digitalRead(pin) != 0;
} else {
return digitalRead(PIN_SDOUT) != 0;
}
}
// GAL finish sequence
static void turnOff(void)
{
delay(100);
setPV(0); // P/V- low
setRow(0x3F);// RA0-5 high
setSDIN(1); // SDIN high
setVPP(0); // Vpp off (+12V)
setPV(1); // P/V- high
delay(2);
setVCC(0); // turn off VCC (if controlled)
setupGpios(INPUT);
delay(100); //ensure VPP is low
}
// GAL init sequence
static void turnOn(char mode) {
setupGpios(OUTPUT);
if (mode == READPES) {
mode = 2;
} else
if (
mode == WRITEGAL ||
mode == ERASEGAL ||
mode == ERASEALL ||
mode == BURNSECURITY ||
mode == WRITEPES ||
mode == VPPTEST ||
mode == READGAL
) {
mode = 1;
} else {
mode = 0;
}
// setVPP(mode);
setVPP(0); // VPP off
setPV(0); // P/V- low
setRow(0x3F); // RA0-5 high - erase sequence ?
//setRow(0); // RA0-5 low
setSDIN(1); // SDIN high
setSCLK(1); // SCLK high
setSTB(1); // STB high
setVCC(1); // turn on VCC (if controlled)
delay(100);
setSCLK(0); // SCLK low
setVPP(mode);
delay(20);
}
// clock and receive a bit in from GAL SDOUT
static char receiveBit(void)
{
char b = getSDOUT();
setSCLK(1);
setSCLK(0);
return b;
}
// read n number of bits
static void discardBits(short n)
{
while (n-- > 0) {
receiveBit();
}
}
// clock a bit and send it out to GAL SDIN
static void sendBit(char bitValue, char skipClkLow = 0)
{
setSDIN(bitValue);
setSCLK(1);
// For some reason ATF20V8B needs a slower clock
if (gal == ATF20V8B) {
delay(1);
}
if (!skipClkLow) {
setSCLK(0);
}
}
// send n number of bits to GAL
static void sendBits(short n, char bitValue)
{
char skipClkLow = flagBits & FLAG_BIT_ATF16V8C;
while (n-- > 0) {
sendBit(bitValue, skipClkLow && n == 0);
}
}
// send row address bits to SDIN
// ATF22V10C MSb first, other 22V10 LSb first
static void sendAddress(unsigned char n, unsigned char row)
{
switch (gal) {
case ATF22V10C:
while (n-- > 1) {
sendBit(row & 32); // clock in row number bits 5-1
row <<= 1;
}
setSDIN(row & 32); // SDIN = row number bit 0
break;
case ATF750C:
while (n-- > 1) {
sendBit(row & 1); // clock in row number bits 0-5
row >>= 1;
}
setSDIN(row & 1); // SDIN = row number bit 6
break;
default:
while (n-- > 0) {
sendBit(row & 1); // clock in row number bits 0-5
row >>= 1;
}
setSDIN(0); // SDIN = low
}
}
// pulse STB pin low for some milliseconds
static void strobe(unsigned short msec)
{
setSTB(0);
delay(msec);
setSTB(1);
}
// 16V8, 20V8 RA0-5 = row address, strobe.
// 22V10 RA0-5 = 0, send row address (6 bits), strobe.
// setBit: 0 - do not set bit, 1- set bit value 0, 2 - set bit value 1
static void strobeRow(char row, char setBit = BIT_NONE)
{
unsigned char nBits = 6;
switch(gal) {
case GAL16V8:
case GAL20V8:
case ATF20V8B:
case ATF16V8B:
setRow(row); // set RA0-5 to row number
if (setBit) {
sendBits(1, setBit - 1);
}
strobe(2); // pulse /STB for 2ms
break;
case ATF750C:
nBits = 7;
//fall through
case GAL18V10:
case GAL20RA10:
case GAL20XV10:
case GAL22V10:
case GAL26CV12:
case GAL26V12:
case ATF22V10B:
case ATF22V10C:
setRow(0); // set RA0-5 low
sendAddress(nBits, row); // send row number (6 or 7 bits)
setSTB(0);
setSTB(1); // pulse /STB
setSDIN(0); // SDIN low
break;
case GAL6001:
case GAL6002:
setRow(0);
sendBits(95, 0);
sendBit(1);
sendAddress(7, row);
sendBits(16, 0);
strobe(2); // pulse /STB for 2ms
break;
}
}
static void strobeConfigRow(char row)
{
switch(gal) {
case ATF750C:
setRow(0); // set RA0-5 low
setRow(galinfo.cfgrow);
sendAddress(7, row); // send row number (6 bits)
setSDIN(1); // SDIN high
setSTB(0);
setSTB(1); // pulse /STB
break;
}
}
// read PES: programmer electronic signature (ATF = text string, others = Vendor/Vpp/timing)
static void readPes(void) {
unsigned short bitmask;
short byteIndex;
#ifdef DEBUG_PES
Serial.print(F("testing gal "));
Serial.print(gal, DEC);
Serial.println();
#endif
turnOn(READPES);
strobeRow(galinfo.pesrow);
if (gal == ATF16V8B) {
setPV(1); //Required for ATF16V8C
}
if (gal == GAL6001 || gal == GAL6002) {
discardBits(20);
}
for(byteIndex = 0; byteIndex < galinfo.pesbytes; byteIndex++) {
unsigned char value = 0;
for (bitmask = 0x1; bitmask <= 0x80; bitmask <<= 1) {
if (receiveBit()) {
value |= bitmask;
}
}
pes[byteIndex] = value;
}
turnOff();
}
static void writePes(void) {
uint8_t rbit;
uint8_t b, p;
if (gal == ATF16V8B || gal == ATF20V8B || gal == ATF22V10B || gal == ATF22V10C) {
Serial.println(F("ER write PES not supported"));
return;
}
turnOn(WRITEPES);
setPV(1);
switch(gal) {
case GAL6001:
case GAL6002:
setRow(0);
sendBits(20, 0);
for (rbit = 0; rbit < 64; rbit++) {
b = pes[rbit >> 3];
p = b & (1 << (rbit & 0b111));
sendBit(p);
}
sendBits(11, 0);
sendBit(1);
sendAddress(7, galinfo.pesrow);
sendBits(16, 0);
setSDIN(0);
break;
default:
setRow(galinfo.pesrow);
for (rbit = 0; rbit < 64; rbit++) {
b = pes[rbit >> 3];
p = b & (1 << (rbit & 0b111));
sendBit(p);
}
break;
}
strobe(progtime);
turnOff();
}
static const unsigned char PROGMEM duration[] = {
1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80, 90, 100, 200
};
static unsigned char getDuration(unsigned char index) {
if (index > 13) {
return 0;
}
return pgm_read_byte(&duration[index]);
}
static void setGalDefaults(void) {
if (gal == ATF16V8B || gal == ATF20V8B || gal == ATF22V10B || gal == ATF22V10C || gal == ATF750C) {
progtime = 20;
erasetime = 100;
vpp = 42; /* 10.5V */
} else {
progtime = 80;
erasetime = 80;
vpp = 48; /* 12V */
}
}
void parsePes(char type) {
unsigned char algo;
if (UNKNOWN == type) {
type = gal;
}
#ifdef DEBUG_PES
Serial.print(F("Parse pes. gal="));
Serial.println(type, DEC);
#endif
switch (type) {
case ATF16V8B:
case ATF20V8B:
case ATF22V10B:
case ATF22V10C:
case ATF750C:
progtime = 20;
erasetime = 100;
vpp = 48; /* 12.0V */
break;
default:
algo = pes[1] & 0x0F;
if (algo == 5) {
erasetime = (25 << ((pes[4] >> 2) &7)) / 2;
progtime = getDuration(((((unsigned short)pes[5] << 8)| pes[4]) >> 5) & 15);
vpp = 2 * ((pes[5] >> 1) & 31) + 20;
}
else switch(type) {
case GAL16V8:
case GAL20V8:
erasetime=100;
goto more;
case GAL6001:
case GAL6002:
erasetime=50;
more:
switch(algo) {
case 0:
vpp = 63; // 15.75V
progtime = 100;
break;
case 1:
vpp = 63; // 15.75V
progtime = 80;
break;
case 2:
vpp = 66; // 16.5V
progtime = 10;
break;
case 3:
vpp = (pes[3] == NATIONAL) ? 60 : 58; // 15.0V or 14.5V
progtime = 40;
break;
case 4:
vpp = 56; // 14V
progtime = 100;
break;
}
break;
default:
erasetime = (pes[3] == NATIONAL) ? 50 : 100;
switch(algo) {
case 0:
vpp = 66; // 16.5V
progtime = 10;
break;
case 1:
vpp = 63; // 15.75V
progtime = 100;
break;
case 2:
vpp = (pes[3] == NATIONAL) ? 60 : 58; // 15.0V or 14.5V
progtime = 40;
break;
case 3:
vpp = 56; // 14V
progtime = 100;
break;
}
}
}
//Afterburnes seems to work with programming voltages reduced by 1V
vpp -= 4; // -1V
}
// print PES information
void printPes(char type) {
Serial.print(F("PES info: "));
//voltage
if (pes[3] == ATMEL16 || pes[3] == ATMEL22 || pes[3] == ATMEL750) {
//Serial.print(" ");
} else {
if (pes[1] & 0x10) {
Serial.print(F("3.3V "));
} else {
Serial.print(F("5V "));
}
}
//manufacturer
switch (pes[3]) {
case LATTICE: Serial.print(F("Lattice ")); break;
case NATIONAL: Serial.print(F("National ")); break;
case SGSTHOMSON: Serial.print(F("ST Microsystems ")); break;
case ATMEL750:
case ATMEL16:
case ATMEL22: Serial.print(F("Atmel ")); break;
default: Serial.print(F("Unknown GAL, "));
}
// GAL type
switch (type) {
case GAL16V8: Serial.print(F("GAL16V8 ")); break;
case GAL18V10: Serial.print(F("GAL18V10 ")); break;
case GAL20V8: Serial.print(F("GAL20V8 ")); break;
case GAL20RA10: Serial.print(F("GAL20RA10 ")); break;
case GAL20XV10: Serial.print(F("GAL20XV10 ")); break;
case GAL22V10: Serial.print(F("GAL22V10 ")); break;
case GAL26CV12: Serial.print(F("GAL26CV12 ")); break;
case GAL26V12: Serial.print(F("GAL26V12 ")); break;
case GAL6001: Serial.print(F("GAL6001 ")); break;
case GAL6002: Serial.print(F("GAL6002 ")); break;
case ATF16V8B: Serial.print(0 == (flagBits & FLAG_BIT_ATF16V8C) ? F("ATF16V8B "): F("ATF16V8C ")); break;
case ATF20V8B: Serial.print(F("ATF20V8B ")); break;
case ATF22V10B: Serial.print(F("ATF22V10B ")); break;
case ATF22V10C: Serial.print(F("ATF22V10C ")); break;
case ATF750C: Serial.print(F("ATF750C ")); break;
}
//programming info
if (UNKNOWN != type) {
Serial.print(F(" VPP="));
Serial.print(vpp >> 2, DEC);
Serial.print(F("."));
Serial.print((vpp & 3) * 25, DEC);
Serial.print(F(" Timing: prog="));
Serial.print(progtime, DEC);
Serial.print(F(" erase="));
Serial.print(erasetime / 4, DEC);
} else {
Serial.print(F(" try VPP=10..14 in 1V steps"));
}
Serial.println();
}
// sets a fuse bit on particular position
// expects that the fusemap was cleared (set to zero) beforehand
static void setFuseBit(unsigned short bitPos) {
uint16_t pos;
if (sparseFusemapStat) {
pos = sparseSetFuseBit(bitPos);
} else {
pos = bitPos >> 3; //divide the bit position by 8 to get the byte position
}
fusemap[pos] |= (1 << (bitPos & 7));
}
// gets a fuse bit from specific fuse position
static char getFuseBit(unsigned short bitPos) {
uint16_t pos;
if (sparseFusemapStat) {
pos = sparseGetFuseBit(bitPos);
if (pos >= 0xFF00) {
return pos & 0x1;
}
} else {
pos = bitPos >> 3;
}
return (fusemap[pos] & (1 << (bitPos & 7))) ? 1 : 0;
}
static void setFuseBitVal(unsigned short bitPos, char val) {
if (val) {
setFuseBit(bitPos);
}
}
// generic fuse-map reading, fuse-map bits are stored in fusemap array
static void readGalFuseMap(const unsigned char* cfgArray, char useDelay, char doDiscardBits) {
unsigned short cfgAddr = galinfo.cfgbase;
unsigned short row, bit;
unsigned short addr;
if (flagBits & FLAG_BIT_ATF16V8C) {
setPV(0);
}
for(row = 0; row < galinfo.rows; row++) {
strobeRow(row); //set address of the row
if (flagBits & FLAG_BIT_ATF16V8C) {
setSDIN(0);
setPV(1);
}
for(bit = 0; bit < galinfo.bits; bit++) {
// check the received bit is 1 and if so then set the fuse map
if (receiveBit()) {
addr = galinfo.rows;
addr *= bit;
addr += row;
setFuseBit(addr);
}
}
if (useDelay) {
delay(useDelay);
}
if (flagBits & FLAG_BIT_ATF16V8C) {
setPV(0);
}
}
// read UES
strobeRow(galinfo.uesrow);
if (flagBits & FLAG_BIT_ATF16V8C) {
setSDIN(0);
setPV(1);
}
if (doDiscardBits) {
discardBits(doDiscardBits);
}
for(bit = 0; bit < galinfo.uesbytes * 8; bit++) {
if (receiveBit()) {
addr = galinfo.uesfuse;
addr += bit;
setFuseBit(addr);
}
}
if (useDelay) {
delay(useDelay);
}
if (flagBits & FLAG_BIT_ATF16V8C) {
setPV(0);
}
// read CFG
if (galinfo.cfgmethod == CFG_STROBE_ROW) {
strobeRow(galinfo.cfgrow);
if (flagBits & FLAG_BIT_ATF16V8C) {
setSDIN(0);
setPV(1);
}
} else {
setRow(galinfo.cfgrow);
strobe(1);
}
for(bit = 0; bit < galinfo.cfgbits; bit++) {
if (receiveBit()) {
unsigned char cfgOffset = pgm_read_byte(&cfgArray[bit]); //read array byte flom flash
setFuseBit(cfgAddr + cfgOffset);
}
}
//check APD fuse bit - only for ATF16V8C or ATF22V10C
if ((flagBits & FLAG_BIT_ATF16V8C) || gal == ATF22V10C) {
setPV(0);
if (gal == ATF22V10C) {
setRow(0);
sendAddress(6, CFG_ROW_APD);
strobe(1);
} else { //ATF16V8C
setRow(CFG_ROW_APD);
strobe(1);
setPV(1);
}
setFlagBit(FLAG_BIT_APD, receiveBit());
}
#if 0
if (sparseFusemapStat) {
sparsePrintStat();
}
#endif
}
static void readGalFuseMap600(const unsigned char* cfgArray) {
unsigned short row, bit;
unsigned short addr;
for (row = 0; row < 78; row++)
{
strobeRow(row);
discardBits(20);
for (bit = 0; bit < 11; bit++)
setFuseBitVal(7296 + 78 * bit + row, receiveBit());
for (bit = 0; bit < 64; bit++)
setFuseBitVal(114 * bit + row, receiveBit());
discardBits(24);
}
for (row = 0; row < 64; row++)
{
sendBits(31, 0);
for (bit = 0; bit < 64; bit++)
sendBit(bit != row);
sendBits(24, 0);
setSDIN(0);
strobe(2);
for (bit = 0; bit < 20; bit++)
setFuseBitVal(78 + 114 * row + bit, receiveBit());
discardBits(83);
for (bit = 0; bit < 16; bit++)
setFuseBitVal(98 + 114 * row + bit, receiveBit());
}
// UES
strobeRow(galinfo.uesrow);
discardBits(20);
addr = galinfo.uesfuse;
for (bit = 0; bit < 72; bit++)
setFuseBitVal(addr + bit, receiveBit());
// CFG
setRow(galinfo.cfgrow);
strobe(2);
addr = galinfo.cfgbase;
for (bit = 0; bit < galinfo.cfgbits; bit++) {
unsigned char cfgOffset = pgm_read_byte(&cfgArray[bit]); //read array byte flom flash
setFuseBitVal(addr + cfgOffset, receiveBit());
}
}
// generic fuse-map verification, fuse map bits are compared against read bits
static unsigned short verifyGalFuseMap(const unsigned char* cfgArray, char useDelay, char doDiscardBits) {
unsigned short cfgAddr = galinfo.cfgbase;
unsigned short row, bit;
unsigned short addr;
char fuseBit; // fuse bit received from GAL
char mapBit; // fuse bit stored in RAM
unsigned short errors = 0;
if (flagBits & FLAG_BIT_ATF16V8C) {
setPV(0);
}
// read fuse rows
for(row = 0; row < galinfo.rows; row++) {
strobeRow(row);
if (flagBits & FLAG_BIT_ATF16V8C) {
setSDIN(0);
setPV(1);
}
for(bit = 0; bit < galinfo.bits; bit++) {
addr = galinfo.rows;
addr *= bit;
addr += row;
mapBit = getFuseBit(addr);
fuseBit = receiveBit();
if (mapBit != fuseBit) {
#ifdef DEBUG_VERIFY
Serial.print(F("f a="));
Serial.println((row * galinfo.bits) + bit, DEC);
#endif
errors++;
}
}
if (useDelay) {
delay(useDelay);
}
if (flagBits & FLAG_BIT_ATF16V8C) {
setPV(0);
}
}
// read UES
strobeRow(galinfo.uesrow);
if (flagBits & FLAG_BIT_ATF16V8C) {
setSDIN(0);
setPV(1);
}
if (doDiscardBits) {
discardBits(doDiscardBits);
}
for(bit = 0; bit < galinfo.uesbytes * 8; bit++) {
addr = galinfo.uesfuse;
addr += bit;
mapBit = getFuseBit(addr);
fuseBit = receiveBit();
if (mapBit != fuseBit) {
#ifdef DEBUG_VERIFY
Serial.print(F("U a="));
Serial.println(bit, DEC);
#endif
errors++;
}
}
if (useDelay) {
delay(useDelay);
}
if (flagBits & FLAG_BIT_ATF16V8C) {
setPV(0);
}
// read CFG
if (galinfo.cfgmethod == CFG_STROBE_ROW) {
strobeRow(galinfo.cfgrow);
if (flagBits & FLAG_BIT_ATF16V8C) {
setSDIN(0);
setPV(1);
}
} else {
setRow(galinfo.cfgrow);
strobe(1);
}
for(bit = 0; bit < galinfo.cfgbits; bit++) {
unsigned char cfgOffset = pgm_read_byte(&cfgArray[bit]); //read array byte flom flash
mapBit = getFuseBit(cfgAddr + cfgOffset);
fuseBit = receiveBit();
if (mapBit != fuseBit) {
#ifdef DEBUG_VERIFY
Serial.print(F("C a="));
Serial.println(bit, DEC);
#endif
errors++;
}
}
//verify PD fuse on Atmel's C GALs
if ((flagBits & FLAG_BIT_ATF16V8C) || gal == ATF22V10C) {
setPV(0);
if (gal == ATF22V10C) {
setRow(0);
sendAddress(6, CFG_ROW_APD);
strobe(1);
} else { //ATF16V8C
setRow(CFG_ROW_APD);
strobe(1);
setPV(1);
}
mapBit = (flagBits & FLAG_BIT_APD)? 1 : 0;
fuseBit = receiveBit();
if (mapBit != fuseBit) {
#ifdef DEBUG_VERIFY
Serial.println(F("C pd"));
#endif
errors++;
}
}
return errors;
}
static unsigned short verifyGalFuseMap600(const unsigned char* cfgArray) {
unsigned short row, bit;
unsigned short addr;
char fuseBit; // fuse bit received from GAL
char mapBit; // fuse bit stored in RAM
unsigned short errors = 0;
for (row = 0; row < 78; row++)
{
strobeRow(row);
discardBits(20);
for (bit = 0; bit < 11; bit++) {
mapBit = getFuseBit(7296 + 78 * bit + row);
fuseBit = receiveBit();
if (mapBit != fuseBit) {
#ifdef DEBUG_VERIFY
Serial.print(F("f a="));
Serial.println(7296 + 78 * bit + row, DEC);
#endif
errors++;
}
}
for (bit = 0; bit < 64; bit++) {
mapBit = getFuseBit(114 * bit + row);
fuseBit = receiveBit();
if (mapBit != fuseBit) {
#ifdef DEBUG_VERIFY
Serial.print(F("f a="));
Serial.println(114 * bit + row, DEC);
#endif
errors++;
}
}
discardBits(24);
}
for (row = 0; row < 64; row++)
{
sendBits(31, 0);
for (bit = 0; bit < 64; bit++)
sendBit(bit != row);
sendBits(24, 0);
setSDIN(0);
strobe(2);
for (bit = 0; bit < 20; bit++) {
mapBit = getFuseBit(78 + 114 * row + bit);
fuseBit = receiveBit();
if (mapBit != fuseBit) {
#ifdef DEBUG_VERIFY
Serial.print(F("f a="));
Serial.println(78 + 114 * row + bit, DEC);
#endif
errors++;
}
}
discardBits(83);
for (bit = 0; bit < 16; bit++) {
mapBit = getFuseBit(98 + 114 * row + bit);
fuseBit = receiveBit();
if (mapBit != fuseBit) {
#ifdef DEBUG_VERIFY
Serial.print(F("f a="));
Serial.println(98 + 114 * row + bit, DEC);
#endif
errors++;
}
}
}
// UES
strobeRow(galinfo.uesrow);
discardBits(20);
addr = galinfo.uesfuse;
for (bit = 0; bit < 72; bit++) {
mapBit = getFuseBit(addr + bit);
fuseBit = receiveBit();
if (mapBit != fuseBit) {
#ifdef DEBUG_VERIFY
Serial.print(F("f a="));
Serial.println(addr + bit, DEC);
#endif
errors++;
}
}
// CFG
setRow(galinfo.cfgrow);
strobe(2);
addr = galinfo.cfgbase;
for (bit = 0; bit < galinfo.cfgbits; bit++) {
unsigned char cfgOffset = pgm_read_byte(&cfgArray[bit]); //read array byte flom flash
mapBit = getFuseBit(addr + cfgOffset);
fuseBit = receiveBit();
if (mapBit != fuseBit) {
#ifdef DEBUG_VERIFY
Serial.print(F("f a="));
Serial.println(addr + cfgOffset, DEC);
#endif
errors++;
}
}
return errors;
}
// main fuse-map reading and verification function
// READING: reads fuse rows, UES, CFG from GAL and stores into fusemap bit array RAM.
// VERIFY: reads fuse rows, UES, CFG from GAL and compares with fusemap bit array in RAM.
static void readOrVerifyGal(char verify)
{
unsigned short i;
unsigned char* cfgArray = (unsigned char*) cfgV8;
//ensure fusemap is cleared before READ operation, keep it for VERIFY operation.
if (!verify) {
for (i = 0; i < MAXFUSES; i++) {
fusemap[i] = 0;
}
sparseInit(1);
}
turnOn(READGAL);
switch(gal)
{
case GAL16V8:
case GAL20V8:
if (pes[2] == 0x1A || pes[2] == 0x3A) {
cfgArray = (unsigned char*) cfgV8AB;
}
//read without delay, no discard
if (verify) {
i = verifyGalFuseMap(cfgArray, 0, 0);
} else {
readGalFuseMap(cfgArray, 0, 0);
}
break;
case ATF16V8B:
case ATF20V8B:
case GAL18V10:
case GAL20RA10:
case GAL20XV10:
case GAL26V12:
case GAL26CV12:
cfgArray = (unsigned char*) galinfo.cfg;
//read without delay, no discard
if (verify) {
i = verifyGalFuseMap(cfgArray, 0, 0);
} else {
readGalFuseMap(cfgArray, 0, 0);
}
break;
case GAL6001:
case GAL6002:
cfgArray = (gal == GAL6001) ? (unsigned char*) cfg6001 : (unsigned char*) cfg6002;
//read without delay, no discard
if (verify) {
i = verifyGalFuseMap600(cfgArray);
} else {
readGalFuseMap600(cfgArray);
}
break;
case GAL22V10:
case ATF22V10B:
case ATF22V10C:
//read with delay 1 ms, discard 68 cfg bits on ATFxx
if (verify) {
i = verifyGalFuseMap(cfgV10, 1, (gal == GAL22V10) ? 0 : 68);
} else {
readGalFuseMap(cfgV10, 1, (gal == GAL22V10) ? 0 : 68);
}
break;
case ATF750C:
//read with delay 1 ms, discard 107 bits on ATF750C
if (verify) {
i = verifyGalFuseMap(galinfo.cfg, 1, galinfo.bits - 8 * galinfo.uesbytes - 1);
} else {
readGalFuseMap(galinfo.cfg, 1, galinfo.bits - 8 * galinfo.uesbytes - 1);
}
}
turnOff();
if (verify && i > 0) {
Serial.print(F("ER verify failed. Bit errors: "));
Serial.println(i, DEC);
}
}
// fuse-map writing function for V8 GAL chips
static void writeGalFuseMapV8(const unsigned char* cfgArray) {
unsigned short cfgAddr = galinfo.cfgbase;
unsigned char row, rbit;
unsigned short addr;
unsigned char rbitMax = galinfo.bits;
const unsigned char skipLastClk = (flagBits & FLAG_BIT_ATF16V8C) ? 1 : 0;
setPV(1);
// write fuse rows
for (row = 0; row < galinfo.rows; row++) {
setRow(row);
for(rbit = 0; rbit < rbitMax; rbit++) {
addr = galinfo.rows;
addr *= rbit;
addr += row;
sendBit(getFuseBit(addr), rbit == rbitMax - 1 ? skipLastClk : 0);
}
strobe(progtime);
}
// write UES
setRow(galinfo.uesrow);
for (rbit = 0; rbit < 64; rbit++) {
addr = galinfo.uesfuse;
addr += rbit;
sendBit(getFuseBit(addr), rbit == 63 ? skipLastClk : 0);
}
strobe(progtime);
// write CFG (all ICs use setRow)
rbitMax = galinfo.cfgbits;
setRow(galinfo.cfgrow);
for(rbit = 0; rbit < rbitMax; rbit++) {
unsigned char cfgOffset = pgm_read_byte(&cfgArray[rbit]); //read array byte flom flash
sendBit(getFuseBit(cfgAddr + cfgOffset), rbit == rbitMax - 1 ? skipLastClk : 0);
}
strobe(progtime);
setPV(0);
// disable power-down if the APD flag is not set (only for ATF16V8C)
if (skipLastClk && (flagBits & FLAG_BIT_APD) == 0) {
setPV(1);
strobeRow(CFG_ROW_APD, BIT_ZERO); // strobe row and send one bit with value 0
setPV(0);
}
}
// fuse-map writing function for V10 GAL chips
static void writeGalFuseMapV10(const unsigned char* cfgArray, char fillUesStart, char useSdin) {
unsigned short cfgAddr = galinfo.cfgbase;
unsigned char row, bit;
unsigned short addr;
unsigned short uesFill = galinfo.bits - galinfo.uesbytes * 8;
setRow(0); //RA0-5 low
// write fuse rows
for (row = 0; row < galinfo.rows; row++) {
for (bit = 0; bit < galinfo.bits; bit++) {
addr = galinfo.rows;
addr *= bit;
addr += row;
sendBit(getFuseBit(addr));
}
sendAddress(6, row);
setPV(1);
strobe(progtime);
setPV(0);
}
// write UES
if (fillUesStart) {
sendBits(uesFill, 1);
}
for (bit = 0; bit < galinfo.uesbytes * 8; bit++) {
addr = galinfo.uesfuse;
addr += bit;
sendBit(getFuseBit(addr));
}
if (!fillUesStart) {
sendBits(uesFill, 1);
}
sendAddress(6, galinfo.uesrow);
setPV(1);
strobe(progtime);
setPV(0);
// write CFG
setRow(galinfo.cfgrow);
for(bit = 0; bit < galinfo.cfgbits - useSdin; bit++) {
unsigned char cfgOffset = pgm_read_byte(&cfgArray[bit]); //read array byte flom flash
sendBit(getFuseBit(cfgAddr + cfgOffset));
}
if (useSdin) {
unsigned char cfgOffset = pgm_read_byte(&cfgArray[19]); //read array byte flom flash
setSDIN(getFuseBit(cfgAddr + cfgOffset));
}
setPV(1);
strobe(progtime);
setPV(0);
if (useSdin && (flagBits & FLAG_BIT_APD) == 0) {
// disable power-down feature (JEDEC bit #5892)
setRow(0);
sendAddress(6, CFG_ROW_APD);
setPV(1);
strobe(progtime);
setPV(0);
}
}
// fuse-map writing function for ATF750C chips
static void writeGalFuseMapV750(const unsigned char* cfgArray, char fillUesStart, char useSdin) {
unsigned short cfgAddr = galinfo.cfgbase;
unsigned char row, bit;
unsigned short addr;
// write fuse rows
setRow(0); //RA0-5 low
delayMicroseconds(20);
for(row = 0; row < galinfo.rows; row++) {
for (bit = 0; bit < galinfo.bits; bit++) {
addr = (galinfo.bits * row) + bit;
sendBit(getFuseBit(addr));
}
sendAddress(7, row);
setPV(1);
delayMicroseconds(20);
strobe(progtime);
delayMicroseconds(100);
setPV(0);
delayMicroseconds(12);
}
// write UES
uint8_t fillBitsBegin = galinfo.bits - (8 * galinfo.uesbytes) - 1;
setRow(0); //RA0-5 low
if (fillUesStart) {
sendBits(fillBitsBegin, 0);
}
else {
fillBitsBegin = 0;
}
for (bit = 0; bit < (8 * galinfo.uesbytes); bit++) {
addr = bit;
sendBit(getFuseBit(addr));
}
uint8_t fillBitsEnd = galinfo.bits - (8 * galinfo.uesbytes) - fillBitsBegin;
if (fillBitsEnd > 0) {
sendBits(fillBitsEnd, 0);
}
row = galinfo.uesrow;
sendAddress(7, row);
setPV(1);
strobe(progtime);
setPV(0);
delay(progtime);
uint8_t cfgRowLen = 10; //ATF750C
uint8_t cfgStrobeRow = 96; //ATF750C
// write CFG
uint8_t cfgrowcount = (galinfo.cfgbits + (cfgRowLen - 1)) / cfgRowLen;
for(uint8_t i = 0; i < cfgrowcount; i++) {
setRow(0);
delayMicroseconds(10);
setRow(galinfo.cfgrow);
for(bit = 0; bit < cfgRowLen; bit++) {
uint8_t absBit = bit + (i * cfgRowLen);
//addr = galinfo.cfgbase - (galinfo[gal].bits * rangeStartRow) + cfgArray[absBit];
addr = galinfo.cfgbase + pgm_read_byte(&cfgArray[absBit]);
uint8_t v = getFuseBit(addr);
sendBit(v);
}
sendAddress(7, i + cfgStrobeRow);
delayMicroseconds(10);
setPV(1);
delayMicroseconds(18);
strobe(progtime); // 20ms
delayMicroseconds(32);
setPV(0);
delayMicroseconds(12);
setRow(0);
delayMicroseconds(12);
}
if (useSdin) {
// disable power-down feature (JEDEC bit #5892)
setRow(0);
sendAddress(7, 125); //TODO - read the power down fuse bit state from the fuse map and set it only if needed
setPV(1);
strobe(progtime);
setPV(0);
delay(progtime);
}
}
// fuse-map writing function for 600x GAL chips
static void writeGalFuseMap600(const unsigned char* cfgArray) {
unsigned short cfgAddr = galinfo.cfgbase;
unsigned char row, bit;
unsigned short addr;
setRow(0);
for (row = 0; row < 78; row++)
{
sendBits(20, 0);
for (bit = 0; bit < 11; bit++)
sendBit(getFuseBit(7296 + 78 * bit + row));
for (bit = 0; bit < 64; bit++)
sendBit(getFuseBit(114 * bit + row));
sendBit(1);
sendAddress(7, row);
sendBits(16, 0);
setSDIN(0);
setPV(1);
strobe(progtime);
setPV(0);
}
for (row = 0; row < 64; row++)
{
for (bit = 0; bit < 20; bit++)
sendBit(getFuseBit(78 + 114 * row + bit));
sendBits(11, 0);
for (bit = 0; bit < 64; bit++)
sendBit(bit != row);
sendBits(8, 0);
for (bit = 0; bit < 16; bit++)
sendBit(getFuseBit(98 + 114 * row + bit));
setSDIN(0);
setPV(1);
strobe(progtime);
setPV(0);
}
// UES
sendBits(20, 0);
addr = galinfo.uesfuse;
for (bit = 0; bit < 72; bit++)
sendBit(getFuseBit(addr + bit));
sendBits(3, 0);
sendBit(1);
sendAddress(7, galinfo.uesrow);
sendBits(16, 0);
setSDIN(0);
setPV(1);
strobe(progtime);
setPV(0);
// CFG
setRow(galinfo.cfgrow);
for (bit = 0; bit < galinfo.cfgbits; bit++)
{
unsigned char cfgOffset = pgm_read_byte(&cfgArray[bit]); //read array byte flom flash
sendBit(getFuseBit(cfgAddr + cfgOffset));
}
setSDIN(0);
setPV(1);
strobe(progtime);
setPV(0);
}
// main fuse-map writing function
static void writeGal()
{
unsigned short i;
unsigned char* cfgArray = (unsigned char*) cfgV8;
turnOn(WRITEGAL);
switch(gal)
{
case GAL16V8:
case GAL20V8:
if (pes[2] == 0x1A || pes[2] == 0x3A) {
cfgArray = (unsigned char*) cfgV8AB;
}
writeGalFuseMapV8(cfgArray);
break;
case ATF16V8B:
case ATF20V8B:
writeGalFuseMapV8(cfgV8AB);
break;
case GAL6001:
case GAL6002:
cfgArray = (unsigned char*) galinfo.cfg;
writeGalFuseMap600(cfgArray);
break;
case GAL18V10:
case GAL20RA10:
case GAL20XV10:
case GAL26CV12:
case GAL26V12:
cfgArray = (unsigned char*) galinfo.cfg;
writeGalFuseMapV10(cfgArray, 0, 0);
break;
case GAL22V10:
case ATF22V10B:
case ATF22V10C:
writeGalFuseMapV10(cfgV10, (gal == GAL22V10) ? 0 : 1, (gal == ATF22V10C) ? 1 : 0);
break;
case ATF750C:
writeGalFuseMapV750(cfgV750, 1, 1);
}
turnOff();
}
// erases fuse-map in the GAL
static void eraseGAL(char eraseAll)
{
turnOn(ERASEGAL);
setPV(1);
setRow(eraseAll ? galinfo.eraseallrow : galinfo.eraserow);
if (gal == GAL16V8 || gal == ATF16V8B || gal==GAL20V8) {
sendBit(1);
}
strobe(erasetime);
setPV(0);
turnOff();
}
// sets security bit - disables fuse reading
static void secureGAL(void)
{
turnOn(WRITEGAL);
setPV(1);
strobeRow(61, BIT_ONE); // strobe row and send one bit with value 1
setPV(0);
turnOff();
}
static char checkGalTypeViaPes(void)
{
char type = UNKNOWN;
#ifdef DEBUG_PES
char i;
Serial.println(F("PES raw bytes:"));
for (i = 0; i < 10; i++) {
printFormatedNumberHex2(pes[i]);
Serial.print(F(" "));
}
Serial.println();
#endif
setFlagBit(FLAG_BIT_ATF16V8C, 0);
if (pes[7] == 'F' && pes[6]== '2' && pes[5]== '2' && (pes[4]== 'V' || pes[4]=='L') && pes[3]== '1' && pes[2]=='0') {
if (pes[1] == 'B') {
type = ATF22V10B;
} else {
type = ATF22V10C;
}
}
else if (pes[6] == 'F' && pes[5] == '2' && pes[4]== '0' && pes[3] == 'V' && pes[2]=='8' && pes[1] == 'B') {
type = ATF20V8B;
}
else if (pes[6] == 'F' && pes[5] == '1' && pes[4]== '6' && pes[3] == 'V' && pes[2]=='8') {
type = ATF16V8B;
if (pes[1] == 'C' || pes[1] == 'Z') { // ATF16V8C, ATF16V8CZ
setFlagBit(FLAG_BIT_ATF16V8C, 1);
}
}
else if (pes[8] == 'F' && pes[7] == 'V' && pes[6] == '7' && pes[5] == '5' && pes[4] == '0' && pes[3] =='C') {
// complete string at beginning of row 127: "300C057VF100"
type = ATF750C;
}
else if (pes[2] != 0x00 && pes[2] != 0xFF) {
for (type = (sizeof(galInfoList) / sizeof(galinfo_t)) - 1; type; type--) {
uint8_t id0 = pgm_read_byte(&galInfoList[type].id0);
uint8_t id1 = pgm_read_byte(&galInfoList[type].id1);
if (pes[2] == id0 || pes[2] == id1) break;
}
} else if (pes[3] == SGSTHOMSON && pes[2] == 0x00) {
type = GAL16V8;
}
return type;
}
// checks whether gal type corresponds to PES information on the IC
// note: PES must be read beforehand
static char testProperGAL(void)
{
char type = checkGalTypeViaPes();
if (type == 0) {
//Unknown or illegal PES,
goto error;
}
else if (type != gal) {
//PES indicates a different GAL type than selected. Change to detected GAL type?
goto error;
}
return 1;
error:
Serial.println(F("ER unknown or wrong GAL type (check Power ON)"));
return 0;
}
// prints a hexadecimal number - 2 digits with a leading zero
static void printFormatedNumberHex2(unsigned char num) {
if (num < 16) {
Serial.print(F("0"));
}
Serial.print(num, HEX);
}
// prints a hexadecimal number - 4 digits with a leading zero
static void printFormatedNumberHex4(unsigned short num) {
if (num < 0x10) {
Serial.print(F("000"));
} else
if (num < 0x100) {
Serial.print(F("00"));
} else
if (num < 0x1000) {
Serial.print(F("0"));
}
Serial.print(num, HEX);
}
// prints a decimal number - 4 digits with a leading zero
static void printFormatedNumberDec4(unsigned short num) {
if (num < 1) {
Serial.print(F("0000"));
return;
}
if (num < 10) {
Serial.print(F("000"));
} else
if (num < 100) {
Serial.print(F("00"));
} else
if (num < 1000) {
Serial.print(F("0"));
}
Serial.print(num, DEC);
}
// adds a formated decimal number with a leading zero to a line buffer at position 'i'
static unsigned char addFormatedNumberDec4(unsigned short num, unsigned char i) {
char cnt = 3;
while (cnt >= 0) {
line[i + cnt] = '0' + (num % 10);
num /= 10;
cnt--;
}
return i + 4;
}
// calculates fuse-map checksum and returns it
static unsigned short checkSum(unsigned short n)
{
unsigned short c, e, i;
unsigned long a;
c = e= 0;
a = 0;
for (i = 0; i < n; i++) {
e++;
if (e == 9) {
e = 1;
a += c;
c = 0;
}
c >>= 1;
if (getFuseBit(i)) {
c += 0x80;
}
}
return (unsigned short)((c >> (8 - e)) + a);
}
static void printGalName() {
switch (gal) {
case GAL16V8: Serial.println(F("GAL16V8")); break;
case GAL18V10: Serial.println(F("GAL18V10")); break;
case GAL20V8: Serial.println(F("GAL20V8")); break;
case GAL20RA10: Serial.println(F("GAL20RA10")); break;
case GAL20XV10: Serial.println(F("GAL20XV10")); break;
case GAL22V10: Serial.println(F("GAL22V10")); break;
case GAL26CV12: Serial.println(F("GAL26CV12")); break;
case GAL26V12: Serial.println(F("GAL26V12")); break;
case GAL6001: Serial.println(F("GAL6001")); break;
case GAL6002: Serial.println(F("GAL6002")); break;
case ATF16V8B:
if (flagBits & FLAG_BIT_ATF16V8C) {
Serial.println(F("ATF16V8C"));
} else {
Serial.println(F("ATF16V8B"));
}
break;
case ATF20V8B: Serial.println(F("ATF20V8B")); break;
case ATF22V10B: Serial.println(F("ATF22V10B")); break;
case ATF22V10C: Serial.println(F("ATF22V10C")); break;
default: Serial.println(F("GAL")); break;
}
}
static unsigned printJedecBlock(unsigned short k, unsigned short bits, unsigned short rows) {
unsigned short i, j;
unsigned char unused;
for (i = 0; i < bits; i++)
{
unused = 1;
for (j = 0; j < rows; j++)
{
unused &= !getFuseBit(k + j);
}
if (unused) {
k += rows;
continue;
}
Serial.print('L');
printFormatedNumberDec4(k);
Serial.print(' ');
for (j = 0; j < rows; j++, k++)
{
if (getFuseBit(k)) {
unused = 0;
Serial.print('1');
} else {
Serial.print('0');
}
}
Serial.println('*');
}
return k;
}
// prints the contents of fuse-map array in the form of JEDEC text file
static void printJedec()
{
unsigned short i, j, k, n;
unsigned char unused, start;
uint8_t apdFuse = (flagBits & FLAG_BIT_APD) ? 1 : 0;
Serial.print(F("JEDEC file for "));
printGalName();
Serial.print(F("*QP")); Serial.print(galinfo.pins, DEC);
Serial.print(F("*QF")); Serial.print(galinfo.fuses + apdFuse, DEC);
Serial.println(F("*QV0*F0*G0*X0*"));
k = 0;
if (gal == GAL6001 || gal == GAL6002) {
k = printJedecBlock(k, 64, 114);
k = printJedecBlock(k, 11, 78);
} else {
k = printJedecBlock(k, galinfo.bits, galinfo.rows);
}
if( k < galinfo.uesfuse) {
Serial.print('L');
printFormatedNumberDec4(k);
Serial.print(' ');
while(k < galinfo.uesfuse) {
if (getFuseBit(k)) {
unused = 0;
Serial.print('1');
} else {
Serial.print('0');
}
k++;
}
Serial.println('*');
}
// UES in byte form
Serial.print(F("N UES"));
for (j = 0;j < galinfo.uesbytes; j++) {
n = 0;
for (i = 0; i < 8; i++) {
if (getFuseBit(k + 8 * j + i)) {
if (gal == ATF22V10C || gal == ATF750C) {
n |= 1 << (7 - i); // big-endian
}
else {
n |= 1 << i; // little-endian
}
}
}
Serial.print(' ');
printFormatedNumberHex2(n);
}
Serial.println('*');
// UES in bit form
Serial.print('L');
printFormatedNumberDec4(k);
Serial.print(' ');
for(j = 0; j < 8 * galinfo.uesbytes; j++) {
if (getFuseBit(k++)) {
Serial.print('1');
} else {
Serial.print('0');
}
}
Serial.println('*');
// CFG bits
if (k < galinfo.fuses) {
Serial.print('L');
printFormatedNumberDec4(k);
Serial.print(' ');
while( k < galinfo.fuses) {
if (getFuseBit(k++)) {
Serial.print('1');
} else {
Serial.print('0');
}
}
//ATF16V8C
if (apdFuse) {
Serial.print('1');
setFuseBit(k); // set for correct check-sum calculation
}
Serial.println('*');
} else if (apdFuse) { //ATF22V10C
Serial.print('L');
printFormatedNumberDec4(k);
Serial.println(F(" 1*"));
setFuseBit(k); // set for correct check-sum calculation
}
Serial.print(F("N PES"));
for(i = 0; i < galinfo.pesbytes; i++) {
Serial.print(' ');
printFormatedNumberHex2(pes[i]);
}
Serial.println('*');
Serial.print('C');
printFormatedNumberHex4(checkSum(galinfo.fuses + apdFuse));
Serial.println();
Serial.println('*');
}
// helper print function to save RAM space
static void printNoFusesError() {
Serial.println(F("ER fuse map not uploaded"));
}
static void testVoltage(int seconds) {
int i;
// New board design: set VPP to 16.5V and measure values
// on analogue pin A1
if (varVppExists) {
int16_t v;
uint8_t okCnt = 0;
varVppSetMax();
for (i = 0 ; i < seconds; i++) {
delay(1000);
v = varVppMeasureVpp(1); //measure and print
if (v >= 1640 && v <= 1664) {
okCnt++;
// stop early if the VPP is set correctly (still allow time for POT fine-tuning)
if (okCnt > 3) {
Serial.println(F("VPP OK"));
i = seconds;
}
} else {
okCnt = 0;
}
}
varVppSet(VPP_5V0);
}
// Legacy board design: set the VPP_EN pin "On" and check
// with multimeter the desired VPP voltage specific for GAL chip.
else {
pinMode(PIN_VPP, OUTPUT);
setVPP(1);
for (i = 0 ; i < seconds; i++) {
delay(1000);
}
setVPP(0);
pinMode(PIN_VPP, INPUT);
}
}
// returns 1 if type check if OK, 0 if gal type does not match the type read from PES
static char doTypeCheck(void) {
if (0 == flagBits & FLAG_BIT_TYPE_CHECK) {
setGalDefaults();
return 1; // no need to do type check
}
readPes();
parsePes(UNKNOWN);
return testProperGAL();
}
static void measureVpp(uint8_t index) {
varVppSet(index);
delay(150);
varVppMeasureVpp(1); //print measured value
delay(5000);
}
static void measureVppValues(void) {
if (!varVppExists) {
Serial.println(F("ER variable VPP not supported"));
return;
}
Serial.print(F("VPP calib. offset: "));
Serial.println(calOffset);
Serial.print(F("VPP: 4.2 - 5.0V : "));
measureVpp(VPP_5V0);
Serial.print(F("VPP: 9.0V : "));
measureVpp(VPP_9V0);
Serial.print(F("VPP: 10.0V : "));
measureVpp(VPP_10V0);
Serial.print(F("VPP: 12.0V : "));
measureVpp(VPP_12V0);
Serial.print(F("VPP: 14.0V : "));
measureVpp(VPP_14V0);
Serial.print(F("VPP: 16.0V : "));
measureVpp(VPP_16V0);
varVppSet(VPP_5V0);
}
static void calibrateVpp(void) {
if (!varVppExists) {
Serial.println(F("ER variable VPP not supported"));
return;
}
if (varVppCalibrate()) {
Serial.println(F("Calibration OK"));
}
}
// Arduino main loop
void loop() {
// read a command from serial terminal or COMMAND_NONE if nothing is received from serial
char command = handleTerminalCommands();
// any unexpected input when uploading fuse map terminates the upload process
if (isUploading && command != COMMAND_UTX && command != COMMAND_NONE) {
Serial.println(F("ER upload aborted"));
isUploading = 0;
lineIndex = 0;
}
// handle commands received from the serial terminal
switch (command) {
// print some help
case COMMAND_HELP: {
printHelp(1);
} break;
case COMMAND_IDENTIFY_PROGRAMMER : {
printHelp(0);
} break;
// verify fuse-map bits and bits read from the GAL chip
case COMMAND_VERIFY_FUSES: {
if (mapUploaded) {
if (doTypeCheck()) {
readOrVerifyGal(1); //just verify, do not overwrite fusemap
}
} else {
printNoFusesError();
}
} break;
// handle upload command - start the download of fuse-map
case COMMAND_UPLOAD: {
short i;
// clean fuses
for (i = 0; i < MAXFUSES; i++) {
fusemap[i] = 0;
}
sparseInit(1);
isUploading = 1;
uploadError = 0;
} break;
// command of the upload protocol
case COMMAND_UTX : {
parseUploadLine();
} break;
// read and print the PES
case COMMAND_READ_PES : {
char type;
readPes();
type = checkGalTypeViaPes();
parsePes(type);
printPes(type);
} break;
case COMMAND_WRITE_PES : {
char type;
type = checkGalTypeViaPes();
parsePes(type);
writePes();
} break;
// read fuse-map from the GAL and print it in the JEDEC form
case COMMAND_READ_FUSES : {
if (doTypeCheck()) {
readOrVerifyGal(0); //just read, no verification
printJedec();
}
} break;
// write current fuse-map to the GAL chip
case COMMAND_WRITE_FUSES : {
if (mapUploaded) {
if (doTypeCheck()) {
writeGal();
//security is handled by COMMAND_ENABLE_SECURITY command
}
} else {
printNoFusesError();
}
} break;
// erases the fuse-map on the GAL chip
case COMMAND_ERASE_GAL: {
if (doTypeCheck()) {
eraseGAL(0);
}
} break;
// erases PES and the fuse-map on the GAL chip
case COMMAND_ERASE_GAL_ALL: {
if (doTypeCheck()) {
eraseGAL(1);
}
} break;
// sets the security bit
case COMMAND_ENABLE_SECURITY: {
if (doTypeCheck()) {
secureGAL();
}
} break;
// keep atmel power-down feature enabled during write
case COMMAND_ENABLE_APD: {
setFlagBit(FLAG_BIT_APD, 1);
Serial.println(F("OK APD set"));
} break;
case COMMAND_DISABLE_APD: {
setFlagBit(FLAG_BIT_APD, 0);
Serial.println(F("OK APD cleared"));
} break;
// toggles terminal echo
case COMMAND_ECHO : {
echoEnabled = 1 - echoEnabled;
} break;
case COMMAND_TEST_VOLTAGE : {
testVoltage(20);
} break;
case COMMAND_SET_GAL_TYPE : {
char type = line[1] - '0';
if (type >= 1 && type < LAST_GAL_TYPE) {
gal = (GALTYPE) type;
copyGalInfo();
if (0 == flagBits & FLAG_BIT_TYPE_CHECK) { //no type check requested
setGalDefaults();
}
} else {
Serial.print(F("ER Unknown gal type "));
Serial.println(type, DEC);
}
} break;
case COMMAND_ENABLE_CHECK_TYPE: {
setFlagBit(FLAG_BIT_TYPE_CHECK, 1);
} break;
case COMMAND_DISABLE_CHECK_TYPE: {
int i = 0;
while(i < 12){
pes[i++] = 0;
}
setFlagBit(FLAG_BIT_TYPE_CHECK, 0);
} break;
case COMMAND_MEASURE_VPP: {
measureVppValues();
} break;
// calibration offset helps to offset the resistor tolerances in voltage dividers and also
// small differences in analog ref which is ~3.3 V derived from LDO.
case COMMAND_CALIBRATION_OFFSET: {
int8_t offset = line[1] - '0';
if (offset >=0 && offset <= 9) {
//0:-0.2V 1:-0.15V 2: -0.1V 3: -0.05V 4: 0V 5: 0.05V 6: 0.1V 7: 0.15V 8: 0.20V 9:0.25V
calOffset = (offset - 4) * 5;
Serial.print(F("Using cal offset: "));
Serial.println(calOffset);
} else {
Serial.println(F("ER: cal offset failed"));
}
} break;
case COMMAND_CALIBRATE_VPP: {
calibrateVpp();
} break;
default: {
if (command != COMMAND_NONE) {
Serial.print(F("ER Unknown command: "));
Serial.println(line);
}
}
}
// display prompt character - important for the PC program to check that Arduino
// finished the desired operation
if (command != COMMAND_NONE) {
Serial.println(F(">"));
}
// and that's it!
}